Library Coq.Structures.OrdersTac


Require Import Setoid Morphisms Basics Equalities Orders.
Set Implicit Arguments.

The order tactic

This tactic is designed to solve systems of (in)equations involving eq, lt, le and ~eq on some type. This tactic is domain-agnostic; it will only use equivalence+order axioms, and not analyze elements of the domain. Hypothesis or goal of the form ~lt or ~le are initially turned into le and lt, other parts of the goal are ignored. This initial preparation of the goal is the only moment where totality is used. In particular, the core of the tactic only proceeds by saturation of transitivity and similar properties, and does not perform case splitting. The tactic will fail if it doesn't solve the goal.
An abstract vision of the predicates. This allows a one-line statement for interesting transitivity properties: for instance trans_ord OLE OLE = OLE will imply later le x y -> le y z -> le x z.

Inductive ord := OEQ | OLT | OLE.
Definition trans_ord o :=
 match o, with
 | OEQ, _ =>
 | _, OEQ => o
 | OLE, OLE => OLE
 | _, _ => OLT
 end.
Local Infix "+" := trans_ord.

The tactic requirements : a total order

We need :
  • an equivalence eq,
  • a strict order lt total and compatible with eq,
  • a larger order le synonym for lt\/eq.
This used to be provided here via a TotalOrder, but for technical reasons related to extraction, we now ask for two sperate parts: relations in a EqLtLe + properties in IsTotalOrder. Note that TotalOrder = EqLtLe <+ IsTotalOrder

Module Type IsTotalOrder (O:EqLtLe) :=
 IsEq O <+ IsStrOrder O <+ LeIsLtEq O <+ LtIsTotal O.

Properties that will be used by the order tactic


Module OrderFacts (Import O:EqLtLe)(P:IsTotalOrder O).
Include EqLtLeNotation O.

Reflexivity rules

Lemma eq_refl : forall x, x==x.

Lemma le_refl : forall x, x<=x.

Lemma lt_irrefl : forall x, ~ x<x.

Symmetry rules

Lemma eq_sym : forall x y, x==y -> y==x.

Lemma le_antisym : forall x y, x<=y -> y<=x -> x==y.

Lemma neq_sym : forall x y, ~x==y -> ~y==x.

Transitivity rules : first, a generic formulation, then instances

Ltac subst_eqns :=
 match goal with
   | H : _==_ |- _ => (rewrite H || rewrite <- H); clear H; subst_eqns
   | _ => idtac
 end.

Definition interp_ord o :=
 match o with OEQ => O.eq | OLT => O.lt | OLE => O.le end.
Local Notation "#" := interp_ord.

Lemma trans : forall o x y z, #o x y -> # y z -> #(o+) x z.

Definition eq_trans x y z : x==y -> y==z -> x==z := @trans OEQ OEQ x y z.
Definition le_trans x y z : x<=y -> y<=z -> x<=z := @trans OLE OLE x y z.
Definition lt_trans x y z : x<y -> y<z -> x<z := @trans OLT OLT x y z.
Definition le_lt_trans x y z : x<=y -> y<z -> x<z := @trans OLE OLT x y z.
Definition lt_le_trans x y z : x<y -> y<=z -> x<z := @trans OLT OLE x y z.
Definition eq_lt x y z : x==y -> y<z -> x<z := @trans OEQ OLT x y z.
Definition lt_eq x y z : x<y -> y==z -> x<z := @trans OLT OEQ x y z.
Definition eq_le x y z : x==y -> y<=z -> x<=z := @trans OEQ OLE x y z.
Definition le_eq x y z : x<=y -> y==z -> x<=z := @trans OLE OEQ x y z.

Lemma eq_neq : forall x y z, x==y -> ~y==z -> ~x==z.

Lemma neq_eq : forall x y z, ~x==y -> y==z -> ~x==z.

(double) negation rules

Lemma not_neq_eq : forall x y, ~~x==y -> x==y.

Lemma not_ge_lt : forall x y, ~y<=x -> x<y.

Lemma not_gt_le : forall x y, ~y<x -> x<=y.

Lemma le_neq_lt : forall x y, x<=y -> ~x==y -> x<y.

End OrderFacts.

MakeOrderTac : The functor providing the order tactic.


Module MakeOrderTac (Import O:EqLtLe)(P:IsTotalOrder O).
Include OrderFacts O P.
Include EqLtLeNotation O.

order_eq : replace x by y in all (in)equations hyps thanks to equality EQ (where eq has been hidden in order to avoid self-rewriting), then discard EQ.

