Library Coq.Arith.Lt
Theorems about lt in nat. lt is defined in library Init/Peano.v as:
Definition lt (n m:nat) := S n <= m. Infix "<" := lt : nat_scope.
Theorem lt_le_S : forall n m, n < m -> S n <= m.
Hint Immediate lt_le_S: arith v62.
Theorem lt_n_Sm_le : forall n m, n < S m -> n <= m.
Hint Immediate lt_n_Sm_le: arith v62.
Theorem le_lt_n_Sm : forall n m, n <= m -> n < S m.
Hint Immediate le_lt_n_Sm: arith v62.
Theorem le_not_lt : forall n m, n <= m -> ~ m < n.
Theorem lt_not_le : forall n m, n < m -> ~ m <= n.
Hint Immediate le_not_lt lt_not_le: arith v62.
Theorem lt_n_Sn : forall n, n < S n.
Hint Resolve lt_n_Sn: arith v62.
Theorem lt_S : forall n m, n < m -> n < S m.
Hint Resolve lt_S: arith v62.
Theorem lt_n_S : forall n m, n < m -> S n < S m.
Hint Resolve lt_n_S: arith v62.
Theorem lt_S_n : forall n m, S n < S m -> n < m.
Hint Immediate lt_S_n: arith v62.
Theorem lt_0_Sn : forall n, 0 < S n.
Hint Resolve lt_0_Sn: arith v62.
Theorem lt_n_0 : forall n, ~ n < 0.
Hint Resolve lt_n_0: arith v62.
Lemma S_pred : forall n m, m < n -> n = S (pred n).
Lemma lt_pred : forall n m, S n < m -> n < pred m.
Hint Immediate lt_pred: arith v62.
Lemma lt_pred_n_n : forall n, 0 < n -> pred n < n.
Hint Resolve lt_pred_n_n: arith v62.
Theorem lt_trans : forall n m p, n < m -> m < p -> n < p.
Theorem lt_le_trans : forall n m p, n < m -> m <= p -> n < p.
Theorem le_lt_trans : forall n m p, n <= m -> m < p -> n < p.
Hint Resolve lt_trans lt_le_trans le_lt_trans: arith v62.
Theorem le_lt_or_eq : forall n m, n <= m -> n < m \/ n = m.
Theorem le_lt_or_eq_iff : forall n m, n <= m <-> n < m \/ n = m.
Theorem lt_le_weak : forall n m, n < m -> n <= m.
Hint Immediate lt_le_weak: arith v62.