Library Coq.PArith.BinPosDef
Binary positive numbers, operations
Postfix notation for positive numbers, allowing to mimic
the position of bits in a big-endian representation.
For instance, we can write 1~1~0 instead of (xO (xI xH))
for the number 6 (which is 110 in binary notation).
Notation "p ~ 1" := (xI p)
(at level 7, left associativity, format "p '~' '1'") : positive_scope.
Notation "p ~ 0" := (xO p)
(at level 7, left associativity, format "p '~' '0'") : positive_scope.
Local Open Scope positive_scope.
LocalLocal
Module Pos.
Definition t := positive.
Fixpoint add x y :=
match x, y with
| p~1, q~1 => (add_carry p q)~0
| p~1, q~0 => (add p q)~1
| p~1, 1 => (succ p)~0
| p~0, q~1 => (add p q)~1
| p~0, q~0 => (add p q)~0
| p~0, 1 => p~1
| 1, q~1 => (succ q)~0
| 1, q~0 => q~1
| 1, 1 => 1~0
end
with add_carry x y :=
match x, y with
| p~1, q~1 => (add_carry p q)~1
| p~1, q~0 => (add_carry p q)~0
| p~1, 1 => (succ p)~1
| p~0, q~1 => (add_carry p q)~0
| p~0, q~0 => (add p q)~1
| p~0, 1 => (succ p)~0
| 1, q~1 => (succ q)~1
| 1, q~0 => (succ q)~0
| 1, 1 => 1~1
end.
Infix "+" := add : positive_scope.
Definition pred_N x :=
match x with
| p~1 => Npos (p~0)
| p~0 => Npos (pred_double p)
| 1 => N0
end.
Definition succ_double_mask (x:mask) : mask :=
match x with
| IsNul => IsPos 1
| IsNeg => IsNeg
| IsPos p => IsPos p~1
end.
Definition double_mask (x:mask) : mask :=
match x with
| IsNul => IsNul
| IsNeg => IsNeg
| IsPos p => IsPos p~0
end.
Definition double_pred_mask x : mask :=
match x with
| p~1 => IsPos p~0~0
| p~0 => IsPos (pred_double p)~0
| 1 => IsNul
end.
Definition pred_mask (p : mask) : mask :=
match p with
| IsPos 1 => IsNul
| IsPos q => IsPos (pred q)
| IsNul => IsNeg
| IsNeg => IsNeg
end.
Fixpoint sub_mask (x y:positive) {struct y} : mask :=
match x, y with
| p~1, q~1 => double_mask (sub_mask p q)
| p~1, q~0 => succ_double_mask (sub_mask p q)
| p~1, 1 => IsPos p~0
| p~0, q~1 => succ_double_mask (sub_mask_carry p q)
| p~0, q~0 => double_mask (sub_mask p q)
| p~0, 1 => IsPos (pred_double p)
| 1, 1 => IsNul
| 1, _ => IsNeg
end
with sub_mask_carry (x y:positive) {struct y} : mask :=
match x, y with
| p~1, q~1 => succ_double_mask (sub_mask_carry p q)
| p~1, q~0 => double_mask (sub_mask p q)
| p~1, 1 => IsPos (pred_double p)
| p~0, q~1 => double_mask (sub_mask_carry p q)
| p~0, q~0 => succ_double_mask (sub_mask_carry p q)
| p~0, 1 => double_pred_mask p
| 1, _ => IsNeg
end.
Definition sub x y :=
match sub_mask x y with
| IsPos z => z
| _ => 1
end.
Infix "-" := sub : positive_scope.
Fixpoint mul x y :=
match x with
| p~1 => y + (mul p y)~0
| p~0 => (mul p y)~0
| 1 => y
end.
Infix "*" := mul : positive_scope.
Fixpoint iter (n:positive) {A} (f:A -> A) (x:A) : A :=
match n with
| xH => f x
| xO n´ => iter n´ f (iter n´ f x)
| xI n´ => f (iter n´ f (iter n´ f x))
end.
