Library Coq.ZArith.BinIntDef
Definition double x :=
match x with
| 0 => 0
| pos p => pos p~0
| neg p => neg p~0
end.
Definition succ_double x :=
match x with
| 0 => 1
| pos p => pos p~1
| neg p => neg (Pos.pred_double p)
end.
Definition pred_double x :=
match x with
| 0 => -1
| neg p => neg p~1
| pos p => pos (Pos.pred_double p)
end.
Fixpoint pos_sub (x y:positive) {struct y} : Z :=
match x, y with
| p~1, q~1 => double (pos_sub p q)
| p~1, q~0 => succ_double (pos_sub p q)
| p~1, 1 => pos p~0
| p~0, q~1 => pred_double (pos_sub p q)
| p~0, q~0 => double (pos_sub p q)
| p~0, 1 => pos (Pos.pred_double p)
| 1, q~1 => neg q~0
| 1, q~0 => neg (Pos.pred_double q)
| 1, 1 => Z0
end%positive.
Definition add x y :=
match x, y with
| 0, y => y
| x, 0 => x
| pos x´, pos y´ => pos (x´ + y´)
| pos x´, neg y´ => pos_sub x´ y´
| neg x´, pos y´ => pos_sub y´ x´
| neg x´, neg y´ => neg (x´ + y´)
end.
Infix "+" := add : Z_scope.
Definition opp x :=
match x with
| 0 => 0
| pos x => neg x
| neg x => pos x
end.
Notation "- x" := (opp x) : Z_scope.
Definition mul x y :=
match x, y with
| 0, _ => 0
| _, 0 => 0
| pos x´, pos y´ => pos (x´ * y´)
| pos x´, neg y´ => neg (x´ * y´)
| neg x´, pos y´ => neg (x´ * y´)
| neg x´, neg y´ => pos (x´ * y´)
end.
Infix "*" := mul : Z_scope.
Definition pow_pos (z:Z) (n:positive) := Pos.iter n (mul z) 1.
Definition pow x y :=
match y with
| pos p => pow_pos x p
| 0 => 1
| neg _ => 0
end.
Infix "^" := pow : Z_scope.
Definition square x :=
match x with
| 0 => 0
| pos p => pos (Pos.square p)
| neg p => pos (Pos.square p)
end.
Definition compare x y :=
match x, y with
| 0, 0 => Eq
| 0, pos y´ => Lt
| 0, neg y´ => Gt
| pos x´, 0 => Gt
| pos x´, pos y´ => (x´ ?= y´)%positive
| pos x´, neg y´ => Gt
| neg x´, 0 => Lt
| neg x´, pos y´ => Lt
| neg x´, neg y´ => CompOpp ((x´ ?= y´)%positive)
end.
Infix "?=" := compare (at level 70, no associativity) : Z_scope.
Boolean equality and comparisons
Definition leb x y :=
match x ?= y with
| Gt => false
| _ => true
end.
Definition ltb x y :=
match x ?= y with
| Lt => true
| _ => false
end.
Nota: geb and gtb are provided for compatibility,
but leb and ltb should rather be used instead, since
more results will be available on them.
Definition geb x y :=
match x ?= y with
| Lt => false
| _ => true
end.
Definition gtb x y :=
match x ?= y with
| Gt => true
| _ => false
end.
Fixpoint eqb x y :=
match x, y with
| 0, 0 => true
| pos p, pos q => Pos.eqb p q
| neg p, neg q => Pos.eqb p q
| _, _ => false
end.
Infix "=?" := eqb (at level 70, no associativity) : Z_scope.
Infix "<=?" := leb (at level 70, no associativity) : Z_scope.
Infix "<?" := ltb (at level 70, no associativity) : Z_scope.
Infix ">=?" := geb (at level 70, no associativity) : Z_scope.
Infix ">?" := gtb (at level 70, no associativity) : Z_scope.
Definition max n m :=
match n ?= m with
| Eq | Gt => n
| Lt => m
end.
Definition min n m :=
match n ?= m with
| Eq | Lt => n
| Gt => m
end.
Definition abs_nat (z:Z) : nat :=
match z with
| 0 => 0%nat
| pos p => Pos.to_nat p
| neg p => Pos.to_nat p
end.
