Library Coq.Reals.Ranalysis4


Require Import Rbase.
Require Import Rfunctions.
Require Import SeqSeries.
Require Import Rtrigo1.
Require Import Ranalysis1.
Require Import Ranalysis3.
Require Import Exp_prop.
Local Open Scope R_scope.

Lemma derivable_pt_inv :
  forall (f:R -> R) (x:R),
    f x <> 0 -> derivable_pt f x -> derivable_pt (/ f) x.

Lemma pr_nu_var :
  forall (f g:R -> R) (x:R) (pr1:derivable_pt f x) (pr2:derivable_pt g x),
    f = g -> derive_pt f x pr1 = derive_pt g x pr2.

Lemma pr_nu_var2 :
  forall (f g:R -> R) (x:R) (pr1:derivable_pt f x) (pr2:derivable_pt g x),
    (forall h:R, f h = g h) -> derive_pt f x pr1 = derive_pt g x pr2.

Lemma derivable_inv :
  forall f:R -> R, (forall x:R, f x <> 0) -> derivable f -> derivable (/ f).

Lemma derive_pt_inv :
  forall (f:R -> R) (x:R) (pr:derivable_pt f x) (na:f x <> 0),
    derive_pt (/ f) x (derivable_pt_inv f x na pr) =
    - derive_pt f x pr / Rsqr (f x).

Rabsolu
Lemma Rabs_derive_1 : forall x:R, 0 < x -> derivable_pt_lim Rabs x 1.

Lemma Rabs_derive_2 : forall x:R, x < 0 -> derivable_pt_lim Rabs x (-1).

Rabsolu is derivable for all x <> 0
Lemma Rderivable_pt_abs : forall x:R, x <> 0 -> derivable_pt Rabs x.

Rabsolu is continuous for all x
Finite sums : Sum a_k x^k
Lemma continuity_finite_sum :
  forall (An:nat -> R) (N:nat),
    continuity (fun y:R => sum_f_R0 (fun k:nat => An k * y ^ k) N).

Lemma derivable_pt_lim_fs :
  forall (An:nat -> R) (x:R) (N:nat),
    (0 < N)%nat ->
    derivable_pt_lim (fun y:R => sum_f_R0 (fun k:nat => An k * y ^ k) N) x
    (sum_f_R0 (fun k:nat => INR (S k) * An (S k) * x ^ k) (pred N)).

Lemma derivable_pt_lim_finite_sum :
  forall (An:nat -> R) (x:R) (N:nat),
    derivable_pt_lim (fun y:R => sum_f_R0 (fun k:nat => An k * y ^ k) N) x
    match N with
      | O => 0
      | _ => sum_f_R0 (fun k:nat => INR (S k) * An (S k) * x ^ k) (pred N)
    end.

Lemma derivable_pt_finite_sum :
  forall (An:nat -> R) (N:nat) (x:R),
    derivable_pt (fun y:R => sum_f_R0 (fun k:nat => An k * y ^ k) N) x.

Lemma derivable_finite_sum :
  forall (An:nat -> R) (N:nat),
    derivable (fun y:R => sum_f_R0 (fun k:nat => An k * y ^ k) N).

Regularity of hyperbolic functions