Division by 2 rounded up
Fixpoint size_nat p : nat :=
match p with
| 1 => S O
| p~1 => S (size_nat p)
| p~0 => S (size_nat p)
end.
Same, with positive output
Fixpoint compare_cont (x y:positive) (r:comparison) {struct y} : comparison :=
match x, y with
| p~1, q~1 => compare_cont p q r
| p~1, q~0 => compare_cont p q Gt
| p~1, 1 => Gt
| p~0, q~1 => compare_cont p q Lt
| p~0, q~0 => compare_cont p q r
| p~0, 1 => Gt
| 1, q~1 => Lt
| 1, q~0 => Lt
| 1, 1 => r
end.
Definition compare x y := compare_cont x y Eq.
Infix "?=" := compare (at level 70, no associativity) : positive_scope.
Definition min p p´ :=
match p ?= p´ with
| Lt | Eq => p
| Gt => p´
end.
Definition max p p´ :=
match p ?= p´ with
| Lt | Eq => p´
| Gt => p
end.
Fixpoint eqb p q {struct q} :=
match p, q with
| p~1, q~1 => eqb p q
| p~0, q~0 => eqb p q
| 1, 1 => true
| _, _ => false
end.
Definition leb x y :=
match x ?= y with Gt => false | _ => true end.
Definition ltb x y :=
match x ?= y with Lt => true | _ => false end.
Infix "=?" := eqb (at level 70, no associativity) : positive_scope.
Infix "<=?" := leb (at level 70, no associativity) : positive_scope.
Infix "<?" := ltb (at level 70, no associativity) : positive_scope.
A Square Root function for positive numbers
Definition sqrtrem_step (f g:positive->positive) p :=
match p with
| (s, IsPos r) =>
let s´ := s~0~1 in
let r´ := g (f r) in
if s´ <=? r´ then (s~1, sub_mask r´ s´)
else (s~0, IsPos r´)
| (s,_) => (s~0, sub_mask (g (f 1)) 4)
end.
Fixpoint sqrtrem p : positive * mask :=
match p with
| 1 => (1,IsNul)
| 2 => (1,IsPos 1)
| 3 => (1,IsPos 2)
| p~0~0 => sqrtrem_step xO xO (sqrtrem p)
| p~0~1 => sqrtrem_step xO xI (sqrtrem p)
| p~1~0 => sqrtrem_step xI xO (sqrtrem p)
| p~1~1 => sqrtrem_step xI xI (sqrtrem p)
end.
Definition sqrt p := fst (sqrtrem p).
Definition divide p q := exists r, q = r*p.
Notation "( p | q )" := (divide p q) (at level 0) : positive_scope.
Instead of the Euclid algorithm, we use here the Stein binary
algorithm, which is faster for this representation. This algorithm
is almost structural, but in the last cases we do some recursive
calls on subtraction, hence the need for a counter.
Fixpoint gcdn (n : nat) (a b : positive) : positive :=
match n with
| O => 1
| S n =>
match a,b with
| 1, _ => 1
| _, 1 => 1
| a~0, b~0 => (gcdn n a b)~0
| _ , b~0 => gcdn n a b
| a~0, _ => gcdn n a b
| a´~1, b´~1 =>
match a´ ?= b´ with
| Eq => a
| Lt => gcdn n (b´-a´) a
| Gt => gcdn n (a´-b´) b
end
end
end.
We'll show later that we need at most (log2(a.b)) loops
Generalized Gcd, also computing the division of a and b by the gcd
Fixpoint ggcdn (n : nat) (a b : positive) : (positive*(positive*positive)) :=
match n with
| O => (1,(a,b))
| S n =>
match a,b with
| 1, _ => (1,(1,b))
| _, 1 => (1,(a,1))
| a~0, b~0 =>
let (g,p) := ggcdn n a b in
(g~0,p)
| _, b~0 =>
let ´(g,(aa,bb)) := ggcdn n a b in
(g,(aa, bb~0))
| a~0, _ =>
let ´(g,(aa,bb)) := ggcdn n a b in
(g,(aa~0, bb))
| a´~1, b´~1 =>
match a´ ?= b´ with
| Eq => (a,(1,1))
| Lt =>
let ´(g,(ba,aa)) := ggcdn n (b´-a´) a in
(g,(aa, aa + ba~0))
| Gt =>
let ´(g,(ab,bb)) := ggcdn n (a´-b´) b in
(g,(bb + ab~0, bb))
end
end
end.
