Library Coq.QArith.Qreduction
Normalisation functions for rational numbers.
Require Export QArith_base.
Require Import Znumtheory.
Notation Z2P := Z.to_pos (compat "8.3").
Notation Z2P_correct := Z2Pos.id (compat "8.3").
Simplification of fractions using Z.gcd.
This version can compute within Coq.
Definition Qred (q:Q) :=
let (q1,q2) := q in
let (r1,r2) := snd (Z.ggcd q1 (´q2))
in r1#(Z.to_pos r2).
Lemma Qred_correct : forall q, (Qred q) == q.
Open Scope Z_scope.
Close Scope Z_scope.
Lemma Qred_complete : forall p q, p==q -> Qred p = Qred q.
Open Scope Z_scope.
Close Scope Z_scope.
Add Morphism Qred : Qred_comp.
Definition Qplus´ (p q : Q) := Qred (Qplus p q).
Definition Qmult´ (p q : Q) := Qred (Qmult p q).
Definition Qminus´ x y := Qred (Qminus x y).
Lemma Qplus´_correct : forall p q : Q, (Qplus´ p q)==(Qplus p q).
Lemma Qmult´_correct : forall p q : Q, (Qmult´ p q)==(Qmult p q).
Lemma Qminus´_correct : forall p q : Q, (Qminus´ p q)==(Qminus p q).
Add Morphism Qplus´ : Qplus´_comp.
Add Morphism Qmult´ : Qmult´_comp.
Qed.
Add Morphism Qminus´ : Qminus´_comp.
Qed.
Lemma Qred_opp: forall q, Qred (-q) = - (Qred q).
Theorem Qred_compare: forall x y,
Qcompare x y = Qcompare (Qred x) (Qred y).