Library Coq.FSets.FSetDecide
This file implements a decision procedure for a certain
class of propositions involving finite sets.
First, a version for Weak Sets in functorial presentation
Overview
This functor defines the tactic fsetdec, which will solve any valid goal of the formforall s1 ... sn, forall x1 ... xm, P1 -> ... -> Pk -> Pwhere P's are defined by the grammar:
P ::= | Q | Empty F | Subset F F' | Equal F F' Q ::= | E.eq X X' | In X F | Q /\ Q' | Q \/ Q' | Q -> Q' | Q <-> Q' | ~ Q | True | False F ::= | S | empty | singleton X | add X F | remove X F | union F F' | inter F F' | diff F F' X ::= x1 | ... | xm S ::= s1 | ... | sn
- The variables and hypotheses may be mixed in any order and may have already been introduced into the context. Moreover, there may be additional, unrelated hypotheses mixed in (these will be ignored).
- A conjunction of hypotheses will be handled as easily as separate hypotheses, i.e., P1 /\ P2 -> P can be solved iff P1 -> P2 -> P can be solved.
- fsetdec should solve any goal if the FSet-related hypotheses are contradictory.
- fsetdec will first perform any necessary zeta and beta reductions and will invoke subst to eliminate any Coq equalities between finite sets or their elements.
- If E.eq is convertible with Coq's equality, it will not matter which one is used in the hypotheses or conclusion.
- The tactic can solve goals where the finite sets or set
elements are expressed by Coq terms that are more complicated
than variables. However, non-local definitions are not
expanded, and Coq equalities between non-variable terms are
not used. For example, this goal will be solved:
forall (f : t -> t), forall (g : elt -> elt), forall (s1 s2 : t), forall (x1 x2 : elt), Equal s1 (f s2) -> E.eq x1 (g (g x2)) -> In x1 s1 -> In (g (g x2)) (f s2)
This one will not be solved:forall (f : t -> t), forall (g : elt -> elt), forall (s1 s2 : t), forall (x1 x2 : elt), Equal s1 (f s2) -> E.eq x1 (g x2) -> In x1 s1 -> g x2 = g (g x2) -> In (g (g x2)) (f s2)
Facts and Tactics for Propositional Logic
These lemmas and tactics are in a module so that they do not affect the namespace if you import the enclosing module Decide.Lemmas and Tactics About Decidable Propositions
Propositional Equivalences Involving Negation
These are all written with the unfolded form of negation, since I am not sure if setoid rewriting will always perform conversion.Tactics for Negations
Tactic Notation "fold" "any" "not" :=
repeat (
match goal with
| H: context [?P -> False] |- _ =>
fold (~ P) in H
| |- context [?P -> False] =>
fold (~ P)
end).
push not using db will pushes all negations to the
leaves of propositions in the goal, using the lemmas in
db to assist in checking the decidability of the
propositions involved. If using db is omitted, then
core will be used. Additional versions are provided
to manipulate the hypotheses or the hypotheses and goal
together.
XXX: This tactic and the similar subsequent ones should
have been defined using autorewrite. However, dealing
with multiples rewrite sites and side-conditions is
done more cleverly with the following explicit
analysis of goals.
Ltac or_not_l_iff P Q tac :=
(rewrite (or_not_l_iff_1 P Q) by tac) ||
(rewrite (or_not_l_iff_2 P Q) by tac).
Ltac or_not_r_iff P Q tac :=
(rewrite (or_not_r_iff_1 P Q) by tac) ||
(rewrite (or_not_r_iff_2 P Q) by tac).
Ltac or_not_l_iff_in P Q H tac :=
(rewrite (or_not_l_iff_1 P Q) in H by tac) ||
(rewrite (or_not_l_iff_2 P Q) in H by tac).
Ltac or_not_r_iff_in P Q H tac :=
(rewrite (or_not_r_iff_1 P Q) in H by tac) ||
(rewrite (or_not_r_iff_2 P Q) in H by tac).
Tactic Notation "push" "not" "using" ident(db) :=
let dec := solve_decidable using db in
unfold not, iff;
repeat (
match goal with
| |- context [True -> False] => rewrite not_true_iff
| |- context [False -> False] => rewrite not_false_iff
| |- context [(?P -> False) -> False] => rewrite (not_not_iff P) by dec
| |- context [(?P -> False) -> (?Q -> False)] =>
rewrite (contrapositive P Q) by dec
| |- context [(?P -> False) \/ ?Q] => or_not_l_iff P Q dec
| |- context [?P \/ (?Q -> False)] => or_not_r_iff P Q dec
| |- context [(?P -> False) -> ?Q] => rewrite (imp_not_l P Q) by dec
| |- context [?P \/ ?Q -> False] => rewrite (not_or_iff P Q)
| |- context [?P /\ ?Q -> False] => rewrite (not_and_iff P Q)
| |- context [(?P -> ?Q) -> False] => rewrite (not_imp_iff P Q) by dec
end);
fold any not.
Tactic Notation "push" "not" :=
push not using core.
