Library Coq.Reals.Rpower
Require Import Rbase.
Require Import Rfunctions.
Require Import SeqSeries.
Require Import Rtrigo1.
Require Import Ranalysis1.
Require Import Exp_prop.
Require Import Rsqrt_def.
Require Import R_sqrt.
Require Import MVT.
Require Import Ranalysis4.
Local Open Scope R_scope.
Lemma P_Rmin : forall (P:R -> Prop) (x y:R), P x -> P y -> P (Rmin x y).
Lemma exp_le_3 : exp 1 <= 3.
Theorem exp_increasing : forall x y:R, x < y -> exp x < exp y.
Theorem exp_lt_inv : forall x y:R, exp x < exp y -> x < y.
Lemma exp_ineq1 : forall x:R, 0 < x -> 1 + x < exp x.
Lemma ln_exists1 : forall y:R, 1 <= y -> { z:R | y = exp z }.
Lemma ln_exists : forall y:R, 0 < y -> { z:R | y = exp z }.
Definition Rln (y:posreal) : R :=
let (a,_) := ln_exists (pos y) (cond_pos y) in a.
Definition ln (x:R) : R :=
match Rlt_dec 0 x with
| left a => Rln (mkposreal x a)
| right a => 0
end.
Lemma exp_ln : forall x:R, 0 < x -> exp (ln x) = x.
Theorem exp_inv : forall x y:R, exp x = exp y -> x = y.
Theorem exp_Ropp : forall x:R, exp (- x) = / exp x.
Theorem ln_increasing : forall x y:R, 0 < x -> x < y -> ln x < ln y.
Theorem ln_exp : forall x:R, ln (exp x) = x.
Theorem ln_1 : ln 1 = 0.
Theorem ln_lt_inv : forall x y:R, 0 < x -> 0 < y -> ln x < ln y -> x < y.
Theorem ln_inv : forall x y:R, 0 < x -> 0 < y -> ln x = ln y -> x = y.
Theorem ln_mult : forall x y:R, 0 < x -> 0 < y -> ln (x * y) = ln x + ln y.
Theorem ln_Rinv : forall x:R, 0 < x -> ln (/ x) = - ln x.
Theorem ln_continue :
forall y:R, 0 < y -> continue_in ln (fun x:R => 0 < x) y.
Definition Rpower (x y:R) := exp (y * ln x).
Local Infix "^R" := Rpower (at level 30, right associativity) : R_scope.
Properties of Rpower
Theorem Rpower_plus : forall x y z:R, z ^R (x + y) = z ^R x * z ^R y.
Theorem Rpower_mult : forall x y z:R, (x ^R y) ^R z = x ^R (y * z).
Theorem Rpower_O : forall x:R, 0 < x -> x ^R 0 = 1.
Theorem Rpower_1 : forall x:R, 0 < x -> x ^R 1 = x.
Theorem Rpower_pow : forall (n:nat) (x:R), 0 < x -> x ^R INR n = x ^ n.
Theorem Rpower_lt :
forall x y z:R, 1 < x -> 0 <= y -> y < z -> x ^R y < x ^R z.
Theorem Rpower_sqrt : forall x:R, 0 < x -> x ^R (/ 2) = sqrt x.
Theorem Rpower_Ropp : forall x y:R, x ^R (- y) = / x ^R y.
Theorem Rle_Rpower :
forall e n m:R, 1 < e -> 0 <= n -> n <= m -> e ^R n <= e ^R m.
Theorem ln_lt_2 : / 2 < ln 2.
Theorem limit1_ext :
forall (f g:R -> R) (D:R -> Prop) (l x:R),
(forall x:R, D x -> f x = g x) -> limit1_in f D l x -> limit1_in g D l x.
Theorem limit1_imp :
forall (f:R -> R) (D D1:R -> Prop) (l x:R),
(forall x:R, D1 x -> D x) -> limit1_in f D l x -> limit1_in f D1 l x.
Theorem Rinv_Rdiv : forall x y:R, x <> 0 -> y <> 0 -> / (x / y) = y / x.
Theorem Dln : forall y:R, 0 < y -> D_in ln Rinv (fun x:R => 0 < x) y.
Lemma derivable_pt_lim_ln : forall x:R, 0 < x -> derivable_pt_lim ln x (/ x).
Theorem D_in_imp :
forall (f g:R -> R) (D D1:R -> Prop) (x:R),
(forall x:R, D1 x -> D x) -> D_in f g D x -> D_in f g D1 x.
Theorem D_in_ext :
forall (f g h:R -> R) (D:R -> Prop) (x:R),
f x = g x -> D_in h f D x -> D_in h g D x.
Theorem Dpower :
forall y z:R,
0 < y ->
D_in (fun x:R => x ^R z) (fun x:R => z * x ^R (z - 1)) (
fun x:R => 0 < x) y.
Theorem derivable_pt_lim_power :
forall x y:R,
0 < x -> derivable_pt_lim (fun x => x ^R y) x (y * x ^R (y - 1)).