Library Coq.Numbers.Natural.BigN.Nbasic
Require Import ZArith Ndigits.
Require Import BigNumPrelude.
Require Import Max.
Require Import DoubleType.
Require Import DoubleBase.
Require Import CyclicAxioms.
Require Import DoubleCyclic.
Lemma Pshiftl_nat_Zpower : forall n p,
Zpos (Pos.shiftl_nat p n) = Zpos p * 2 ^ Z.of_nat n.
Fixpoint plength (p: positive) : positive :=
match p with
xH => xH
| xO p1 => Pos.succ (plength p1)
| xI p1 => Pos.succ (plength p1)
end.
Theorem plength_correct: forall p, (Zpos p < 2 ^ Zpos (plength p))%Z.
Theorem plength_pred_correct: forall p, (Zpos p <= 2 ^ Zpos (plength (Pos.pred p)))%Z.
Definition Pdiv p q :=
match Z.div (Zpos p) (Zpos q) with
Zpos q1 => match (Zpos p) - (Zpos q) * (Zpos q1) with
Z0 => q1
| _ => (Pos.succ q1)
end
| _ => xH
end.
Theorem Pdiv_le: forall p q,
Zpos p <= Zpos q * Zpos (Pdiv p q).
Definition is_one p := match p with xH => true | _ => false end.
Theorem is_one_one: forall p, is_one p = true -> p = xH.
Definition get_height digits p :=
let r := Pdiv p digits in
if is_one r then xH else Pos.succ (plength (Pos.pred r)).
Theorem get_height_correct:
forall digits N,
Zpos N <= Zpos digits * (2 ^ (Zpos (get_height digits N) -1)).
Definition zn2z_word_comm : forall w n, zn2z (word w n) = word (zn2z w) n.
Defined.
Fixpoint extend (n:nat) {struct n} : forall w:Type, zn2z w -> word w (S n) :=
match n return forall w:Type, zn2z w -> word w (S n) with
| O => fun w x => x
| S m =>
let aux := extend m in
fun w x => WW W0 (aux w x)
end.
Section ExtendMax.
Open Scope nat_scope.
Fixpoint plusnS (n m: nat) {struct n} : (n + S m = S (n + m))%nat :=
match n return (n + S m = S (n + m))%nat with
| 0 => eq_refl (S m)
| S n1 =>
let v := S (S n1 + m) in
eq_ind_r (fun n => S n = v) (eq_refl v) (plusnS n1 m)
end.
Fixpoint plusn0 n : n + 0 = n :=
match n return (n + 0 = n) with
| 0 => eq_refl 0
| S n1 =>
let v := S n1 in
eq_ind_r (fun n : nat => S n = v) (eq_refl v) (plusn0 n1)
end.
Fixpoint diff (m n: nat) {struct m}: nat * nat :=
match m, n with
O, n => (O, n)
| m, O => (m, O)
| S m1, S n1 => diff m1 n1
end.
Fixpoint diff_l (m n : nat) {struct m} : fst (diff m n) + n = max m n :=
match m return fst (diff m n) + n = max m n with
| 0 =>
match n return (n = max 0 n) with
| 0 => eq_refl _
| S n0 => eq_refl _
end
| S m1 =>
match n return (fst (diff (S m1) n) + n = max (S m1) n)
with
| 0 => plusn0 _
| S n1 =>
let v := fst (diff m1 n1) + n1 in
let v1 := fst (diff m1 n1) + S n1 in
eq_ind v (fun n => v1 = S n)
(eq_ind v1 (fun n => v1 = n) (eq_refl v1) (S v) (plusnS _ _))
_ (diff_l _ _)
end
end.
Fixpoint diff_r (m n: nat) {struct m}: snd (diff m n) + m = max m n :=
match m return (snd (diff m n) + m = max m n) with
| 0 =>
match n return (snd (diff 0 n) + 0 = max 0 n) with
| 0 => eq_refl _
| S _ => plusn0 _
end
| S m =>
match n return (snd (diff (S m) n) + S m = max (S m) n) with
| 0 => eq_refl (snd (diff (S m) 0) + S m)
| S n1 =>
let v := S (max m n1) in
eq_ind_r (fun n => n = v)
(eq_ind_r (fun n => S n = v)
(eq_refl v) (diff_r _ _)) (plusnS _ _)
end
end.
Variable w: Type.
Definition castm (m n: nat) (H: m = n) (x: word w (S m)):
(word w (S n)) :=
match H in (_ = y) return (word w (S y)) with
| eq_refl => x
end.
Variable m: nat.
Variable v: (word w (S m)).
Fixpoint extend_tr (n : nat) {struct n}: (word w (S (n + m))) :=
match n return (word w (S (n + m))) with
| O => v
| S n1 => WW W0 (extend_tr n1)
end.
End ExtendMax.
Section Reduce.
Variable w : Type.
Variable nT : Type.
Variable N0 : nT.
Variable eq0 : w -> bool.
Variable reduce_n : w -> nT.
Variable zn2z_to_Nt : zn2z w -> nT.
Definition reduce_n1 (x:zn2z w) :=
match x with
| W0 => N0
| WW xh xl =>
if eq0 xh then reduce_n xl
else zn2z_to_Nt x
end.
End Reduce.
Section ReduceRec.
Variable w : Type.
Variable nT : Type.
Variable N0 : nT.
Variable reduce_1n : zn2z w -> nT.
Variable c : forall n, word w (S n) -> nT.
Fixpoint reduce_n (n:nat) : word w (S n) -> nT :=
match n return word w (S n) -> nT with
| O => reduce_1n
| S m => fun x =>
match x with
| W0 => N0
| WW xh xl =>
match xh with
| W0 => @reduce_n m xl
| _ => @c (S m) x
end
end
end.
End ReduceRec.
Section CompareRec.
Variable wm w : Type.
Variable w_0 : w.
Variable compare : w -> w -> comparison.
Variable compare0_m : wm -> comparison.
Variable compare_m : wm -> w -> comparison.
Fixpoint compare0_mn (n:nat) : word wm n -> comparison :=
match n return word wm n -> comparison with
| O => compare0_m
| S m => fun x =>
match x with
| W0 => Eq
| WW xh xl =>
match compare0_mn m xh with
| Eq => compare0_mn m xl
| r => Lt
end
end
end.
Variable wm_base: positive.
Variable wm_to_Z: wm -> Z.
Variable w_to_Z: w -> Z.
Variable w_to_Z_0: w_to_Z w_0 = 0.
Variable spec_compare0_m: forall x,
compare0_m x = (w_to_Z w_0 ?= wm_to_Z x).
Variable wm_to_Z_pos: forall x, 0 <= wm_to_Z x < base wm_base.
Let double_to_Z := double_to_Z wm_base wm_to_Z.
Let double_wB := double_wB wm_base.
Lemma base_xO: forall n, base (xO n) = (base n)^2.
Let double_to_Z_pos: forall n x, 0 <= double_to_Z n x < double_wB n :=
(spec_double_to_Z wm_base wm_to_Z wm_to_Z_pos).
Lemma spec_compare0_mn: forall n x,
compare0_mn n x = (0 ?= double_to_Z n x).
Fixpoint compare_mn_1 (n:nat) : word wm n -> w -> comparison :=
match n return word wm n -> w -> comparison with
| O => compare_m
| S m => fun x y =>
match x with
| W0 => compare w_0 y
| WW xh xl =>
match compare0_mn m xh with
| Eq => compare_mn_1 m xl y
| r => Gt
end
end
end.
Variable spec_compare: forall x y,
compare x y = Z.compare (w_to_Z x) (w_to_Z y).
Variable spec_compare_m: forall x y,
compare_m x y = Z.compare (wm_to_Z x) (w_to_Z y).
Variable wm_base_lt: forall x,
0 <= w_to_Z x < base (wm_base).
Let double_wB_lt: forall n x,
0 <= w_to_Z x < (double_wB n).
Lemma spec_compare_mn_1: forall n x y,
compare_mn_1 n x y = Z.compare (double_to_Z n x) (w_to_Z y).
End CompareRec.
Section AddS.
Variable w wm : Type.
Variable incr : wm -> carry wm.
Variable addr : w -> wm -> carry wm.
Variable injr : w -> zn2z wm.
Variable w_0 u: w.
