Library Coq.MSets.MSetProperties


Finite sets library

This functor derives additional properties from MSetInterface.S. Contrary to the functor in MSetEqProperties it uses predicates over sets instead of sets operations, i.e. In x s instead of mem x s=true, Equal s instead of equal s =true, etc.

Require Export MSetInterface.
Require Import DecidableTypeEx OrdersLists MSetFacts MSetDecide.
Set Implicit Arguments.

Hint Unfold transpose.

First, a functor for Weak Sets in functorial version.

Module WPropertiesOn (Import E : DecidableType)(M : WSetsOn E).
  Module Import Dec := WDecideOn E M.
  Module Import FM := Dec.F .
  Import M.

  Lemma In_dec : forall x s, {In x s} + {~ In x s}.

  Definition Add x s := forall y, In y <-> E.eq x y \/ In y s.

  Lemma Add_Equal : forall x s , Add x s <-> [=] add x s.

  Ltac expAdd := repeat rewrite Add_Equal.

  Section BasicProperties.

  Variable s s´´ s1 s2 s3 : t.
  Variable x : elt.

  Lemma equal_refl : s[=]s.

  Lemma equal_sym : s[=] -> [=]s.

  Lemma equal_trans : s1[=]s2 -> s2[=]s3 -> s1[=]s3.

  Lemma subset_refl : s[<=]s.

  Lemma subset_trans : s1[<=]s2 -> s2[<=]s3 -> s1[<=]s3.

  Lemma subset_antisym : s[<=] -> [<=]s -> s[=].

  Lemma subset_equal : s[=] -> s[<=].

  Lemma subset_empty : empty[<=]s.

  Lemma subset_remove_3 : s1[<=]s2 -> remove x s1 [<=] s2.

  Lemma subset_diff : s1[<=]s3 -> diff s1 s2 [<=] s3.

  Lemma subset_add_3 : In x s2 -> s1[<=]s2 -> add x s1 [<=] s2.

  Lemma subset_add_2 : s1[<=]s2 -> s1[<=] add x s2.

  Lemma in_subset : In x s1 -> s1[<=]s2 -> In x s2.

  Lemma double_inclusion : s1[=]s2 <-> s1[<=]s2 /\ s2[<=]s1.

  Lemma empty_is_empty_1 : Empty s -> s[=]empty.

  Lemma empty_is_empty_2 : s[=]empty -> Empty s.

  Lemma add_equal : In x s -> add x s [=] s.

  Lemma add_add : add x (add s) [=] add (add x s).

  Lemma remove_equal : ~ In x s -> remove x s [=] s.

  Lemma Equal_remove : s[=] -> remove x s [=] remove x .

  Lemma add_remove : In x s -> add x (remove x s) [=] s.

  Lemma remove_add : ~In x s -> remove x (add x s) [=] s.

  Lemma singleton_equal_add : singleton x [=] add x empty.

  Lemma remove_singleton_empty :
   In x s -> remove x s [=] empty -> singleton x [=] s.

  Lemma union_sym : union s [=] union s.

  Lemma union_subset_equal : s[<=] -> union s [=] .

  Lemma union_equal_1 : s[=] -> union s s´´ [=] union s´´.

  Lemma union_equal_2 : [=]s´´ -> union s [=] union s s´´.

  Lemma union_assoc : union (union s ) s´´ [=] union s (union s´´).

  Lemma add_union_singleton : add x s [=] union (singleton x) s.

  Lemma union_add : union (add x s) [=] add x (union s ).

  Lemma union_remove_add_1 :
   union (remove x s) (add x ) [=] union (add x s) (remove x ).

  Lemma union_remove_add_2 : In x s ->
   union (remove x s) (add x ) [=] union s .

  Lemma union_subset_1 : s [<=] union s .

  Lemma union_subset_2 : [<=] union s .

  Lemma union_subset_3 : s[<=]s´´ -> [<=]s´´ -> union s [<=] s´´.

  Lemma union_subset_4 : s[<=] -> union s s´´ [<=] union s´´.

  Lemma union_subset_5 : s[<=] -> union s´´ s [<=] union s´´ .

  Lemma empty_union_1 : Empty s -> union s [=] .

  Lemma empty_union_2 : Empty s -> union s [=] .

  Lemma not_in_union : ~In x s -> ~In x -> ~In x (union s ).

