Library Coq.Reals.Rlogic
This module proves some logical properties of the axiomatics of Reals
Require Import ConstructiveEpsilon.
Require Import Rfunctions.
Require Import PartSum.
Require Import SeqSeries.
Require Import RiemannInt.
Require Import Fourier.
Section Arithmetical_dec.
Variable P : nat -> Prop.
Hypothesis HP : forall n, {P n} + {~P n}.
Let ge_fun_sums_ge_lemma : (forall (m n : nat) (f : nat -> R), (lt m n) -> (forall i : nat, 0 <= f i) -> sum_f_R0 f m <= sum_f_R0 f n).
Let ge_fun_sums_ge : (forall (m n : nat) (f : nat -> R), (le m n) -> (forall i : nat, 0 <= f i) -> sum_f_R0 f m <= sum_f_R0 f n).
Let f:=fun n => (if HP n then (1/2)^n else 0)%R.
Lemma cauchy_crit_geometric_dec_fun : Cauchy_crit_series f.
Lemma forall_dec : {forall n, P n} + {~forall n, P n}.
Lemma sig_forall_dec : {n | ~P n}+{forall n, P n}.
End Arithmetical_dec.
2- Derivability of the Archimedean axiom