Library Coq.Logic.FunctionalExtensionality
This module states the axiom of (dependent) functional extensionality and (dependent) eta-expansion.
It introduces a tactic extensionality to apply the axiom of extensionality to an equality goal.
The converse of functional extensionality.
Statements of functional extensionality for simple and dependent functions.
Axiom functional_extensionality_dep : forall {A} {B : A -> Type},
forall (f g : forall x : A, B x),
(forall x, f x = g x) -> f = g.
Lemma functional_extensionality {A B} (f g : A -> B) :
(forall x, f x = g x) -> f = g.
Apply functional_extensionality, introducing variable x.
Tactic Notation "extensionality" ident(x) :=
match goal with
[ |- ?X = ?Y ] =>
(apply (@functional_extensionality _ _ X Y) ||
apply (@functional_extensionality_dep _ _ X Y)) ; intro x
end.
Eta expansion follows from extensionality.