Library Coq.FSets.FSetEqProperties
Finite sets library
Require Import FSetProperties Zerob Sumbool Omega DecidableTypeEx.
Module WEqProperties_fun (Import E:DecidableType)(M:WSfun E).
Module Import MP := WProperties_fun E M.
Import FM Dec.F.
Import M.
Definition Add := MP.Add.
Section BasicProperties.
Some old specifications written with boolean equalities.
Variable s s´ s´´: t.
Variable x y z : elt.
Lemma mem_eq:
E.eq x y -> mem x s=mem y s.
Lemma equal_mem_1:
(forall a, mem a s=mem a s´) -> equal s s´=true.
Lemma equal_mem_2:
equal s s´=true -> forall a, mem a s=mem a s´.
Lemma subset_mem_1:
(forall a, mem a s=true->mem a s´=true) -> subset s s´=true.
Lemma subset_mem_2:
subset s s´=true -> forall a, mem a s=true -> mem a s´=true.
Lemma empty_mem: mem x empty=false.
Lemma is_empty_equal_empty: is_empty s = equal s empty.
Lemma choose_mem_1: choose s=Some x -> mem x s=true.
Lemma choose_mem_2: choose s=None -> is_empty s=true.
Lemma add_mem_1: mem x (add x s)=true.
Lemma add_mem_2: ~E.eq x y -> mem y (add x s)=mem y s.
Lemma remove_mem_1: mem x (remove x s)=false.
Lemma remove_mem_2: ~E.eq x y -> mem y (remove x s)=mem y s.
Lemma singleton_equal_add:
equal (singleton x) (add x empty)=true.
Lemma union_mem:
mem x (union s s´)=mem x s || mem x s´.
Lemma inter_mem:
mem x (inter s s´)=mem x s && mem x s´.
Lemma diff_mem:
mem x (diff s s´)=mem x s && negb (mem x s´).
properties of mem
Properties of equal
Lemma equal_refl: equal s s=true.
Lemma equal_sym: equal s s´=equal s´ s.
Lemma equal_trans:
equal s s´=true -> equal s´ s´´=true -> equal s s´´=true.
Lemma equal_equal:
equal s s´=true -> equal s s´´=equal s´ s´´.
Lemma equal_cardinal:
equal s s´=true -> cardinal s=cardinal s´.
Lemma subset_refl: subset s s=true.
Lemma subset_antisym:
subset s s´=true -> subset s´ s=true -> equal s s´=true.
Lemma subset_trans:
subset s s´=true -> subset s´ s´´=true -> subset s s´´=true.
Lemma subset_equal:
equal s s´=true -> subset s s´=true.
Properties of choose
Lemma choose_mem_3:
is_empty s=false -> {x:elt|choose s=Some x /\ mem x s=true}.
Lemma choose_mem_4: choose empty=None.
Properties of add
Lemma add_mem_3:
mem y s=true -> mem y (add x s)=true.
Lemma add_equal:
mem x s=true -> equal (add x s) s=true.
Properties of remove
Lemma remove_mem_3:
mem y (remove x s)=true -> mem y s=true.
Lemma remove_equal:
mem x s=false -> equal (remove x s) s=true.
Lemma add_remove:
mem x s=true -> equal (add x (remove x s)) s=true.
Lemma remove_add:
mem x s=false -> equal (remove x (add x s)) s=true.
Properties of is_empty
Properties of singleton
Lemma singleton_mem_1: mem x (singleton x)=true.
Lemma singleton_mem_2: ~E.eq x y -> mem y (singleton x)=false.
Lemma singleton_mem_3: mem y (singleton x)=true -> E.eq x y.
Properties of union
Lemma union_sym:
equal (union s s´) (union s´ s)=true.
Lemma union_subset_equal:
subset s s´=true -> equal (union s s´) s´=true.
Lemma union_equal_1:
equal s s´=true-> equal (union s s´´) (union s´ s´´)=true.
Lemma union_equal_2:
equal s´ s´´=true-> equal (union s s´) (union s s´´)=true.
Lemma union_assoc:
equal (union (union s s´) s´´) (union s (union s´ s´´))=true.
Lemma add_union_singleton:
equal (add x s) (union (singleton x) s)=true.
Lemma union_add:
equal (union (add x s) s´) (add x (union s s´))=true.
Lemma union_subset_1: subset s (union s s´)=true.
Lemma union_subset_2: subset s´ (union s s´)=true.
Lemma union_subset_3:
subset s s´´=true -> subset s´ s´´=true ->
subset (union s s´) s´´=true.
