Library Coq.Reals.Ranalysis4
Require Import Rbase.
Require Import Rfunctions.
Require Import SeqSeries.
Require Import Rtrigo1.
Require Import Ranalysis1.
Require Import Ranalysis3.
Require Import Exp_prop.
Local Open Scope R_scope.
Lemma derivable_pt_inv :
forall (f:R -> R) (x:R),
f x <> 0 -> derivable_pt f x -> derivable_pt (/ f) x.
Lemma pr_nu_var :
forall (f g:R -> R) (x:R) (pr1:derivable_pt f x) (pr2:derivable_pt g x),
f = g -> derive_pt f x pr1 = derive_pt g x pr2.
Lemma pr_nu_var2 :
forall (f g:R -> R) (x:R) (pr1:derivable_pt f x) (pr2:derivable_pt g x),
(forall h:R, f h = g h) -> derive_pt f x pr1 = derive_pt g x pr2.
Lemma derivable_inv :
forall f:R -> R, (forall x:R, f x <> 0) -> derivable f -> derivable (/ f).
Lemma derive_pt_inv :
forall (f:R -> R) (x:R) (pr:derivable_pt f x) (na:f x <> 0),
derive_pt (/ f) x (derivable_pt_inv f x na pr) =
- derive_pt f x pr / Rsqr (f x).
Rabsolu
Lemma Rabs_derive_1 : forall x:R, 0 < x -> derivable_pt_lim Rabs x 1.
Lemma Rabs_derive_2 : forall x:R, x < 0 -> derivable_pt_lim Rabs x (-1).
Lemma Rabs_derive_2 : forall x:R, x < 0 -> derivable_pt_lim Rabs x (-1).
Rabsolu is derivable for all x <> 0
Rabsolu is continuous for all x
Finite sums : Sum a_k x^k
Lemma continuity_finite_sum :
forall (An:nat -> R) (N:nat),
continuity (fun y:R => sum_f_R0 (fun k:nat => An k * y ^ k) N).
Lemma derivable_pt_lim_fs :
forall (An:nat -> R) (x:R) (N:nat),
(0 < N)%nat ->
derivable_pt_lim (fun y:R => sum_f_R0 (fun k:nat => An k * y ^ k) N) x
(sum_f_R0 (fun k:nat => INR (S k) * An (S k) * x ^ k) (pred N)).
Lemma derivable_pt_lim_finite_sum :
forall (An:nat -> R) (x:R) (N:nat),
derivable_pt_lim (fun y:R => sum_f_R0 (fun k:nat => An k * y ^ k) N) x
match N with
| O => 0
| _ => sum_f_R0 (fun k:nat => INR (S k) * An (S k) * x ^ k) (pred N)
end.
Lemma derivable_pt_finite_sum :
forall (An:nat -> R) (N:nat) (x:R),
derivable_pt (fun y:R => sum_f_R0 (fun k:nat => An k * y ^ k) N) x.
Lemma derivable_finite_sum :
forall (An:nat -> R) (N:nat),
derivable (fun y:R => sum_f_R0 (fun k:nat => An k * y ^ k) N).
forall (An:nat -> R) (N:nat),
continuity (fun y:R => sum_f_R0 (fun k:nat => An k * y ^ k) N).
Lemma derivable_pt_lim_fs :
forall (An:nat -> R) (x:R) (N:nat),
(0 < N)%nat ->
derivable_pt_lim (fun y:R => sum_f_R0 (fun k:nat => An k * y ^ k) N) x
(sum_f_R0 (fun k:nat => INR (S k) * An (S k) * x ^ k) (pred N)).
Lemma derivable_pt_lim_finite_sum :
forall (An:nat -> R) (x:R) (N:nat),
derivable_pt_lim (fun y:R => sum_f_R0 (fun k:nat => An k * y ^ k) N) x
match N with
| O => 0
| _ => sum_f_R0 (fun k:nat => INR (S k) * An (S k) * x ^ k) (pred N)
end.
Lemma derivable_pt_finite_sum :
forall (An:nat -> R) (N:nat) (x:R),
derivable_pt (fun y:R => sum_f_R0 (fun k:nat => An k * y ^ k) N) x.
Lemma derivable_finite_sum :
forall (An:nat -> R) (N:nat),
derivable (fun y:R => sum_f_R0 (fun k:nat => An k * y ^ k) N).
Regularity of hyperbolic functions
Lemma derivable_pt_lim_cosh : forall x:R, derivable_pt_lim cosh x (sinh x).
Lemma derivable_pt_lim_sinh : forall x:R, derivable_pt_lim sinh x (cosh x).
Lemma derivable_pt_exp : forall x:R, derivable_pt exp x.
Lemma derivable_pt_cosh : forall x:R, derivable_pt cosh x.
Lemma derivable_pt_sinh : forall x:R, derivable_pt sinh x.
Lemma derivable_exp : derivable exp.
Lemma derivable_cosh : derivable cosh.
Lemma derivable_sinh : derivable sinh.
Lemma derive_pt_exp :
forall x:R, derive_pt exp x (derivable_pt_exp x) = exp x.
Lemma derive_pt_cosh :
forall x:R, derive_pt cosh x (derivable_pt_cosh x) = sinh x.
Lemma derive_pt_sinh :
forall x:R, derive_pt sinh x (derivable_pt_sinh x) = cosh x.
Lemma derivable_pt_lim_sinh : forall x:R, derivable_pt_lim sinh x (cosh x).
Lemma derivable_pt_exp : forall x:R, derivable_pt exp x.
Lemma derivable_pt_cosh : forall x:R, derivable_pt cosh x.
Lemma derivable_pt_sinh : forall x:R, derivable_pt sinh x.
Lemma derivable_exp : derivable exp.
Lemma derivable_cosh : derivable cosh.
Lemma derivable_sinh : derivable sinh.
Lemma derive_pt_exp :
forall x:R, derive_pt exp x (derivable_pt_exp x) = exp x.
Lemma derive_pt_cosh :
forall x:R, derive_pt cosh x (derivable_pt_cosh x) = sinh x.
Lemma derive_pt_sinh :
forall x:R, derive_pt sinh x (derivable_pt_sinh x) = cosh x.