Definition ggcd (a b: positive) := ggcdn (size_nat a + size_nat b)%nat a b.
Local copies of the not-yet-available N.double and N.succ_double
Definition Nsucc_double x :=
match x with
| N0 => Npos 1
| Npos p => Npos p~1
end.
Definition Ndouble n :=
match n with
| N0 => N0
| Npos p => Npos p~0
end.
Operation over bits.
Logical or
Fixpoint lor (p q : positive) : positive :=
match p, q with
| 1, q~0 => q~1
| 1, _ => q
| p~0, 1 => p~1
| _, 1 => p
| p~0, q~0 => (lor p q)~0
| p~0, q~1 => (lor p q)~1
| p~1, q~0 => (lor p q)~1
| p~1, q~1 => (lor p q)~1
end.
Logical and
Fixpoint land (p q : positive) : N :=
match p, q with
| 1, q~0 => N0
| 1, _ => Npos 1
| p~0, 1 => N0
| _, 1 => Npos 1
| p~0, q~0 => Ndouble (land p q)
| p~0, q~1 => Ndouble (land p q)
| p~1, q~0 => Ndouble (land p q)
| p~1, q~1 => Nsucc_double (land p q)
end.
Logical diff
Fixpoint ldiff (p q:positive) : N :=
match p, q with
| 1, q~0 => Npos 1
| 1, _ => N0
| _~0, 1 => Npos p
| p~1, 1 => Npos (p~0)
| p~0, q~0 => Ndouble (ldiff p q)
| p~0, q~1 => Ndouble (ldiff p q)
| p~1, q~1 => Ndouble (ldiff p q)
| p~1, q~0 => Nsucc_double (ldiff p q)
end.
xor
Fixpoint lxor (p q:positive) : N :=
match p, q with
| 1, 1 => N0
| 1, q~0 => Npos (q~1)
| 1, q~1 => Npos (q~0)
| p~0, 1 => Npos (p~1)
| p~0, q~0 => Ndouble (lxor p q)
| p~0, q~1 => Nsucc_double (lxor p q)
| p~1, 1 => Npos (p~0)
| p~1, q~0 => Nsucc_double (lxor p q)
| p~1, q~1 => Ndouble (lxor p q)
end.
Shifts. NB: right shift of 1 stays at 1.
Definition shiftl_nat (p:positive)(n:nat) := nat_iter n xO p.
Definition shiftr_nat (p:positive)(n:nat) := nat_iter n div2 p.
Definition shiftl (p:positive)(n:N) :=
match n with
| N0 => p
| Npos n => iter n xO p
end.
Definition shiftr (p:positive)(n:N) :=
match n with
| N0 => p
| Npos n => iter n div2 p
end.
Checking whether a particular bit is set or not
Fixpoint testbit_nat (p:positive) : nat -> bool :=
match p with
| 1 => fun n => match n with
| O => true
| S _ => false
end
| p~0 => fun n => match n with
| O => false
| S n´ => testbit_nat p n´
end
| p~1 => fun n => match n with
| O => true
| S n´ => testbit_nat p n´
end
end.
Same, but with index in N
Fixpoint testbit (p:positive)(n:N) :=
match p, n with
| p~0, N0 => false
| _, N0 => true
| 1, _ => false
| p~0, Npos n => testbit p (pred_N n)
| p~1, Npos n => testbit p (pred_N n)
end.
Definition iter_op {A}(op:A->A->A) :=
fix iter (p:positive)(a:A) : A :=
match p with
| 1 => a
| p~0 => iter p (op a a)
| p~1 => op a (iter p (op a a))
end.
Definition to_nat (x:positive) : nat := iter_op plus x (S O).