Library Coq.Vectors.Fin


Require Arith_base.

fin n is a convinient way to represent \1 .. n\
fin n can be seen as a n-uplet of unit where F1 is the first element of the n-uplet and FS set (n-1)-uplet of all the element but the first.
Author: Pierre Boutillier Institution: PPS, INRIA 12/2010-01/2012

Inductive t : nat -> Set :=
|F1 : forall {n}, t (S n)
|FS : forall {n}, t n -> t (S n).

Section SCHEMES.
Definition case0 P (p: t 0): P p :=
  match p as in t n return
    match n as return t -> Type
  with |0 => fun f0 => P f0 |S _ => fun _ => @ID end
  with |F1 _ => @id |FS _ _ => @id end.

Definition caseS (P: forall {n}, t (S n) -> Type)
  (P1: forall n, @P n F1) (PS : forall {n} (p: t n), P (FS p))
  {n} (p: t (S n)): P p :=
  match p with
  |F1 k => P1 k
  |FS k pp => PS pp
  end.

Definition rectS (P: forall {n}, t (S n) -> Type)
  (P1: forall n, @P n F1) (PS : forall {n} (p: t (S n)), P p -> P (FS p)):
  forall {n} (p: t (S n)), P p :=
fix rectS_fix {n} (p: t (S n)): P p:=
  match p with
  |F1 k => P1 k
  |FS 0 pp => case0 (fun f => P (FS f)) pp
  |FS (S k) pp => PS pp (rectS_fix pp)
  end.

Definition rect2 (P: forall {n} (a b: t n), Type)
  (H0: forall n, @P (S n) F1 F1)
  (H1: forall {n} (f: t n), P F1 (FS f))
  (H2: forall {n} (f: t n), P (FS f) F1)
  (HS: forall {n} (f g : t n), P f g -> P (FS f) (FS g)):
    forall {n} (a b: t n), P a b :=
fix rect2_fix {n} (a: t n): forall (b: t n), P a b :=
match a with
  |F1 m => fun (b: t (S m)) => match b as in t
                   return match , with
                            |0,_ => @ID
                            |S n0,b0 => P F1 b0
                          end with
                     |F1 => H0
                     |FS => H1
                   end
  |FS m => fun (b: t (S m)) => match b with
                         |F1 => fun aa: t => H2 aa
                         |FS => fun aa: t => HS aa (rect2_fix aa )
                       end
end.
End SCHEMES.

Definition FS_inj {n} (x y: t n) (eq: FS x = FS y): x = y :=
match eq in _ = a return
  match a as in t m return match m with |0 => Prop |S => t -> Prop end
  with @F1 _ => fun _ => True |@FS _ y => fun => = y end x with
  eq_refl => eq_refl
end.

to_nat f = p iff f is the p{^ th} element of fin m.
Fixpoint to_nat {m} (n : t m) : {i | i < m} :=
  match n in t k return {i | i< k} with
    |F1 j => exist (fun i => i< S j) 0 (Lt.lt_0_Sn j)
    |FS _ p => match to_nat p with |exist i P => exist _ (S i) (Lt.lt_n_S _ _ P) end
  end.

of_nat p n answers the p{^ th} element of fin n if p < n or a proof of p >= n else
Fixpoint of_nat (p n : nat) : (t n) + { exists m, p = n + m } :=
  match n with
   |0 => inright _ (ex_intro (fun x => p = 0 + x) p (@eq_refl _ p))
   |S => match p with
      |0 => inleft _ (F1)
      |S => match of_nat with
        |inleft f => inleft _ (FS f)
        |inright arg => inright _ (match arg with |ex_intro m e =>
          ex_intro (fun x => S = S + x) m (f_equal S e) end)
      end
    end
  end.

of_nat_lt p n H answers the p{^ th} element of fin n it behaves much better than of_nat p n on open term
Fixpoint of_nat_lt {p n : nat} : p < n -> t n :=
  match n with
    |0 => fun H : p < 0 => False_rect _ (Lt.lt_n_O p H)
    |S => match p with
      |0 => fun _ => @F1
      |S => fun H => FS (of_nat_lt (Lt.lt_S_n _ _ H))
    end
  end.

Lemma of_nat_to_nat_inv {m} (p : t m) : of_nat_lt (proj2_sig (to_nat p)) = p.

weak p f answers a function witch is the identity for the p{^ th} first element of fin (p + m) and FS (FS .. (FS (f k))) for FS (FS .. (FS k)) with p FSs
Fixpoint weak {m}{n} p (f : t m -> t n) :
  t (p + m) -> t (p + n) :=
match p as return t ( + m) -> t ( + n) with
  |0 => f
  |S => fun x => match x with
     |F1 => fun eq : = + m => F1
     |FS y => fun eq : = + m => FS (weak f (eq_rect _ t y _ eq))
  end (eq_refl _)
end.

The p{^ th} element of fin m viewed as the p{^ th} element of fin (m + n)
Fixpoint L {m} n (p : t m) : t (m + n) :=
  match p with |F1 _ => F1 |FS _ => FS (L n ) end.

Lemma L_sanity {m} n (p : t m) : proj1_sig (to_nat (L n p)) = proj1_sig (to_nat p).

The p{^ th} element of fin m viewed as the p{^ th} element of fin (n + m) Really really ineficient !!!
Definition L_R {m} n (p : t m) : t (n + m).
Defined.

The p{^ th} element of fin m viewed as the (n + p){^ th} element of fin (n + m)
Fixpoint R {m} n (p : t m) : t (n + m) :=
  match n with |0 => p |S => FS (R p) end.

Lemma R_sanity {m} n (p : t m) : proj1_sig (to_nat (R n p)) = n + proj1_sig (to_nat p).

Fixpoint depair {m n} (o : t m) (p : t n) : t (m * n) :=
match o with
  |F1 => L ( * n) p
  |FS => R n (depair p)
end.

Lemma depair_sanity {m n} (o : t m) (p : t n) :
  proj1_sig (to_nat (depair o p)) = n * (proj1_sig (to_nat o)) + (proj1_sig (to_nat p)).