Properties of inter
Lemma inter_sym: equal (inter s s´) (inter s´ s)=true.
Lemma inter_subset_equal:
subset s s´=true -> equal (inter s s´) s=true.
Lemma inter_equal_1:
equal s s´=true -> equal (inter s s´´) (inter s´ s´´)=true.
Lemma inter_equal_2:
equal s´ s´´=true -> equal (inter s s´) (inter s s´´)=true.
Lemma inter_assoc:
equal (inter (inter s s´) s´´) (inter s (inter s´ s´´))=true.
Lemma union_inter_1:
equal (inter (union s s´) s´´) (union (inter s s´´) (inter s´ s´´))=true.
Lemma union_inter_2:
equal (union (inter s s´) s´´) (inter (union s s´´) (union s´ s´´))=true.
Lemma inter_add_1: mem x s´=true ->
equal (inter (add x s) s´) (add x (inter s s´))=true.
Lemma inter_add_2: mem x s´=false ->
equal (inter (add x s) s´) (inter s s´)=true.
Lemma inter_subset_1: subset (inter s s´) s=true.
Lemma inter_subset_2: subset (inter s s´) s´=true.
Lemma inter_subset_3:
subset s´´ s=true -> subset s´´ s´=true ->
subset s´´ (inter s s´)=true.
Properties of diff
Lemma diff_subset: subset (diff s s´) s=true.
Lemma diff_subset_equal:
subset s s´=true -> equal (diff s s´) empty=true.
Lemma remove_inter_singleton:
equal (remove x s) (diff s (singleton x))=true.
Lemma diff_inter_empty:
equal (inter (diff s s´) (inter s s´)) empty=true.
Lemma diff_inter_all:
equal (union (diff s s´) (inter s s´)) s=true.
End BasicProperties.
Hint Immediate empty_mem is_empty_equal_empty add_mem_1
remove_mem_1 singleton_equal_add union_mem inter_mem
diff_mem equal_sym add_remove remove_add : set.
Hint Resolve equal_mem_1 subset_mem_1 choose_mem_1
choose_mem_2 add_mem_2 remove_mem_2 equal_refl equal_equal
subset_refl subset_equal subset_antisym
add_mem_3 add_equal remove_mem_3 remove_equal : set.
General recursion principle
Lemma set_rec: forall (P:t->Type),
(forall s s´, equal s s´=true -> P s -> P s´) ->
(forall s x, mem x s=false -> P s -> P (add x s)) ->
P empty -> forall s, P s.
Properties of fold
Lemma exclusive_set : forall s s´ x,
~(In x s/\In x s´) <-> mem x s && mem x s´=false.
Section Fold.
Variables (A:Type)(eqA:A->A->Prop)(st:Equivalence eqA).
Variables (f:elt->A->A)(Comp:compat_op E.eq eqA f)(Ass:transpose eqA f).
Variables (i:A).
Variables (s s´:t)(x:elt).
Lemma fold_empty: (fold f empty i) = i.
Lemma fold_equal:
equal s s´=true -> eqA (fold f s i) (fold f s´ i).
Lemma fold_add:
mem x s=false -> eqA (fold f (add x s) i) (f x (fold f s i)).
Lemma add_fold:
mem x s=true -> eqA (fold f (add x s) i) (fold f s i).
Lemma remove_fold_1:
mem x s=true -> eqA (f x (fold f (remove x s) i)) (fold f s i).
Lemma remove_fold_2:
mem x s=false -> eqA (fold f (remove x s) i) (fold f s i).
Lemma fold_union:
(forall x, mem x s && mem x s´=false) ->
eqA (fold f (union s s´) i) (fold f s (fold f s´ i)).
End Fold.
Properties of cardinal
Lemma add_cardinal_1:
forall s x, mem x s=true -> cardinal (add x s)=cardinal s.
Lemma add_cardinal_2:
forall s x, mem x s=false -> cardinal (add x s)=S (cardinal s).
Lemma remove_cardinal_1:
forall s x, mem x s=true -> S (cardinal (remove x s))=cardinal s.
Lemma remove_cardinal_2:
forall s x, mem x s=false -> cardinal (remove x s)=cardinal s.
Lemma union_cardinal:
forall s s´, (forall x, mem x s && mem x s´=false) ->
cardinal (union s s´)=cardinal s+cardinal s´.
Lemma subset_cardinal:
forall s s´, subset s s´=true -> cardinal s<=cardinal s´.
Section Bool.
