Global Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (18818 entries)
Instance Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (548 entries)
Projection Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (206 entries)
Record Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (68 entries)
Lemma Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (8939 entries)
Section Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (338 entries)
Constructor Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (422 entries)
Notation Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (644 entries)
Abbreviation Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (1243 entries)
Inductive Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (209 entries)
Definition Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (2935 entries)
Module Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (703 entries)
Axiom Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (699 entries)
Variable Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (1456 entries)
Library Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (408 entries)

S (lemma)

same_relation_is_equivalence [in Coq.Sets.Relations_1_facts]
scal_sum [in Coq.Reals.PartSum]
seq_shift [in Coq.Lists.List]
seq_nth [in Coq.Lists.List]
seq_length [in Coq.Lists.List]
seq_congr [in Coq.Sets.Uniset]
seq_right [in Coq.Sets.Uniset]
seq_left [in Coq.Sets.Uniset]
seq_sym [in Coq.Sets.Uniset]
seq_trans [in Coq.Sets.Uniset]
seq_refl [in Coq.Sets.Uniset]
setcover_intro [in Coq.Sets.Powerset_facts]
setcover_inv [in Coq.Sets.Powerset_Classical_facts]
Setminus_intro [in Coq.Sets.Constructive_sets]
set_diff_trivial [in Coq.Lists.ListSet]
set_diff_elim2 [in Coq.Lists.ListSet]
set_diff_elim1 [in Coq.Lists.ListSet]
set_diff_intro [in Coq.Lists.ListSet]
set_inter_elim [in Coq.Lists.ListSet]
set_inter_elim2 [in Coq.Lists.ListSet]
set_inter_elim1 [in Coq.Lists.ListSet]
set_inter_intro [in Coq.Lists.ListSet]
set_union_emptyR [in Coq.Lists.ListSet]
set_union_emptyL [in Coq.Lists.ListSet]
set_union_elim [in Coq.Lists.ListSet]
set_union_intro [in Coq.Lists.ListSet]
set_union_intro2 [in Coq.Lists.ListSet]
set_union_intro1 [in Coq.Lists.ListSet]
set_add_not_empty [in Coq.Lists.ListSet]
set_add_elim2 [in Coq.Lists.ListSet]
set_add_elim [in Coq.Lists.ListSet]
set_add_intro [in Coq.Lists.ListSet]
set_add_intro2 [in Coq.Lists.ListSet]
set_add_intro1 [in Coq.Lists.ListSet]
set_mem_complete2 [in Coq.Lists.ListSet]
set_mem_complete1 [in Coq.Lists.ListSet]
set_mem_correct2 [in Coq.Lists.ListSet]
set_mem_correct1 [in Coq.Lists.ListSet]
set_mem_ind2 [in Coq.Lists.ListSet]
set_mem_ind [in Coq.Lists.ListSet]
set_In_dec [in Coq.Lists.ListSet]
SFL_continuity [in Coq.Reals.PSeries_reg]
SFL_continuity_pt [in Coq.Reals.PSeries_reg]
shiftin_last [in Coq.Vectors.VectorSpec]
shiftin_nth [in Coq.Vectors.VectorSpec]
shiftl_spec_low [in Coq.Numbers.Natural.Peano.NPeano]
shiftl_spec_high [in Coq.Numbers.Natural.Peano.NPeano]
shiftrepeat_last [in Coq.Vectors.VectorSpec]
shiftrepeat_nth [in Coq.Vectors.VectorSpec]
shiftr_spec [in Coq.Numbers.Natural.Peano.NPeano]
shift_pos_correct [in Coq.ZArith.Zpower]
shift_pos_nat [in Coq.ZArith.Zpower]
shift_nat_correct [in Coq.ZArith.Zpower]
shift_nat_plus [in Coq.ZArith.Zpower]
shift_equiv [in Coq.ZArith.Zpower]
shift_pos_equiv [in Coq.ZArith.Zpower]
shift_nat_equiv [in Coq.ZArith.Zpower]
shift_unshift_mod_2 [in Coq.Numbers.BigNumPrelude]