From Z to N via absolute value
From Z to nat by rounding negative numbers to 0
From Z to N by rounding negative numbers to 0
From nat to Z
From N to Z
From Z to positive by rounding nonpositive numbers to 1
Euclidean divisions for binary integers
Floor division
- we have sgn (a mod b) = sgn (b)
- div a b is the greatest integer smaller or equal to the exact fraction a/b.
- there is no easy sign rule.
Fixpoint pos_div_eucl (a:positive) (b:Z) : Z * Z :=
match a with
| xH => if 2 <=? b then (0, 1) else (1, 0)
| xO a´ =>
let (q, r) := pos_div_eucl a´ b in
let r´ := 2 * r in
if r´ <? b then (2 * q, r´) else (2 * q + 1, r´ - b)
| xI a´ =>
let (q, r) := pos_div_eucl a´ b in
let r´ := 2 * r + 1 in
if r´ <? b then (2 * q, r´) else (2 * q + 1, r´ - b)
end.
Then the general euclidean division
Definition div_eucl (a b:Z) : Z * Z :=
match a, b with
| 0, _ => (0, 0)
| _, 0 => (0, 0)
| pos a´, pos _ => pos_div_eucl a´ b
| neg a´, pos _ =>
let (q, r) := pos_div_eucl a´ b in
match r with
| 0 => (- q, 0)
| _ => (- (q + 1), b - r)
end
| neg a´, neg b´ =>
let (q, r) := pos_div_eucl a´ (pos b´) in (q, - r)
| pos a´, neg b´ =>
let (q, r) := pos_div_eucl a´ (pos b´) in
match r with
| 0 => (- q, 0)
| _ => (- (q + 1), b + r)
end
end.
Definition div (a b:Z) : Z := let (q, _) := div_eucl a b in q.
Definition modulo (a b:Z) : Z := let (_, r) := div_eucl a b in r.
Infix "/" := div : Z_scope.
Infix "mod" := modulo (at level 40, no associativity) : Z_scope.
Trunc Division
- we have sgn(a rem b) = sgn(a)
- sign rule for division: quot (-a) b = quot a (-b) = -(quot a b)
- and for modulo: a rem (-b) = a rem b and (-a) rem b = -(a rem b)
Definition quotrem (a b:Z) : Z * Z :=
match a, b with
| 0, _ => (0, 0)
| _, 0 => (0, a)
| pos a, pos b =>
let (q, r) := N.pos_div_eucl a (N.pos b) in (of_N q, of_N r)
| neg a, pos b =>
let (q, r) := N.pos_div_eucl a (N.pos b) in (-of_N q, - of_N r)
| pos a, neg b =>
let (q, r) := N.pos_div_eucl a (N.pos b) in (-of_N q, of_N r)
| neg a, neg b =>
let (q, r) := N.pos_div_eucl a (N.pos b) in (of_N q, - of_N r)
end.
Definition quot a b := fst (quotrem a b).
Definition rem a b := snd (quotrem a b).
Infix "÷" := quot (at level 40, left associativity) : Z_scope.
Definition even z :=
match z with
| 0 => true
| pos (xO _) => true
| neg (xO _) => true
| _ => false
end.
Definition odd z :=
match z with
| 0 => false
| pos (xO _) => false
| neg (xO _) => false
| _ => true
end.
Division by two
Definition div2 z :=
match z with
| 0 => 0
| pos 1 => 0
| pos p => pos (Pos.div2 p)
| neg p => neg (Pos.div2_up p)
end.
quot2 performs rounding toward zero, it is hence a particular
case of quot, and for all relative number n we have:
n = 2 * quot2 n + if odd n then sgn n else 0.
Definition quot2 (z:Z) :=
match z with
| 0 => 0
| pos 1 => 0
| pos p => pos (Pos.div2 p)
| neg 1 => 0
| neg p => neg (Pos.div2 p)
end.
Definition log2 z :=
match z with
| pos (p~1) => pos (Pos.size p)
| pos (p~0) => pos (Pos.size p)
| _ => 0
end.