  Lemma inter_sym : inter s [=] inter s.

  Lemma inter_subset_equal : s[<=] -> inter s [=] s.

  Lemma inter_equal_1 : s[=] -> inter s s´´ [=] inter s´´.

  Lemma inter_equal_2 : [=]s´´ -> inter s [=] inter s s´´.

  Lemma inter_assoc : inter (inter s ) s´´ [=] inter s (inter s´´).

  Lemma union_inter_1 : inter (union s ) s´´ [=] union (inter s s´´) (inter s´´).

  Lemma union_inter_2 : union (inter s ) s´´ [=] inter (union s s´´) (union s´´).

  Lemma inter_add_1 : In x -> inter (add x s) [=] add x (inter s ).

  Lemma inter_add_2 : ~ In x -> inter (add x s) [=] inter s .

  Lemma empty_inter_1 : Empty s -> Empty (inter s ).

  Lemma empty_inter_2 : Empty -> Empty (inter s ).

  Lemma inter_subset_1 : inter s [<=] s.

  Lemma inter_subset_2 : inter s [<=] .

  Lemma inter_subset_3 :
   s´´[<=]s -> s´´[<=] -> s´´[<=] inter s .

  Lemma empty_diff_1 : Empty s -> Empty (diff s ).

  Lemma empty_diff_2 : Empty s -> diff s [=] .

  Lemma diff_subset : diff s [<=] s.

  Lemma diff_subset_equal : s[<=] -> diff s [=] empty.

  Lemma remove_diff_singleton :
   remove x s [=] diff s (singleton x).

  Lemma diff_inter_empty : inter (diff s ) (inter s ) [=] empty.

  Lemma diff_inter_all : union (diff s ) (inter s ) [=] s.

  Lemma Add_add : Add x s (add x s).

  Lemma Add_remove : In x s -> Add x (remove x s) s.

  Lemma union_Add : Add x s -> Add x (union s s´´) (union s´´).

  Lemma inter_Add :
   In x s´´ -> Add x s -> Add x (inter s s´´) (inter s´´).

  Lemma union_Equal :
   In x s´´ -> Add x s -> union s s´´ [=] union s´´.

  Lemma inter_Add_2 :
   ~In x s´´ -> Add x s -> inter s s´´ [=] inter s´´.

  End BasicProperties.

  Hint Immediate equal_sym add_remove remove_add union_sym inter_sym: set.
  Hint Resolve equal_refl equal_trans subset_refl subset_equal subset_antisym
    subset_trans subset_empty subset_remove_3 subset_diff subset_add_3
    subset_add_2 in_subset empty_is_empty_1 empty_is_empty_2 add_equal
    remove_equal singleton_equal_add union_subset_equal union_equal_1
    union_equal_2 union_assoc add_union_singleton union_add union_subset_1
    union_subset_2 union_subset_3 inter_subset_equal inter_equal_1 inter_equal_2
    inter_assoc union_inter_1 union_inter_2 inter_add_1 inter_add_2
    empty_inter_1 empty_inter_2 empty_union_1 empty_union_2 empty_diff_1
    empty_diff_2 union_Add inter_Add union_Equal inter_Add_2 not_in_union
    inter_subset_1 inter_subset_2 inter_subset_3 diff_subset diff_subset_equal
    remove_diff_singleton diff_inter_empty diff_inter_all Add_add Add_remove
    Equal_remove add_add : set.

Properties of elements


  Lemma elements_Empty : forall s, Empty s <-> elements s = nil.

  Lemma elements_empty : elements empty = nil.

Conversions between lists and sets


  Definition of_list (l : list elt) := List.fold_right add empty l.

  Definition to_list := elements.

  Lemma of_list_1 : forall l x, In x (of_list l) <-> InA E.eq x l.

  Lemma of_list_2 : forall l, equivlistA E.eq (to_list (of_list l)) l.

  Lemma of_list_3 : forall s, of_list (to_list s) [=] s.

Fold


  Section Fold.

  Notation NoDup := (NoDupA E.eq).
  Notation InA := (InA E.eq).

Alternative specification via fold_right

  Lemma fold_spec_right (s:t)(A:Type)(i:A)(f : elt -> A -> A) :
    fold f s i = List.fold_right f i (rev (elements s)).

Induction principles for fold (contributed by S. Lescuyer)

In the following lemma, the step hypothesis is deliberately restricted to the precise set s we are considering.

  Theorem fold_rec :
    forall (A:Type)(P : t -> A -> Type)(f : elt -> A -> A)(i:A)(s:t),
     (forall , Empty -> P i) ->
     (forall x a s´´, In x s -> ~In x -> Add x s´´ ->
       P a -> P s´´ (f x a)) ->
     P s (fold f s i).

Same, with empty and add instead of Empty and Add. In this case, P must be compatible with equality of sets

  Theorem fold_rec_bis :
    forall (A:Type)(P : t -> A -> Type)(f : elt -> A -> A)(i:A)(s:t),
     (forall s a, s[=] -> P s a -> P a) ->
     (P empty i) ->
     (forall x a , In x s -> ~In x -> P a -> P (add x ) (f x a)) ->
     P s (fold f s i).

  Lemma fold_rec_nodep :
    forall (A:Type)(P : A -> Type)(f : elt -> A -> A)(i:A)(s:t),
     P i -> (forall x a, In x s -> P a -> P (f x a)) ->
     P (fold f s i).

fold_rec_weak is a weaker principle than fold_rec_bis : the step hypothesis must here be applicable to any x. At the same time, it looks more like an induction principle, and hence can be easier to use.

  Lemma fold_rec_weak :
    forall (A:Type)(P : t -> A -> Type)(f : elt -> A -> A)(i:A),
    (forall s a, s[=] -> P s a -> P a) ->
    P empty i ->
    (forall x a s, ~In x s -> P s a -> P (add x s) (f x a)) ->
    forall s, P s (fold f s i).

  Lemma fold_rel :
    forall (A B:Type)(R : A -> B -> Type)
     (f : elt -> A -> A)(g : elt -> B -> B)(i : A)(j : B)(s : t),
     R i j ->
     (forall x a b, In x s -> R a b -> R (f x a) (g x b)) ->
     R (fold f s i) (fold g s j).

From the induction principle on fold, we can deduce some general induction principles on sets.

  Lemma set_induction :
   forall P : t -> Type,
   (forall s, Empty s -> P s) ->
   (forall s , P s -> forall x, ~In x s -> Add x s -> P ) ->
   forall s, P s.

  Lemma set_induction_bis :
   forall P : t -> Type,
   (forall s , s [=] -> P s -> P ) ->
   P empty ->
   (forall x s, ~In x s -> P s -> P (add x s)) ->
   forall s, P s.

fold can be used to reconstruct the same initial set.

  Lemma fold_identity : forall s, fold add s empty [=] s.

Alternative (weaker) specifications for fold

When MSets was first designed, the order in which Ocaml's Set.fold takes the set elements was unspecified. This specification reflects this fact:

  Lemma fold_0 :
      forall s (A : Type) (i : A) (f : elt -> A -> A),
      exists l : list elt,
        NoDup l /\
        (forall x : elt, In x s <-> InA x l) /\
        fold f s i = fold_right f i l.

An alternate (and previous) specification for fold was based on the recursive structure of a set. It is now lemmas fold_1 and fold_2.

  Lemma fold_1 :
   forall s (A : Type) (eqA : A -> A -> Prop)
     (st : Equivalence eqA) (i : A) (f : elt -> A -> A),
   Empty s -> eqA (fold f s i) i.

  Lemma fold_2 :
   forall s x (A : Type) (eqA : A -> A -> Prop)
     (st : Equivalence eqA) (i : A) (f : elt -> A -> A),
   Proper (E.eq==>eqA==>eqA) f ->
   transpose eqA f ->
   ~ In x s -> Add x s -> eqA (fold f i) (f x (fold f s i)).

In fact, fold on empty sets is more than equivalent to the initial element, it is Leibniz-equal to it.

  Lemma fold_1b :
   forall s (A : Type)(i : A) (f : elt -> A -> A),
   Empty s -> (fold f s i) = i.

  Section Fold_More.

  Variables (A:Type)(eqA:A->A->Prop)(st:Equivalence eqA).
  Variables (f:elt->A->A)(Comp:Proper (E.eq==>eqA==>eqA) f)(Ass:transpose eqA f).

  Lemma fold_commutes : forall i s x,
   eqA (fold f s (f x i)) (f x (fold f s i)).

Fold is a morphism


  Lemma fold_init : forall i s, eqA i ->
   eqA (fold f s i) (fold f s ).