shift_unshift_mod [in Coq.Numbers.BigNumPrelude]
sigma_eq_arg [in Coq.Reals.Rsigma]
sigma_last [in Coq.Reals.Rsigma]
sigma_first [in Coq.Reals.Rsigma]
sigma_diff_neg [in Coq.Reals.Rsigma]
sigma_diff [in Coq.Reals.Rsigma]
sigma_split [in Coq.Reals.Rsigma]
sigT_of_sig [in Coq.Init.Specif]
sig_of_sigT [in Coq.Init.Specif]
sig_forall_dec [in Coq.Reals.Rlogic]
simplification_K [in Coq.Program.Equality]
simplification_existT1 [in Coq.Program.Equality]
simplification_existT2 [in Coq.Program.Equality]
simplification_heq [in Coq.Program.Equality]
Simplify_add [in Coq.Sets.Powerset_Classical_facts]
simpl_fact [in Coq.Reals.Rfunctions]
simpl_sin_n [in Coq.Reals.Rtrigo_def]
simpl_cos_n [in Coq.Reals.Rtrigo_def]
SIN [in Coq.Reals.Rtrigo1]
sincl_add_x [in Coq.Sets.Powerset_Classical_facts]
Singleton_is_finite [in Coq.Sets.Finite_sets_facts]
Singleton_intro [in Coq.Sets.Constructive_sets]
Singleton_inv [in Coq.Sets.Constructive_sets]
Singleton_atomic [in Coq.Sets.Powerset_Classical_facts]
singleton_choice [in Coq.Logic.ClassicalChoice]
single_limit [in Coq.Reals.Rlimit]
single_z_r_R1 [in Coq.Reals.RIneq]
singlx [in Coq.Sets.Powerset_facts]
sinh_0 [in Coq.Reals.Rtrigo_def]
sin_lb_ge_0 [in Coq.Reals.Rtrigo_calc]
sin_cos5PI4 [in Coq.Reals.Rtrigo_calc]
sin_5PI4 [in Coq.Reals.Rtrigo_calc]
sin_2PI3 [in Coq.Reals.Rtrigo_calc]
sin_PI3 [in Coq.Reals.Rtrigo_calc]
sin_PI4 [in Coq.Reals.Rtrigo_calc]
sin_PI6 [in Coq.Reals.Rtrigo_calc]
sin_PI6_cos_PI3 [in Coq.Reals.Rtrigo_calc]
sin_PI3_cos_PI6 [in Coq.Reals.Rtrigo_calc]
sin_cos_PI4 [in Coq.Reals.Rtrigo_calc]
sin_3PI2 [in Coq.Reals.Rtrigo_calc]
sin_eq_O_2PI_1 [in Coq.Reals.Rtrigo1]
sin_eq_O_2PI_0 [in Coq.Reals.Rtrigo1]
sin_eq_0_0 [in Coq.Reals.Rtrigo1]
sin_eq_0_1 [in Coq.Reals.Rtrigo1]
sin_decr_1 [in Coq.Reals.Rtrigo1]
sin_decr_0 [in Coq.Reals.Rtrigo1]
sin_incr_1 [in Coq.Reals.Rtrigo1]
sin_incr_0 [in Coq.Reals.Rtrigo1]
sin_decreasing_1 [in Coq.Reals.Rtrigo1]
sin_decreasing_0 [in Coq.Reals.Rtrigo1]
sin_increasing_1 [in Coq.Reals.Rtrigo1]
sin_increasing_0 [in Coq.Reals.Rtrigo1]
sin_lt_0_var [in Coq.Reals.Rtrigo1]
sin_lt_0 [in Coq.Reals.Rtrigo1]
sin_le_0 [in Coq.Reals.Rtrigo1]
sin_ge_0 [in Coq.Reals.Rtrigo1]
sin_gt_0 [in Coq.Reals.Rtrigo1]
sin_lb_gt_0 [in Coq.Reals.Rtrigo1]
SIN_bound [in Coq.Reals.Rtrigo1]
sin_shift [in Coq.Reals.Rtrigo1]
sin_period [in Coq.Reals.Rtrigo1]
sin_PI_x [in Coq.Reals.Rtrigo1]
sin_2PI [in Coq.Reals.Rtrigo1]
sin_neg [in Coq.Reals.Rtrigo1]
sin_2a [in Coq.Reals.Rtrigo1]
sin_minus [in Coq.Reals.Rtrigo1]
sin_plus [in Coq.Reals.Rtrigo1]
sin_cos [in Coq.Reals.Rtrigo1]
sin_bound [in Coq.Reals.Rtrigo1]
sin_PI [in Coq.Reals.Rtrigo1]
sin_PI2 [in Coq.Reals.Rtrigo1]
sin_pos_tech [in Coq.Reals.Rtrigo1]
sin_gt_cos_7_8 [in Coq.Reals.Rtrigo1]
sin_0 [in Coq.Reals.Rtrigo_def]
sin_antisym [in Coq.Reals.Rtrigo_def]
sin_no_R0 [in Coq.Reals.Rtrigo_def]
sin2 [in Coq.Reals.Rtrigo1]
sin2_cos2 [in Coq.Reals.Rtrigo1]
sin3PI4 [in Coq.Reals.Rtrigo_calc]
small_drinkers'_paradox [in Coq.Logic.Epsilon]
SndRel_ProdRel [in Coq.Classes.RelationPairs]
sneakl_shiftr [in Coq.Numbers.Cyclic.Int31.Cyclic31]
sneakr_shiftl [in Coq.Numbers.Cyclic.Int31.Cyclic31]
solution_right [in Coq.Program.Equality]
solution_left [in Coq.Program.Equality]
SortA_equivlistA_eqlistA [in Coq.Lists.SetoidList]
SortA_NoDupA [in Coq.Lists.SetoidList]
SortA_app [in Coq.Lists.SetoidList]
SortA_InfA_InA [in Coq.Lists.SetoidList]