Properties of filter
Variable f:elt->bool.
Variable Comp: Proper (E.eq==>Logic.eq) f.
Let Comp´ : Proper (E.eq==>Logic.eq) (fun x =>negb (f x)).
Lemma filter_mem: forall s x, mem x (filter f s)=mem x s && f x.
Lemma for_all_filter:
forall s, for_all f s=is_empty (filter (fun x => negb (f x)) s).
Lemma exists_filter :
forall s, exists_ f s=negb (is_empty (filter f s)).
Lemma partition_filter_1:
forall s, equal (fst (partition f s)) (filter f s)=true.
Lemma partition_filter_2:
forall s, equal (snd (partition f s)) (filter (fun x => negb (f x)) s)=true.
Lemma filter_add_1 : forall s x, f x = true ->
filter f (add x s) [=] add x (filter f s).
Lemma filter_add_2 : forall s x, f x = false ->
filter f (add x s) [=] filter f s.
Lemma add_filter_1 : forall s s´ x,
f x=true -> (Add x s s´) -> (Add x (filter f s) (filter f s´)).
Lemma add_filter_2 : forall s s´ x,
f x=false -> (Add x s s´) -> filter f s [=] filter f s´.
Lemma union_filter: forall f g, (compat_bool E.eq f) -> (compat_bool E.eq g) ->
forall s, union (filter f s) (filter g s) [=] filter (fun x=>orb (f x) (g x)) s.
Lemma filter_union: forall s s´, filter f (union s s´) [=] union (filter f s) (filter f s´).
Properties of for_all
Lemma for_all_mem_1: forall s,
(forall x, (mem x s)=true->(f x)=true) -> (for_all f s)=true.
Lemma for_all_mem_2: forall s,
(for_all f s)=true -> forall x,(mem x s)=true -> (f x)=true.
Lemma for_all_mem_3:
forall s x,(mem x s)=true -> (f x)=false -> (for_all f s)=false.
Lemma for_all_mem_4:
forall s, for_all f s=false -> {x:elt | mem x s=true /\ f x=false}.
Properties of exists
Lemma for_all_exists:
forall s, exists_ f s = negb (for_all (fun x =>negb (f x)) s).
End Bool.
Section Bool´.
Variable f:elt->bool.
Variable Comp: compat_bool E.eq f.
Let Comp´ : compat_bool E.eq (fun x =>negb (f x)).
Lemma exists_mem_1:
forall s, (forall x, mem x s=true->f x=false) -> exists_ f s=false.
Lemma exists_mem_2:
forall s, exists_ f s=false -> forall x, mem x s=true -> f x=false.
Lemma exists_mem_3:
forall s x, mem x s=true -> f x=true -> exists_ f s=true.
Lemma exists_mem_4:
forall s, exists_ f s=true -> {x:elt | (mem x s)=true /\ (f x)=true}.
End Bool´.
Section Sum.
Adding a valuation function on all elements of a set.
Definition sum (f:elt -> nat)(s:t) := fold (fun x => plus (f x)) s 0.
Notation compat_opL := (compat_op E.eq Logic.eq).
Notation transposeL := (transpose Logic.eq).
Lemma sum_plus :
forall f g, Proper (E.eq==>Logic.eq) f -> Proper (E.eq==>Logic.eq) g ->
forall s, sum (fun x =>f x+g x) s = sum f s + sum g s.
Lemma sum_filter : forall f, (compat_bool E.eq f) ->
forall s, (sum (fun x => if f x then 1 else 0) s) = (cardinal (filter f s)).
Lemma fold_compat :
forall (A:Type)(eqA:A->A->Prop)(st:Equivalence eqA)
(f g:elt->A->A),
(compat_op E.eq eqA f) -> (transpose eqA f) ->
(compat_op E.eq eqA g) -> (transpose eqA g) ->
forall (i:A)(s:t),(forall x:elt, (In x s) -> forall y, (eqA (f x y) (g x y))) ->
(eqA (fold f s i) (fold g s i)).
Lemma sum_compat :
forall f g, Proper (E.eq==>Logic.eq) f -> Proper (E.eq==>Logic.eq) g ->
forall s, (forall x, In x s -> f x=g x) -> sum f s=sum g s.
End Sum.
End WEqProperties_fun.
Now comes variants for self-contained weak sets and for full sets.
For these variants, only one argument is necessary. Thanks to
the subtyping WS<=S, the EqProperties functor which is meant to be
used on modules (M:S) can simply be an alias of WEqProperties.