Library Coq.QArith.Qreals
Injection of rational numbers into real numbers.
Definition Q2R (x : Q) : R := (IZR (Qnum x) * / IZR (QDen x))%R.
Lemma IZR_nz : forall p : positive, IZR (Zpos p) <> 0%R.
Hint Resolve IZR_nz Rmult_integral_contrapositive.
Lemma eqR_Qeq : forall x y : Q, Q2R x = Q2R y -> x==y.
Lemma Qeq_eqR : forall x y : Q, x==y -> Q2R x = Q2R y.
Lemma Rle_Qle : forall x y : Q, (Q2R x <= Q2R y)%R -> x<=y.
Lemma Qle_Rle : forall x y : Q, x<=y -> (Q2R x <= Q2R y)%R.
Lemma Rlt_Qlt : forall x y : Q, (Q2R x < Q2R y)%R -> x<y.
Lemma Qlt_Rlt : forall x y : Q, x<y -> (Q2R x < Q2R y)%R.
Lemma Q2R_plus : forall x y : Q, Q2R (x+y) = (Q2R x + Q2R y)%R.
Lemma Q2R_mult : forall x y : Q, Q2R (x*y) = (Q2R x * Q2R y)%R.
Lemma Q2R_opp : forall x : Q, Q2R (- x) = (- Q2R x)%R.
Lemma Q2R_minus : forall x y : Q, Q2R (x-y) = (Q2R x - Q2R y)%R.
Lemma Q2R_inv : forall x : Q, ~ x==0 -> Q2R (/x) = (/ Q2R x)%R.
Lemma Q2R_div :
forall x y : Q, ~ y==0 -> Q2R (x/y) = (Q2R x / Q2R y)%R.
Hint Rewrite Q2R_plus Q2R_mult Q2R_opp Q2R_minus Q2R_inv Q2R_div : q2r_simpl.
Section LegacyQField.
In the past, the field tactic was not able to deal with setoid datatypes,
so translating from Q to R and applying field on reals was a workaround.
See now Qfield for a direct field tactic on Q.
Examples of use: