Library Coq.Logic.IndefiniteDescription


This file provides a constructive form of indefinite description that allows to build choice functions; this is weaker than Hilbert's epsilon operator (which implies weakly classical properties) but stronger than the axiom of choice (which cannot be used outside the context of a theorem proof).

Require Import ChoiceFacts.

Set Implicit Arguments.

Axiom constructive_indefinite_description :
  forall (A : Type) (P : A->Prop),
    (exists x, P x) -> { x : A | P x }.

Lemma constructive_definite_description :
  forall (A : Type) (P : A->Prop),
    (exists! x, P x) -> { x : A | P x }.

Lemma functional_choice :
  forall (A B : Type) (R:A->B->Prop),
    (forall x : A, exists y : B, R x y) ->
    (exists f : A->B, forall x : A, R x (f x)).