  Lemma fold_equal :
   forall i s , s[=] -> eqA (fold f s i) (fold f i).

Fold and other set operators


  Lemma fold_empty : forall i, fold f empty i = i.

  Lemma fold_add : forall i s x, ~In x s ->
   eqA (fold f (add x s) i) (f x (fold f s i)).

  Lemma add_fold : forall i s x, In x s ->
   eqA (fold f (add x s) i) (fold f s i).

  Lemma remove_fold_1: forall i s x, In x s ->
   eqA (f x (fold f (remove x s) i)) (fold f s i).

  Lemma remove_fold_2: forall i s x, ~In x s ->
   eqA (fold f (remove x s) i) (fold f s i).

  Lemma fold_union_inter : forall i s ,
   eqA (fold f (union s ) (fold f (inter s ) i))
       (fold f s (fold f i)).

  Lemma fold_diff_inter : forall i s ,
   eqA (fold f (diff s ) (fold f (inter s ) i)) (fold f s i).

  Lemma fold_union: forall i s ,
   (forall x, ~(In x s/\In x )) ->
   eqA (fold f (union s ) i) (fold f s (fold f i)).

  End Fold_More.

  Lemma fold_plus :
   forall s p, fold (fun _ => S) s p = fold (fun _ => S) s 0 + p.

  End Fold.

Cardinal

Characterization of cardinal in terms of fold


  Lemma cardinal_fold : forall s, cardinal s = fold (fun _ => S) s 0.

Old specifications for cardinal.


  Lemma cardinal_0 :
     forall s, exists l : list elt,
        NoDupA E.eq l /\
        (forall x : elt, In x s <-> InA E.eq x l) /\
        cardinal s = length l.

  Lemma cardinal_1 : forall s, Empty s -> cardinal s = 0.

  Lemma cardinal_2 :
    forall s x, ~ In x s -> Add x s -> cardinal = S (cardinal s).

Cardinal and (non-)emptiness


  Lemma cardinal_Empty : forall s, Empty s <-> cardinal s = 0.

  Lemma cardinal_inv_1 : forall s, cardinal s = 0 -> Empty s.
  Hint Resolve cardinal_inv_1.

  Lemma cardinal_inv_2 :
   forall s n, cardinal s = S n -> { x : elt | In x s }.

  Lemma cardinal_inv_2b :
   forall s, cardinal s <> 0 -> { x : elt | In x s }.

Cardinal is a morphism

Cardinal and set operators


  Lemma empty_cardinal : cardinal empty = 0.

  Hint Immediate empty_cardinal cardinal_1 : set.

  Lemma singleton_cardinal : forall x, cardinal (singleton x) = 1.

  Hint Resolve singleton_cardinal: set.

  Lemma diff_inter_cardinal :
   forall s , cardinal (diff s ) + cardinal (inter s ) = cardinal s .

  Lemma union_cardinal:
   forall s , (forall x, ~(In x s/\In x )) ->
   cardinal (union s )=cardinal s+cardinal .

  Lemma subset_cardinal :
   forall s , s[<=] -> cardinal s <= cardinal .

  Lemma subset_cardinal_lt :
   forall s x, s[<=] -> In x -> ~In x s -> cardinal s < cardinal .

  Theorem union_inter_cardinal :
   forall s , cardinal (union s ) + cardinal (inter s ) = cardinal s + cardinal .

  Lemma union_cardinal_inter :
   forall s , cardinal (union s ) = cardinal s + cardinal - cardinal (inter s ).

  Lemma union_cardinal_le :
   forall s , cardinal (union s ) <= cardinal s + cardinal .

  Lemma add_cardinal_1 :
   forall s x, In x s -> cardinal (add x s) = cardinal s.

  Lemma add_cardinal_2 :
   forall s x, ~In x s -> cardinal (add x s) = S (cardinal s).

  Lemma remove_cardinal_1 :
   forall s x, In x s -> S (cardinal (remove x s)) = cardinal s.

  Lemma remove_cardinal_2 :
   forall s x, ~In x s -> cardinal (remove x s) = cardinal s.

  Hint Resolve subset_cardinal union_cardinal add_cardinal_1 add_cardinal_2.

End WPropertiesOn.

Now comes variants for self-contained weak sets and for full sets. For these variants, only one argument is necessary. Thanks to the subtyping WS<=S, the Properties functor which is meant to be used on modules (M:S) can simply be an alias of WProperties.
Now comes some properties specific to the element ordering, invalid for Weak Sets.