Sorted_StronglySorted [in Coq.Sorting.Sorted]
Sorted_extends [in Coq.Sorting.Sorted]
Sorted_LocallySorted_iff [in Coq.Sorting.Sorted]
Sorted_rect [in Coq.Sorting.Sorted]
Sorted_inv [in Coq.Sorting.Sorted]
Sort.LocallySorted_sort [in Coq.Sorting.Mergesort]
Sort.Permuted_sort [in Coq.Sorting.Mergesort]
Sort.Permuted_iter_merge [in Coq.Sorting.Mergesort]
Sort.Permuted_merge_stack [in Coq.Sorting.Mergesort]
Sort.Permuted_merge_list_to_stack [in Coq.Sorting.Mergesort]
Sort.Permuted_merge [in Coq.Sorting.Mergesort]
Sort.Sorted_sort [in Coq.Sorting.Mergesort]
Sort.Sorted_iter_merge [in Coq.Sorting.Mergesort]
Sort.Sorted_merge_stack [in Coq.Sorting.Mergesort]
Sort.Sorted_merge_list_to_stack [in Coq.Sorting.Mergesort]
Sort.Sorted_merge [in Coq.Sorting.Mergesort]
Sort.StronglySorted_sort [in Coq.Sorting.Mergesort]
spec_ww_compare [in Coq.Numbers.Cyclic.DoubleCyclic.DoubleBase]
spec_double_split [in Coq.Numbers.Cyclic.DoubleCyclic.DoubleBase]
spec_double_0 [in Coq.Numbers.Cyclic.DoubleCyclic.DoubleBase]
spec_extend [in Coq.Numbers.Cyclic.DoubleCyclic.DoubleBase]
spec_extend_aux [in Coq.Numbers.Cyclic.DoubleCyclic.DoubleBase]
spec_double_WW [in Coq.Numbers.Cyclic.DoubleCyclic.DoubleBase]
spec_get_low [in Coq.Numbers.Cyclic.DoubleCyclic.DoubleBase]
spec_double_to_Z [in Coq.Numbers.Cyclic.DoubleCyclic.DoubleBase]
spec_ww_to_Z [in Coq.Numbers.Cyclic.DoubleCyclic.DoubleBase]
spec_ww_Bm1 [in Coq.Numbers.Cyclic.DoubleCyclic.DoubleBase]
spec_ww_1 [in Coq.Numbers.Cyclic.DoubleCyclic.DoubleBase]
spec_to_Z_pos [in Coq.Numbers.Integer.BigZ.BigZ]
spec_to_N [in Coq.Numbers.Integer.BigZ.BigZ]
spec_to_Z [in Coq.Numbers.Integer.BigZ.BigZ]
spec_compare_mn_1 [in Coq.Numbers.Natural.BigN.Nbasic]
spec_compare0_mn [in Coq.Numbers.Natural.BigN.Nbasic]
spec_is_even [in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_eq0 [in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_sqrt2 [in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_sqrt [in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_tail0 [in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_tail00 [in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_head0 [in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_head00 [in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_pos_mod [in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_add_mul_div [in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_gcd [in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_mod [in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_div [in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_div21 [in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_square_c [in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_mul [in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_mul_c [in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_pred [in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_pred_c [in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_opp_carry [in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_opp [in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_opp_c [in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_sub_carry [in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_sub [in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_sub_carry_c [in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_sub_c [in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_succ [in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_add_carry [in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_add [in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_add_carry_c [in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_succ_c [in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_add_c [in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_compare [in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_m1 [in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_1 [in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_0 [in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_more_than_1_digit [in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_zdigits [in Coq.Numbers.Cyclic.Int31.Cyclic31]
spec_ww_add_carry [in Coq.Numbers.Cyclic.DoubleCyclic.DoubleAdd]
spec_ww_add [in Coq.Numbers.Cyclic.DoubleCyclic.DoubleAdd]
spec_ww_succ [in Coq.Numbers.Cyclic.DoubleCyclic.DoubleAdd]
spec_ww_add_carry_c [in Coq.Numbers.Cyclic.DoubleCyclic.DoubleAdd]
spec_ww_add_c_cont [in Coq.Numbers.Cyclic.DoubleCyclic.DoubleAdd]
spec_ww_add_c [in Coq.Numbers.Cyclic.DoubleCyclic.DoubleAdd]
spec_ww_succ_c [in Coq.Numbers.Cyclic.DoubleCyclic.DoubleAdd]
spec_ww_gcd [in Coq.Numbers.Cyclic.DoubleCyclic.DoubleDiv]
spec_ww_gcd_gt [in Coq.Numbers.Cyclic.DoubleCyclic.DoubleDiv]
spec_gcd_cont [in Coq.Numbers.Cyclic.DoubleCyclic.DoubleDiv]
spec_ww_mod [in Coq.Numbers.Cyclic.DoubleCyclic.DoubleDiv]
spec_ww_div [in Coq.Numbers.Cyclic.DoubleCyclic.DoubleDiv]
spec_ww_gcd_gt_aux [in Coq.Numbers.Cyclic.DoubleCyclic.DoubleDiv]
spec_ww_gcd_gt_aux_body [in Coq.Numbers.Cyclic.DoubleCyclic.DoubleDiv]
spec_ww_mod_gt [in Coq.Numbers.Cyclic.DoubleCyclic.DoubleDiv]
spec_ww_mod_gt_eq [in Coq.Numbers.Cyclic.DoubleCyclic.DoubleDiv]
spec_w_mod_gt_eq [in Coq.Numbers.Cyclic.DoubleCyclic.DoubleDiv]
spec_ww_mod_gt_aux [in Coq.Numbers.Cyclic.DoubleCyclic.DoubleDiv]
spec_ww_mod_gt_aux_eq [in Coq.Numbers.Cyclic.DoubleCyclic.DoubleDiv]
spec_ww_div_gt [in Coq.Numbers.Cyclic.DoubleCyclic.DoubleDiv]
spec_ww_div_gt_aux [in Coq.Numbers.Cyclic.DoubleCyclic.DoubleDiv]
spec_ww_div21 [in Coq.Numbers.Cyclic.DoubleCyclic.DoubleDiv]
spec_w_div32 [in Coq.Numbers.Cyclic.DoubleCyclic.DoubleDiv]
spec_ww_pos_mod [in Coq.Numbers.Cyclic.DoubleCyclic.DoubleDiv]
spec_tail0 [in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_tail00 [in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_head0 [in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_head00 [in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_sqrt2 [in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_sqrt [in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_is_even [in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_pos_mod [in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_add_mul_div [in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_div21 [in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_gcd_gt [in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_gcd [in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_modulo_gt [in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_modulo [in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_div_gt [in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_div [in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_square_c [in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_mul [in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_mul_c [in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_sub_carry [in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_sub [in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_pred [in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_sub_carry_c [in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_sub_c [in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_pred_c [in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_add_carry [in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_add [in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_succ [in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_add_carry_c [in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_add_c [in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_succ_c [in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_opp_carry [in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_opp [in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_opp_c [in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_eq0 [in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_compare [in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_Bm1 [in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_1 [in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_0 [in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_zdigits [in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_of_pos [in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_to_Z [in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_to_Z_2 [in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_to_Z_1 [in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_more_than_1_digit [in Coq.Numbers.Cyclic.ZModulo.ZModulo]
spec_w_mul_add [in Coq.Numbers.Cyclic.DoubleCyclic.DoubleMul]
spec_double_mul_add_n1 [in Coq.Numbers.Cyclic.DoubleCyclic.DoubleMul]
spec_ww_square_c [in Coq.Numbers.Cyclic.DoubleCyclic.DoubleMul]
spec_ww_mul [in Coq.Numbers.Cyclic.DoubleCyclic.DoubleMul]
spec_ww_karatsuba_c [in Coq.Numbers.Cyclic.DoubleCyclic.DoubleMul]
spec_kara_prod [in Coq.Numbers.Cyclic.DoubleCyclic.DoubleMul]
spec_w_2 [in Coq.Numbers.Cyclic.DoubleCyclic.DoubleMul]
spec_ww_mul_c [in Coq.Numbers.Cyclic.DoubleCyclic.DoubleMul]
spec_double_mul_c [in Coq.Numbers.Cyclic.DoubleCyclic.DoubleMul]
spec_mul_aux [in Coq.Numbers.Cyclic.DoubleCyclic.DoubleMul]
spec_ww_to_Z_wBwB [in Coq.Numbers.Cyclic.DoubleCyclic.DoubleMul]
spec_ww_to_Z [in Coq.Numbers.Cyclic.DoubleCyclic.DoubleMul]
spec_ww_add_mul_div [in Coq.Numbers.Cyclic.DoubleCyclic.DoubleLift]
spec_ww_add_mul_div_aux [in Coq.Numbers.Cyclic.DoubleCyclic.DoubleLift]
spec_ww_tail0 [in Coq.Numbers.Cyclic.DoubleCyclic.DoubleLift]
spec_ww_tail00 [in Coq.Numbers.Cyclic.DoubleCyclic.DoubleLift]
spec_ww_head0 [in Coq.Numbers.Cyclic.DoubleCyclic.DoubleLift]
spec_ww_head00 [in Coq.Numbers.Cyclic.DoubleCyclic.DoubleLift]
spec_double_modn1 [in Coq.Numbers.Cyclic.DoubleCyclic.DoubleDivn1]
spec_double_modn1_aux [in Coq.Numbers.Cyclic.DoubleCyclic.DoubleDivn1]
spec_double_divn1 [in Coq.Numbers.Cyclic.DoubleCyclic.DoubleDivn1]
spec_high [in Coq.Numbers.Cyclic.DoubleCyclic.DoubleDivn1]
spec_double_digits [in Coq.Numbers.Cyclic.DoubleCyclic.DoubleDivn1]
spec_double_modn1_p [in Coq.Numbers.Cyclic.DoubleCyclic.DoubleDivn1]
spec_double_divn1_p [in Coq.Numbers.Cyclic.DoubleCyclic.DoubleDivn1]
spec_add_mul_divp [in Coq.Numbers.Cyclic.DoubleCyclic.DoubleDivn1]
spec_double_modn1_0 [in Coq.Numbers.Cyclic.DoubleCyclic.DoubleDivn1]
spec_double_divn1_0 [in Coq.Numbers.Cyclic.DoubleCyclic.DoubleDivn1]
spec_split [in Coq.Numbers.Cyclic.DoubleCyclic.DoubleDivn1]
spec_ww_sqrt [in Coq.Numbers.Cyclic.DoubleCyclic.DoubleSqrt]
spec_ww_head1 [in Coq.Numbers.Cyclic.DoubleCyclic.DoubleSqrt]
spec_ww_is_zero [in Coq.Numbers.Cyclic.DoubleCyclic.DoubleSqrt]
spec_ww_sqrt2 [in Coq.Numbers.Cyclic.DoubleCyclic.DoubleSqrt]
spec_split [in Coq.Numbers.Cyclic.DoubleCyclic.DoubleSqrt]
spec_w_div2s [in Coq.Numbers.Cyclic.DoubleCyclic.DoubleSqrt]
spec_w_div21c [in Coq.Numbers.Cyclic.DoubleCyclic.DoubleSqrt]
spec_ww_is_even [in Coq.Numbers.Cyclic.DoubleCyclic.DoubleSqrt]
spec_ww_sub_carry [in Coq.Numbers.Cyclic.DoubleCyclic.DoubleSub]
spec_ww_sub [in Coq.Numbers.Cyclic.DoubleCyclic.DoubleSub]
spec_ww_pred [in Coq.Numbers.Cyclic.DoubleCyclic.DoubleSub]
spec_ww_sub_carry_c [in Coq.Numbers.Cyclic.DoubleCyclic.DoubleSub]
spec_ww_sub_c [in Coq.Numbers.Cyclic.DoubleCyclic.DoubleSub]
spec_ww_pred_c [in Coq.Numbers.Cyclic.DoubleCyclic.DoubleSub]
spec_ww_opp_carry [in Coq.Numbers.Cyclic.DoubleCyclic.DoubleSub]
spec_ww_opp [in Coq.Numbers.Cyclic.DoubleCyclic.DoubleSub]
spec_ww_opp_c [in Coq.Numbers.Cyclic.DoubleCyclic.DoubleSub]
spec_mul_add [in Coq.Numbers.Cyclic.DoubleCyclic.DoubleCyclic]
spec_ww_add_mul_div [in Coq.Numbers.Cyclic.DoubleCyclic.DoubleCyclic]
split_combine [in Coq.Lists.List]
split_length_r [in Coq.Lists.List]
split_length_l [in Coq.Lists.List]
split_nth [in Coq.Lists.List]
sqrt_cauchy [in Coq.Reals.R_sqrt]
sqrt_more [in Coq.Reals.R_sqrt]
sqrt_less [in Coq.Reals.R_sqrt]
sqrt_less_alt [in Coq.Reals.R_sqrt]
sqrt_inj [in Coq.Reals.R_sqrt]
sqrt_le_1 [in Coq.Reals.R_sqrt]
sqrt_le_1_alt [in Coq.Reals.R_sqrt]
sqrt_le_0 [in Coq.Reals.R_sqrt]
sqrt_lt_1 [in Coq.Reals.R_sqrt]
sqrt_lt_1_alt [in Coq.Reals.R_sqrt]
sqrt_lt_0 [in Coq.Reals.R_sqrt]
sqrt_lt_0_alt [in Coq.Reals.R_sqrt]
sqrt_div [in Coq.Reals.R_sqrt]
sqrt_div_alt [in Coq.Reals.R_sqrt]
sqrt_lt_R0 [in Coq.Reals.R_sqrt]
sqrt_mult [in Coq.Reals.R_sqrt]
sqrt_mult_alt [in Coq.Reals.R_sqrt]
sqrt_Rsqr_abs [in Coq.Reals.R_sqrt]
sqrt_Rsqr [in Coq.Reals.R_sqrt]
sqrt_square [in Coq.Reals.R_sqrt]
sqrt_def [in Coq.Reals.R_sqrt]
sqrt_lem_1 [in Coq.Reals.R_sqrt]
sqrt_lem_0 [in Coq.Reals.R_sqrt]
sqrt_eq_0 [in Coq.Reals.R_sqrt]
sqrt_1 [in Coq.Reals.R_sqrt]
sqrt_0 [in Coq.Reals.R_sqrt]
sqrt_sqrt [in Coq.Reals.R_sqrt]
sqrt_positivity [in Coq.Reals.R_sqrt]
sqrt_pos [in Coq.Reals.R_sqrt]
sqrt_test_false [in Coq.Numbers.Cyclic.Int31.Cyclic31]
sqrt_test_true [in Coq.Numbers.Cyclic.Int31.Cyclic31]
sqrt_init [in Coq.Numbers.Cyclic.Int31.Cyclic31]
sqrt_main [in Coq.Numbers.Cyclic.Int31.Cyclic31]
sqrt_main_trick [in Coq.Numbers.Cyclic.Int31.Cyclic31]
sqrt_spec [in Coq.Numbers.Natural.Peano.NPeano]
sqrt_iter_spec [in Coq.Numbers.Natural.Peano.NPeano]
sqrt_continuity_pt [in Coq.Reals.Sqrt_reg]
sqrt_continuity_pt_R1 [in Coq.Reals.Sqrt_reg]
sqrt_var_maj [in Coq.Reals.Sqrt_reg]
sqrt2_neq_0 [in Coq.Reals.Rtrigo_calc]
sqrt3_2_neq_0 [in Coq.Reals.Rtrigo_calc]
sqrt31_step_correct [in Coq.Numbers.Cyclic.Int31.Cyclic31]
sqrt31_step_def [in Coq.Numbers.Cyclic.Int31.Cyclic31]
sqrt312_step_correct [in Coq.Numbers.Cyclic.Int31.Cyclic31]
sqrt312_lower_bound [in Coq.Numbers.Cyclic.Int31.Cyclic31]
sqrt312_step_def [in Coq.Numbers.Cyclic.Int31.Cyclic31]
sqr_pos [in Coq.ZArith.Zcomplements]
square_not_prime [in Coq.ZArith.Znumtheory]