Fixpoint injs (n:nat): word w (S n) :=
match n return (word w (S n)) with
O => WW w_0 u
| S n1 => (WW W0 (injs n1))
end.
Definition adds x y :=
match y with
W0 => C0 (injr x)
| WW hy ly => match addr x ly with
C0 z => C0 (WW hy z)
| C1 z => match incr hy with
C0 z1 => C0 (WW z1 z)
| C1 z1 => C1 (WW z1 z)
end
end
end.
End AddS.
Fixpoint length_pos x :=
match x with xH => O | xO x1 => S (length_pos x1) | xI x1 => S (length_pos x1) end.
Theorem length_pos_lt: forall x y,
(length_pos x < length_pos y)%nat -> Zpos x < Zpos y.
Theorem cancel_app: forall A B (f g: A -> B) x, f = g -> f x = g x.
Section SimplOp.
Variable w: Type.
Theorem digits_zop: forall t (ops : ZnZ.Ops t),
ZnZ.digits (mk_zn2z_ops ops) = xO (ZnZ.digits ops).
Theorem digits_kzop: forall t (ops : ZnZ.Ops t),
ZnZ.digits (mk_zn2z_ops_karatsuba ops) = xO (ZnZ.digits ops).
Theorem make_zop: forall t (ops : ZnZ.Ops t),
@ZnZ.to_Z _ (mk_zn2z_ops ops) =
fun z => match z with
| W0 => 0
| WW xh xl => ZnZ.to_Z xh * base (ZnZ.digits ops)
+ ZnZ.to_Z xl
end.
Theorem make_kzop: forall t (ops: ZnZ.Ops t),
@ZnZ.to_Z _ (mk_zn2z_ops_karatsuba ops) =
fun z => match z with
| W0 => 0
| WW xh xl => ZnZ.to_Z xh * base (ZnZ.digits ops)
+ ZnZ.to_Z xl
end.
End SimplOp.
Abstract vision of a datatype of arbitrary-large numbers.
Concrete operations can be derived from these generic
fonctions, in particular from iter_t and same_level.
The domains: a sequence of Z/nZ structures
Parameter dom_t : nat -> Type.
Declare Instance dom_op n : ZnZ.Ops (dom_t n).
Declare Instance dom_spec n : ZnZ.Specs (dom_op n).
Axiom digits_dom_op : forall n,
ZnZ.digits (dom_op n) = Pos.shiftl_nat (ZnZ.digits (dom_op 0)) n.
The type t of arbitrary-large numbers, with abstract constructor mk_t
and destructor destr_t and iterator iter_t
Parameter t : Type.
Parameter mk_t : forall (n:nat), dom_t n -> t.
Inductive View_t : t -> Prop :=
Mk_t : forall n (x : dom_t n), View_t (mk_t n x).
Axiom destr_t : forall x, View_t x.
Parameter iter_t : forall {A:Type}(f : forall n, dom_t n -> A), t -> A.
Axiom iter_mk_t : forall A (f:forall n, dom_t n -> A),
forall n x, iter_t f (mk_t n x) = f n x.
Conversion to ZArith
Parameter to_Z : t -> Z.
Local Notation "[ x ]" := (to_Z x).
Axiom spec_mk_t : forall n x, [mk_t n x] = ZnZ.to_Z x.
reduce is like mk_t, but try to minimise the level of the number
Parameter reduce : forall (n:nat), dom_t n -> t.
Axiom spec_reduce : forall n x, [reduce n x] = ZnZ.to_Z x.
Number of level in the tree representation of a number.
NB: This function isn't a morphism for setoid eq.
same_level and its rich specification, indexed by level
Parameter same_level : forall {A:Type}
(f : forall n, dom_t n -> dom_t n -> A), t -> t -> A.
Axiom spec_same_level_dep :
forall res
(P : nat -> Z -> Z -> res -> Prop)
(Pantimon : forall n m z z´ r, (n <= m)%nat -> P m z z´ r -> P n z z´ r)
(f : forall n, dom_t n -> dom_t n -> res)
(Pf: forall n x y, P n (ZnZ.to_Z x) (ZnZ.to_Z y) (f n x y)),
forall x y, P (level x) [x] [y] (same_level f x y).
mk_t_S : building a number of the next level