Module OrdProperties (M:Sets).
  Module Import ME:=OrderedTypeFacts(M.E).
  Module Import ML:=OrderedTypeLists(M.E).
  Module Import P := Properties M.
  Import FM.
  Import M.E.
  Import M.

  Hint Resolve elements_spec2.
  Hint Immediate
    min_elt_spec1 min_elt_spec2 min_elt_spec3
    max_elt_spec1 max_elt_spec2 max_elt_spec3 : set.

First, a specialized version of SortA_equivlistA_eqlistA:
  Lemma sort_equivlistA_eqlistA : forall l : list elt,
   sort E.lt l -> sort E.lt -> equivlistA E.eq l -> eqlistA E.eq l .

  Definition gtb x y := match E.compare x y with Gt => true | _ => false end.
  Definition leb x := fun y => negb (gtb x y).

  Definition elements_lt x s := List.filter (gtb x) (elements s).
  Definition elements_ge x s := List.filter (leb x) (elements s).

  Lemma gtb_1 : forall x y, gtb x y = true <-> E.lt y x.

  Lemma leb_1 : forall x y, leb x y = true <-> ~E.lt y x.

  Instance gtb_compat x : Proper (E.eq==>Logic.eq) (gtb x).

  Instance leb_compat x : Proper (E.eq==>Logic.eq) (leb x).
  Hint Resolve gtb_compat leb_compat.

  Lemma elements_split : forall x s,
   elements s = elements_lt x s ++ elements_ge x s.

  Lemma elements_Add : forall s x, ~In x s -> Add x s ->
    eqlistA E.eq (elements ) (elements_lt x s ++ x :: elements_ge x s).

  Definition Above x s := forall y, In y s -> E.lt y x.
  Definition Below x s := forall y, In y s -> E.lt x y.

  Lemma elements_Add_Above : forall s x,
   Above x s -> Add x s ->
     eqlistA E.eq (elements ) (elements s ++ x::nil).

  Lemma elements_Add_Below : forall s x,
   Below x s -> Add x s ->
     eqlistA E.eq (elements ) (x::elements s).

Two other induction principles on sets: we can be more restrictive on the element we add at each step.

  Lemma set_induction_max :
   forall P : t -> Type,
   (forall s : t, Empty s -> P s) ->
   (forall s , P s -> forall x, Above x s -> Add x s -> P ) ->
   forall s : t, P s.

  Lemma set_induction_min :
   forall P : t -> Type,
   (forall s : t, Empty s -> P s) ->
   (forall s , P s -> forall x, Below x s -> Add x s -> P ) ->
   forall s : t, P s.

More properties of fold : behavior with respect to Above/Below

  Lemma fold_3 :
   forall s x (A : Type) (eqA : A -> A -> Prop)
     (st : Equivalence eqA) (i : A) (f : elt -> A -> A),
   Proper (E.eq==>eqA==>eqA) f ->
   Above x s -> Add x s -> eqA (fold f i) (f x (fold f s i)).

  Lemma fold_4 :
   forall s x (A : Type) (eqA : A -> A -> Prop)
     (st : Equivalence eqA) (i : A) (f : elt -> A -> A),
   Proper (E.eq==>eqA==>eqA) f ->
   Below x s -> Add x s -> eqA (fold f i) (fold f s (f x i)).

The following results have already been proved earlier, but we can now prove them with one hypothesis less: no need for (transpose eqA f).

  Section FoldOpt.
  Variables (A:Type)(eqA:A->A->Prop)(st:Equivalence eqA).
  Variables (f:elt->A->A)(Comp:Proper (E.eq==>eqA==>eqA) f).

  Lemma fold_equal :
   forall i s , s[=] -> eqA (fold f s i) (fold f i).

  Lemma add_fold : forall i s x, In x s ->
   eqA (fold f (add x s) i) (fold f s i).

  Lemma remove_fold_2: forall i s x, ~In x s ->
   eqA (fold f (remove x s) i) (fold f s i).

  End FoldOpt.

An alternative version of choose_3

  Lemma choose_equal : forall s , Equal s ->
    match choose s, choose with
      | Some x, Some => E.eq x
      | None, None => True
      | _, _ => False
     end.

End OrdProperties.