Ltac order_rewr x eqn :=
 
 let rewr H t := generalize t; clear H; intro H
 in
 match goal with
 | H : x == _ |- _ => rewr H (eq_trans (eq_sym eqn) H); order_rewr x eqn
 | H : _ == x |- _ => rewr H (eq_trans H eqn); order_rewr x eqn
 | H : ~x == _ |- _ => rewr H (eq_neq (eq_sym eqn) H); order_rewr x eqn
 | H : ~_ == x |- _ => rewr H (neq_eq H eqn); order_rewr x eqn
 | H : x < _ |- _ => rewr H (eq_lt (eq_sym eqn) H); order_rewr x eqn
 | H : _ < x |- _ => rewr H (lt_eq H eqn); order_rewr x eqn
 | H : x <= _ |- _ => rewr H (eq_le (eq_sym eqn) H); order_rewr x eqn
 | H : _ <= x |- _ => rewr H (le_eq H eqn); order_rewr x eqn
 | _ => clear eqn
end.

Ltac order_eq x y eqn :=
 match x with
 | y => clear eqn
 | _ => change (interp_ord OEQ x y) in eqn; order_rewr x eqn
 end.

Goal preparation : We turn all negative hyps into positive ones and try to prove False from the inverse of the current goal. These steps require totality of our order. After this preparation, order only deals with the context, and tries to prove False. Hypotheses of the form A -> False are also folded in ~A for convenience (i.e. cope with the mess left by intuition).

Ltac order_prepare :=
 match goal with
 | H : ?A -> False |- _ => change (~A) in H; order_prepare
 | H : ~(?R ?x ?y) |- _ =>
   match R with
   | eq => fail 1
   | _ => (change (~x==y) in H ||
           apply not_gt_le in H ||
           apply not_ge_lt in H ||
           clear H || fail 1); order_prepare
   end
 | H : ?R ?x ?y |- _ =>
   match R with
   | eq => fail 1
   | lt => fail 1
   | le => fail 1
   | _ => (change (x==y) in H ||
           change (x<y) in H ||
           change (x<=y) in H ||
           clear H || fail 1); order_prepare
   end
 | |- ~ _ => intro; order_prepare
 | |- _ ?x ?x =>
   exact (eq_refl x) || exact (le_refl x) || exfalso
 | _ =>
   (apply not_neq_eq; intro) ||
   (apply not_ge_lt; intro) ||
   (apply not_gt_le; intro) || exfalso
 end.

We now try to prove False from the various < <= == != hypothesis

Ltac order_loop :=
 match goal with
 
 | H : ?x < ?x |- _ => exact (lt_irrefl H)
 | H : ~ ?x == ?x |- _ => exact (H (eq_refl x))
 
 | H : ?x <= ?x |- _ => clear H; order_loop
 
 | H : ?x == ?y |- _ => order_eq x y H; order_loop
 
 | H1 : ?x <= ?y, H2 : ?y <= ?x |- _ =>
     generalize (le_antisym H1 H2); clear H1 H2; intro; order_loop
 
 | H1: ?x <= ?y, H2: ~ ?x == ?y |- _ =>
     generalize (le_neq_lt H1 H2); clear H1 H2; intro; order_loop
 | H1: ?x <= ?y, H2: ~ ?y == ?x |- _ =>
     generalize (le_neq_lt H1 (neq_sym H2)); clear H1 H2; intro; order_loop
 
 | H1 : ?x < ?y, H2 : ?y < ?z |- _ =>
    match goal with
      | H : x < z |- _ => fail 1
      | _ => generalize (lt_trans H1 H2); intro; order_loop
    end
 | H1 : ?x <= ?y, H2 : ?y < ?z |- _ =>
    match goal with
      | H : x < z |- _ => fail 1
      | _ => generalize (le_lt_trans H1 H2); intro; order_loop
    end
 | H1 : ?x < ?y, H2 : ?y <= ?z |- _ =>
    match goal with
      | H : x < z |- _ => fail 1
      | _ => generalize (lt_le_trans H1 H2); intro; order_loop
    end
 | H1 : ?x <= ?y, H2 : ?y <= ?z |- _ =>
    match goal with
      | H : x <= z |- _ => fail 1
      | _ => generalize (le_trans H1 H2); intro; order_loop
    end
 | _ => idtac
end.

The complete tactic.

Ltac order :=
 intros; order_prepare; order_loop; fail "Order tactic unsuccessful".

End MakeOrderTac.

Module OTF_to_OrderTac (OTF:OrderedTypeFull).
 Module TO := OTF_to_TotalOrder OTF.
 Include !MakeOrderTac OTF TO.
End OTF_to_OrderTac.

Module OT_to_OrderTac (OT:OrderedType).
 Module OTF := OT_to_Full OT.
 Include !OTF_to_OrderTac OTF.
End OT_to_OrderTac.