square_spec [in Coq.Numbers.Natural.Peano.NPeano]
Sstar_contains_Rstar [in Coq.Sets.Relations_2_facts]
star_monotone [in Coq.Sets.Relations_2_facts]
StepFun_P46 [in Coq.Reals.RiemannInt_SF]
StepFun_P45 [in Coq.Reals.RiemannInt_SF]
StepFun_P44 [in Coq.Reals.RiemannInt_SF]
StepFun_P43 [in Coq.Reals.RiemannInt_SF]
StepFun_P42 [in Coq.Reals.RiemannInt_SF]
StepFun_P41 [in Coq.Reals.RiemannInt_SF]
StepFun_P40 [in Coq.Reals.RiemannInt_SF]
StepFun_P39 [in Coq.Reals.RiemannInt_SF]
StepFun_P38 [in Coq.Reals.RiemannInt_SF]
StepFun_P37 [in Coq.Reals.RiemannInt_SF]
StepFun_P36 [in Coq.Reals.RiemannInt_SF]
StepFun_P35 [in Coq.Reals.RiemannInt_SF]
StepFun_P34 [in Coq.Reals.RiemannInt_SF]
StepFun_P33 [in Coq.Reals.RiemannInt_SF]
StepFun_P32 [in Coq.Reals.RiemannInt_SF]
StepFun_P31 [in Coq.Reals.RiemannInt_SF]
StepFun_P30 [in Coq.Reals.RiemannInt_SF]
StepFun_P29 [in Coq.Reals.RiemannInt_SF]
StepFun_P28 [in Coq.Reals.RiemannInt_SF]
StepFun_P27 [in Coq.Reals.RiemannInt_SF]
StepFun_P26 [in Coq.Reals.RiemannInt_SF]
StepFun_P25 [in Coq.Reals.RiemannInt_SF]
StepFun_P24 [in Coq.Reals.RiemannInt_SF]
StepFun_P23 [in Coq.Reals.RiemannInt_SF]
StepFun_P22 [in Coq.Reals.RiemannInt_SF]
StepFun_P21 [in Coq.Reals.RiemannInt_SF]
StepFun_P20 [in Coq.Reals.RiemannInt_SF]
StepFun_P19 [in Coq.Reals.RiemannInt_SF]
StepFun_P18 [in Coq.Reals.RiemannInt_SF]
StepFun_P17 [in Coq.Reals.RiemannInt_SF]
StepFun_P16 [in Coq.Reals.RiemannInt_SF]
StepFun_P15 [in Coq.Reals.RiemannInt_SF]
StepFun_P14 [in Coq.Reals.RiemannInt_SF]
StepFun_P13 [in Coq.Reals.RiemannInt_SF]
StepFun_P12 [in Coq.Reals.RiemannInt_SF]
StepFun_P11 [in Coq.Reals.RiemannInt_SF]
StepFun_P10 [in Coq.Reals.RiemannInt_SF]
StepFun_P9 [in Coq.Reals.RiemannInt_SF]
StepFun_P8 [in Coq.Reals.RiemannInt_SF]
StepFun_P7 [in Coq.Reals.RiemannInt_SF]
StepFun_P6 [in Coq.Reals.RiemannInt_SF]
StepFun_P5 [in Coq.Reals.RiemannInt_SF]
StepFun_P4 [in Coq.Reals.RiemannInt_SF]
StepFun_P3 [in Coq.Reals.RiemannInt_SF]
StepFun_P2 [in Coq.Reals.RiemannInt_SF]
StepFun_P1 [in Coq.Reals.RiemannInt_SF]
Streicher_K__eq_rect_eq [in Coq.Logic.EqdepFacts]
strictincreasing_strictdecreasing_opp [in Coq.Reals.MVT]
StrictOrder_PartialOrder [in Coq.Classes.Morphisms]
StrictOrder_PreOrder [in Coq.Classes.Morphisms]
StrictOrder_inverse [in Coq.Classes.RelationClasses]
Strict_Included_strict [in Coq.Sets.Constructive_sets]
Strict_Included_intro [in Coq.Sets.Constructive_sets]
Strict_Included_inv [in Coq.Sets.Classical_sets]
Strict_super_set_contains_new_element [in Coq.Sets.Classical_sets]
Strict_inclusion_is_transitive [in Coq.Sets.Powerset]
Strict_inclusion_is_transitive_with_inclusion_left [in Coq.Sets.Powerset]
Strict_inclusion_is_transitive_with_inclusion [in Coq.Sets.Powerset]
Strict_Rel_is_Strict_Included [in Coq.Sets.Powerset]
Strict_Rel_Transitive [in Coq.Sets.Partial_Order]
Strict_Rel_Transitive_with_Rel_left [in Coq.Sets.Partial_Order]
Strict_Rel_Transitive_with_Rel [in Coq.Sets.Partial_Order]
strip_commut [in Coq.Wellfounded.Union]
StronglySorted_Sorted [in Coq.Sorting.Sorted]
StronglySorted_rec [in Coq.Sorting.Sorted]
StronglySorted_rect [in Coq.Sorting.Sorted]
StronglySorted_inv [in Coq.Sorting.Sorted]
Strong_confluence_direct [in Coq.Sets.Relations_3_facts]
Strong_confluence [in Coq.Sets.Relations_3_facts]
Str_nth_zipWith [in Coq.Lists.Streams]
Str_nth_tl_zipWith [in Coq.Lists.Streams]
Str_nth_map [in Coq.Lists.Streams]
