Library Coq.ZArith.Zgcd_alt
Zgcd_alt : an alternate version of Z.gcd, based on Euclid's algorithm
Require Import ZArith_base.
Require Import ZArithRing.
Require Import Zdiv.
Require Import Znumtheory.
Open Scope Z_scope.
In Coq, we need to control the number of iteration of modulo.
For that, we use an explicit measure in nat, and we prove later
that using 2*d is enough, where d is the number of binary
digits of the first argument.
Fixpoint Zgcdn (n:nat) : Z -> Z -> Z := fun a b =>
match n with
| O => 1
| S n => match a with
| Z0 => Z.abs b
| Zpos _ => Zgcdn n (Z.modulo b a) a
| Zneg a => Zgcdn n (Z.modulo b (Zpos a)) (Zpos a)
end
end.
Definition Zgcd_bound (a:Z) :=
match a with
| Z0 => S O
| Zpos p => let n := Pos.size_nat p in (n+n)%nat
| Zneg p => let n := Pos.size_nat p in (n+n)%nat
end.
Definition Zgcd_alt a b := Zgcdn (Zgcd_bound a) a b.
A first obvious fact : Z.gcd a b is positive.
Lemma Zgcdn_pos : forall n a b,
0 <= Zgcdn n a b.
Lemma Zgcd_alt_pos : forall a b, 0 <= Zgcd_alt a b.
We now prove that Z.gcd is indeed a gcd.
1) We prove a weaker & easier bound.
2) For Euclid's algorithm, the worst-case situation corresponds
to Fibonacci numbers. Let's define them:
Fixpoint fibonacci (n:nat) : Z :=
match n with
| O => 1
| S O => 1
| S (S n as p) => fibonacci p + fibonacci n
end.
Lemma fibonacci_pos : forall n, 0 <= fibonacci n.
Lemma fibonacci_incr :
forall n m, (n<=m)%nat -> fibonacci n <= fibonacci m.
3) We prove that fibonacci numbers are indeed worst-case:
for a given number n, if we reach a conclusion about gcd(a,b) in
exactly n+1 loops, then fibonacci (n+1)<=a /\ fibonacci(n+2)<=b
Lemma Zgcdn_worst_is_fibonacci : forall n a b,
0 < a < b ->
Zis_gcd a b (Zgcdn (S n) a b) ->
Zgcdn n a b <> Zgcdn (S n) a b ->
fibonacci (S n) <= a /\
fibonacci (S (S n)) <= b.
3b) We reformulate the previous result in a more positive way.
Lemma Zgcdn_ok_before_fibonacci : forall n a b,
0 < a < b -> a < fibonacci (S n) ->
Zis_gcd a b (Zgcdn n a b).
4) The proposed bound leads to a fibonacci number that is big enough.
Lemma Zgcd_bound_fibonacci :
forall a, 0 < a -> a < fibonacci (Zgcd_bound a).
Lemma Zgcd_bound_opp a : Zgcd_bound (-a) = Zgcd_bound a.
Lemma Zgcdn_opp n a b : Zgcdn n (-a) b = Zgcdn n a b.
Lemma Zgcdn_is_gcd_pos n a b : (Zgcd_bound (Zpos a) <= n)%nat ->
Zis_gcd (Zpos a) b (Zgcdn n (Zpos a) b).
Lemma Zgcdn_is_gcd n a b :
(Zgcd_bound a <= n)%nat -> Zis_gcd a b (Zgcdn n a b).
Lemma Zgcd_is_gcd :
forall a b, Zis_gcd a b (Zgcd_alt a b).