Library Coq.Logic.Eqdep_dec
We prove that there is only one proof of x=x, i.e eq_refl x.
This holds if the equality upon the set of x is decidable.
A corollary of this theorem is the equality of the right projections
of two equal dependent pairs.
Author: Thomas Kleymann |<tms@dcs.ed.ac.uk>| in Lego
adapted to Coq by B. Barras
Credit: Proofs up to K_dec follow an outline by Michael Hedberg
Table of contents:
1. Streicher's K and injectivity of dependent pair hold on decidable types
1.1. Definition of the functor that builds properties of dependent equalities
from a proof of decidability of equality for a set in Type
1.2. Definition of the functor that builds properties of dependent equalities
from a proof of decidability of equality for a set in Set
Streicher's K and injectivity of dependent pair hold on decidable types
Set Implicit Arguments.
Section EqdepDec.
Variable A : Type.
Let comp (x y y´:A) (eq1:x = y) (eq2:x = y´) : y = y´ :=
eq_ind _ (fun a => a = y´) eq2 _ eq1.
Remark trans_sym_eq : forall (x y:A) (u:x = y), comp u u = eq_refl y.
Variable eq_dec : forall x y:A, x = y \/ x <> y.
Variable x : A.
Let nu (y:A) (u:x = y) : x = y :=
match eq_dec x y with
| or_introl eqxy => eqxy
| or_intror neqxy => False_ind _ (neqxy u)
end.
Let nu_constant : forall (y:A) (u v:x = y), nu u = nu v.
Qed.
Let nu_inv (y:A) (v:x = y) : x = y := comp (nu (eq_refl x)) v.
Remark nu_left_inv : forall (y:A) (u:x = y), nu_inv (nu u) = u.
Theorem eq_proofs_unicity : forall (y:A) (p1 p2:x = y), p1 = p2.
Theorem K_dec :
forall P:x = x -> Prop, P (eq_refl x) -> forall p:x = x, P p.
The corollary
Let proj (P:A -> Prop) (exP:ex P) (def:P x) : P x :=
match exP with
| ex_intro x´ prf =>
match eq_dec x´ x with
| or_introl eqprf => eq_ind x´ P prf x eqprf
| _ => def
end
end.
Theorem inj_right_pair :
forall (P:A -> Prop) (y y´:P x),
ex_intro P x y = ex_intro P x y´ -> y = y´.
End EqdepDec.
Require Import EqdepFacts.
We deduce axiom K for (decidable) types
Theorem K_dec_type :
forall A:Type,
(forall x y:A, {x = y} + {x <> y}) ->
forall (x:A) (P:x = x -> Prop), P (eq_refl x) -> forall p:x = x, P p.
Theorem K_dec_set :
forall A:Set,
(forall x y:A, {x = y} + {x <> y}) ->
forall (x:A) (P:x = x -> Prop), P (eq_refl x) -> forall p:x = x, P p.
forall A:Type,
(forall x y:A, {x = y} + {x <> y}) ->
forall (x:A) (P:x = x -> Prop), P (eq_refl x) -> forall p:x = x, P p.
Theorem K_dec_set :
forall A:Set,
(forall x y:A, {x = y} + {x <> y}) ->
forall (x:A) (P:x = x -> Prop), P (eq_refl x) -> forall p:x = x, P p.
We deduce the eq_rect_eq axiom for (decidable) types
Theorem eq_rect_eq_dec :
forall A:Type,
(forall x y:A, {x = y} + {x <> y}) ->
forall (p:A) (Q:A -> Type) (x:Q p) (h:p = p), x = eq_rect p Q x p h.
forall A:Type,
(forall x y:A, {x = y} + {x <> y}) ->
forall (p:A) (Q:A -> Type) (x:Q p) (h:p = p), x = eq_rect p Q x p h.
We deduce the injectivity of dependent equality for decidable types
Theorem eq_dep_eq_dec :
forall A:Type,
(forall x y:A, {x = y} + {x <> y}) ->
forall (P:A->Type) (p:A) (x y:P p), eq_dep A P p x p y -> x = y.
Theorem UIP_dec :
forall (A:Type),
(forall x y:A, {x = y} + {x <> y}) ->
forall (x y:A) (p1 p2:x = y), p1 = p2.
Unset Implicit Arguments.
forall A:Type,
(forall x y:A, {x = y} + {x <> y}) ->
forall (P:A->Type) (p:A) (x y:P p), eq_dep A P p x p y -> x = y.
Theorem UIP_dec :
forall (A:Type),
(forall x y:A, {x = y} + {x <> y}) ->
forall (x y:A) (p1 p2:x = y), p1 = p2.
Unset Implicit Arguments.
Definition of the functor that builds properties of dependent equalities on decidable sets in Type
Module Type DecidableType.
Parameter U:Type.
Axiom eq_dec : forall x y:U, {x = y} + {x <> y}.
End DecidableType.
The module DecidableEqDep collects equality properties for decidable
set in Type
Invariance by Substitution of Reflexive Equality Proofs
Injectivity of Dependent Equality
Uniqueness of Identity Proofs (UIP)
Uniqueness of Reflexive Identity Proofs
Streicher's axiom K
Injectivity of equality on dependent pairs in Type
Proof-irrelevance on subsets of decidable sets
Lemma inj_pairP2 :
forall (P:U -> Prop) (x:U) (p q:P x),
ex_intro P x p = ex_intro P x q -> p = q.
End DecidableEqDep.
Definition of the functor that builds properties of dependent equalities on decidable sets in Set
Module Type DecidableSet.
Parameter U:Type.
Axiom eq_dec : forall x y:U, {x = y} + {x <> y}.
End DecidableSet.
The module DecidableEqDepSet collects equality properties for decidable
set in Set
Invariance by Substitution of Reflexive Equality Proofs
Injectivity of Dependent Equality
Uniqueness of Identity Proofs (UIP)
Uniqueness of Reflexive Identity Proofs
Streicher's axiom K
Proof-irrelevance on subsets of decidable sets
Injectivity of equality on dependent pairs in Type
Injectivity of equality on dependent pairs with second component
in Type
From decidability to inj_pair2