Str_nth_tl_map [in Coq.Lists.Streams]
Str_nth_plus [in Coq.Lists.Streams]
Str_nth_tl_plus [in Coq.Lists.Streams]
SubEqui_P9 [in Coq.Reals.RiemannInt]
SubEqui_P8 [in Coq.Reals.RiemannInt]
SubEqui_P7 [in Coq.Reals.RiemannInt]
SubEqui_P6 [in Coq.Reals.RiemannInt]
SubEqui_P5 [in Coq.Reals.RiemannInt]
SubEqui_P4 [in Coq.Reals.RiemannInt]
SubEqui_P3 [in Coq.Reals.RiemannInt]
SubEqui_P2 [in Coq.Reals.RiemannInt]
SubEqui_P1 [in Coq.Reals.RiemannInt]
subrelation_symmetric [in Coq.Classes.Morphisms]
subrelation_proper [in Coq.Classes.Morphisms]
subrelation_refl [in Coq.Classes.Morphisms]
subrelation_respectful [in Coq.Classes.Morphisms]
subset_types_imp_guarded_rel_choice_iff_rel_choice [in Coq.Logic.ChoiceFacts]
subset_eq [in Coq.Program.Subset]
substring_correct2 [in Coq.Strings.String]
substring_correct1 [in Coq.Strings.String]
Subtract_inv [in Coq.Sets.Classical_sets]
Subtract_intro [in Coq.Sets.Classical_sets]
Sub_Add_new [in Coq.Sets.Powerset_Classical_facts]
sub_carry [in Coq.Numbers.Cyclic.DoubleCyclic.DoubleMul]
SuccNat2Pos.id_succ [in Coq.PArith.Pnat]
SuccNat2Pos.inj [in Coq.PArith.Pnat]
SuccNat2Pos.inj_compare [in Coq.PArith.Pnat]
SuccNat2Pos.inj_succ [in Coq.PArith.Pnat]
SuccNat2Pos.inj_iff [in Coq.PArith.Pnat]
SuccNat2Pos.inv [in Coq.PArith.Pnat]
SuccNat2Pos.pred_id [in Coq.PArith.Pnat]
succ_plus_discr [in Coq.Arith.Plus]
succ_IZR [in Coq.Reals.RIneq]
succ_pred [in Coq.Numbers.Natural.BigN.BigN]
sum_cv_maj [in Coq.Reals.PartSum]
sum_incr [in Coq.Reals.PartSum]
sum_eq_R0 [in Coq.Reals.PartSum]
sum_growing [in Coq.Reals.PartSum]
sum_cte [in Coq.Reals.PartSum]
sum_Rle [in Coq.Reals.PartSum]
sum_decomposition [in Coq.Reals.PartSum]
sum_eq [in Coq.Reals.PartSum]
sum_f_R0_triangle [in Coq.Reals.Rfunctions]
sum_plus [in Coq.Reals.Cauchy_prod]
sum_N_predN [in Coq.Reals.Cauchy_prod]
sum_maj1 [in Coq.Reals.SeqSeries]
sum_inequa_Rle_lt [in Coq.Reals.RIneq]
sum_mul_carry [in Coq.Numbers.BigNumPrelude]
sum_mul_carry [in Coq.Numbers.Cyclic.DoubleCyclic.DoubleMul]
sum_Ratan_seq_opp [in Coq.Reals.Ratan]
surjective_pairing [in Coq.Init.Datatypes]
swap_Acc [in Coq.Wellfounded.Lexicographic_Product]
symmetric_equiv_inverse [in Coq.Classes.Morphisms]
sym_EqSt [in Coq.Lists.Streams]
S_pred [in Coq.Arith.Lt]
S_O_plus_INR [in Coq.Reals.RIneq]
S_INR [in Coq.Reals.RIneq]



Global Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (18818 entries)
Instance Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (548 entries)
Projection Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (206 entries)
Record Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (68 entries)
Lemma Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (8939 entries)
Section Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (338 entries)
Constructor Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (422 entries)
Notation Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (644 entries)
Abbreviation Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (1243 entries)
Inductive Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (209 entries)
Definition Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (2935 entries)
Module Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (703 entries)
Axiom Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (699 entries)
Variable Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (1456 entries)
Library Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (408 entries)