Library Coq.Arith.Minus
minus (difference between two natural numbers) is defined in Init/Peano.v as:
Fixpoint minus (n m:nat) : nat := match n, m with | O, _ => n | S k, O => S k | S k, S l => k - l end where "n - m" := (minus n m) : nat_scope.
Lemma minus_Sn_m : forall n m, m <= n -> S (n - m) = S n - m.
Hint Resolve minus_Sn_m: arith v62.
Theorem pred_of_minus : forall n, pred n = n - 1.
Lemma minus_diag : forall n, n - n = 0.
Lemma minus_diag_reverse : forall n, 0 = n - n.
Hint Resolve minus_diag_reverse: arith v62.
Notation minus_n_n := minus_diag_reverse.
Lemma minus_plus_simpl_l_reverse : forall n m p, n - m = p + n - (p + m).
Hint Resolve minus_plus_simpl_l_reverse: arith v62.
Lemma plus_minus : forall n m p, n = m + p -> p = n - m.
Hint Immediate plus_minus: arith v62.
Lemma minus_plus : forall n m, n + m - n = m.
Hint Resolve minus_plus: arith v62.
Lemma le_plus_minus : forall n m, n <= m -> m = n + (m - n).
Hint Resolve le_plus_minus: arith v62.
Lemma le_plus_minus_r : forall n m, n <= m -> n + (m - n) = m.
Hint Resolve le_plus_minus_r: arith v62.
Theorem minus_le_compat_r : forall n m p : nat, n <= m -> n - p <= m - p.
Theorem minus_le_compat_l : forall n m p : nat, n <= m -> p - m <= p - n.
Corollary le_minus : forall n m, n - m <= n.
Lemma lt_minus : forall n m, m <= n -> 0 < m -> n - m < n.
Hint Resolve lt_minus: arith v62.
Lemma lt_O_minus_lt : forall n m, 0 < n - m -> m < n.
Hint Immediate lt_O_minus_lt: arith v62.
Theorem not_le_minus_0 : forall n m, ~ m <= n -> n - m = 0.