Definition sqrtrem n :=
match n with
| 0 => (0, 0)
| pos p =>
match Pos.sqrtrem p with
| (s, IsPos r) => (pos s, pos r)
| (s, _) => (pos s, 0)
end
| neg _ => (0,0)
end.
Definition sqrt n :=
match n with
| pos p => pos (Pos.sqrt p)
| _ => 0
end.
Definition gcd a b :=
match a,b with
| 0, _ => abs b
| _, 0 => abs a
| pos a, pos b => pos (Pos.gcd a b)
| pos a, neg b => pos (Pos.gcd a b)
| neg a, pos b => pos (Pos.gcd a b)
| neg a, neg b => pos (Pos.gcd a b)
end.
A generalized gcd, also computing division of a and b by gcd.
Definition ggcd a b : Z*(Z*Z) :=
match a,b with
| 0, _ => (abs b,(0, sgn b))
| _, 0 => (abs a,(sgn a, 0))
| pos a, pos b =>
let ´(g,(aa,bb)) := Pos.ggcd a b in (pos g, (pos aa, pos bb))
| pos a, neg b =>
let ´(g,(aa,bb)) := Pos.ggcd a b in (pos g, (pos aa, neg bb))
| neg a, pos b =>
let ´(g,(aa,bb)) := Pos.ggcd a b in (pos g, (neg aa, pos bb))
| neg a, neg b =>
let ´(g,(aa,bb)) := Pos.ggcd a b in (pos g, (neg aa, neg bb))
end.
Bitwise functions
Definition testbit a n :=
match n with
| 0 => odd a
| pos p =>
match a with
| 0 => false
| pos a => Pos.testbit a (N.pos p)
| neg a => negb (N.testbit (Pos.pred_N a) (N.pos p))
end
| neg _ => false
end.
Shifts
Nota: a shift to the right by -n will be a shift to the left
by n, and vice-versa.
For fulfilling the two's complement convention, shifting to
the right a negative number should correspond to a division
by 2 with rounding toward bottom, hence the use of div2
instead of quot2.
Definition shiftl a n :=
match n with
| 0 => a
| pos p => Pos.iter p (mul 2) a
| neg p => Pos.iter p div2 a
end.
Definition shiftr a n := shiftl a (-n).
Bitwise operations lor land ldiff lxor
Definition lor a b :=
match a, b with
| 0, _ => b
| _, 0 => a
| pos a, pos b => pos (Pos.lor a b)
| neg a, pos b => neg (N.succ_pos (N.ldiff (Pos.pred_N a) (N.pos b)))
| pos a, neg b => neg (N.succ_pos (N.ldiff (Pos.pred_N b) (N.pos a)))
| neg a, neg b => neg (N.succ_pos (N.land (Pos.pred_N a) (Pos.pred_N b)))
end.
Definition land a b :=
match a, b with
| 0, _ => 0
| _, 0 => 0
| pos a, pos b => of_N (Pos.land a b)
| neg a, pos b => of_N (N.ldiff (N.pos b) (Pos.pred_N a))
| pos a, neg b => of_N (N.ldiff (N.pos a) (Pos.pred_N b))
| neg a, neg b => neg (N.succ_pos (N.lor (Pos.pred_N a) (Pos.pred_N b)))
end.
Definition ldiff a b :=
match a, b with
| 0, _ => 0
| _, 0 => a
| pos a, pos b => of_N (Pos.ldiff a b)
| neg a, pos b => neg (N.succ_pos (N.lor (Pos.pred_N a) (N.pos b)))
| pos a, neg b => of_N (N.land (N.pos a) (Pos.pred_N b))
| neg a, neg b => of_N (N.ldiff (Pos.pred_N b) (Pos.pred_N a))
end.
Definition lxor a b :=
match a, b with
| 0, _ => b
| _, 0 => a
| pos a, pos b => of_N (Pos.lxor a b)
| neg a, pos b => neg (N.succ_pos (N.lxor (Pos.pred_N a) (N.pos b)))
| pos a, neg b => neg (N.succ_pos (N.lxor (N.pos a) (Pos.pred_N b)))
| neg a, neg b => of_N (N.lxor (Pos.pred_N a) (Pos.pred_N b))
end.
End Z.