Tactic Notation
"push" "not" "in" "*" "|-" "using" ident(db) :=
let dec := solve_decidable using db in
unfold not, iff in * |-;
repeat (
match goal with
| H: context [True -> False] |- _ => rewrite not_true_iff in H
| H: context [False -> False] |- _ => rewrite not_false_iff in H
| H: context [(?P -> False) -> False] |- _ =>
rewrite (not_not_iff P) in H by dec
| H: context [(?P -> False) -> (?Q -> False)] |- _ =>
rewrite (contrapositive P Q) in H by dec
| H: context [(?P -> False) \/ ?Q] |- _ => or_not_l_iff_in P Q H dec
| H: context [?P \/ (?Q -> False)] |- _ => or_not_r_iff_in P Q H dec
| H: context [(?P -> False) -> ?Q] |- _ =>
rewrite (imp_not_l P Q) in H by dec
| H: context [?P \/ ?Q -> False] |- _ => rewrite (not_or_iff P Q) in H
| H: context [?P /\ ?Q -> False] |- _ => rewrite (not_and_iff P Q) in H
| H: context [(?P -> ?Q) -> False] |- _ =>
rewrite (not_imp_iff P Q) in H by dec
end);
fold any not.
Tactic Notation "push" "not" "in" "*" "|-" :=
push not in * |- using core.
Tactic Notation "push" "not" "in" "*" "using" ident(db) :=
push not using db; push not in * |- using db.
Tactic Notation "push" "not" "in" "*" :=
push not in * using core.
A simple test case to see how this works.
Lemma test_push : forall P Q R : Prop,
decidable P ->
decidable Q ->
(~ True) ->
(~ False) ->
(~ ~ P) ->
(~ (P /\ Q) -> ~ R) ->
((P /\ Q) \/ ~ R) ->
(~ (P /\ Q) \/ R) ->
(R \/ ~ (P /\ Q)) ->
(~ R \/ (P /\ Q)) ->
(~ P -> R) ->
(~ ((R -> P) \/ (Q -> R))) ->
(~ (P /\ R)) ->
(~ (P -> R)) ->
True.
decidable P ->
decidable Q ->
(~ True) ->
(~ False) ->
(~ ~ P) ->
(~ (P /\ Q) -> ~ R) ->
((P /\ Q) \/ ~ R) ->
(~ (P /\ Q) \/ R) ->
(R \/ ~ (P /\ Q)) ->
(~ R \/ (P /\ Q)) ->
(~ P -> R) ->
(~ ((R -> P) \/ (Q -> R))) ->
(~ (P /\ R)) ->
(~ (P -> R)) ->
True.
pull not using db will pull as many negations as
possible toward the top of the propositions in the goal,
using the lemmas in db to assist in checking the
decidability of the propositions involved. If using
db is omitted, then core will be used. Additional
versions are provided to manipulate the hypotheses or
the hypotheses and goal together.
Tactic Notation "pull" "not" "using" ident(db) :=
let dec := solve_decidable using db in
unfold not, iff;
repeat (
match goal with
| |- context [True -> False] => rewrite not_true_iff
| |- context [False -> False] => rewrite not_false_iff
| |- context [(?P -> False) -> False] => rewrite (not_not_iff P) by dec
| |- context [(?P -> False) -> (?Q -> False)] =>
rewrite (contrapositive P Q) by dec
| |- context [(?P -> False) \/ ?Q] => or_not_l_iff P Q dec
| |- context [?P \/ (?Q -> False)] => or_not_r_iff P Q dec
| |- context [(?P -> False) -> ?Q] => rewrite (imp_not_l P Q) by dec
| |- context [(?P -> False) /\ (?Q -> False)] =>
rewrite <- (not_or_iff P Q)
| |- context [?P -> ?Q -> False] => rewrite <- (not_and_iff P Q)
| |- context [?P /\ (?Q -> False)] => rewrite <- (not_imp_iff P Q) by dec
| |- context [(?Q -> False) /\ ?P] =>
rewrite <- (not_imp_rev_iff P Q) by dec
end);
fold any not.
Tactic Notation "pull" "not" :=
pull not using core.
Tactic Notation
"pull" "not" "in" "*" "|-" "using" ident(db) :=
let dec := solve_decidable using db in
unfold not, iff in * |-;
repeat (
match goal with
| H: context [True -> False] |- _ => rewrite not_true_iff in H
| H: context [False -> False] |- _ => rewrite not_false_iff in H
| H: context [(?P -> False) -> False] |- _ =>
rewrite (not_not_iff P) in H by dec
| H: context [(?P -> False) -> (?Q -> False)] |- _ =>
rewrite (contrapositive P Q) in H by dec
| H: context [(?P -> False) \/ ?Q] |- _ => or_not_l_iff_in P Q H dec
| H: context [?P \/ (?Q -> False)] |- _ => or_not_r_iff_in P Q H dec
| H: context [(?P -> False) -> ?Q] |- _ =>
rewrite (imp_not_l P Q) in H by dec
| H: context [(?P -> False) /\ (?Q -> False)] |- _ =>
rewrite <- (not_or_iff P Q) in H
| H: context [?P -> ?Q -> False] |- _ =>
rewrite <- (not_and_iff P Q) in H
| H: context [?P /\ (?Q -> False)] |- _ =>
rewrite <- (not_imp_iff P Q) in H by dec
| H: context [(?Q -> False) /\ ?P] |- _ =>
rewrite <- (not_imp_rev_iff P Q) in H by dec
end);
fold any not.
Tactic Notation "pull" "not" "in" "*" "|-" :=
pull not in * |- using core.
Tactic Notation "pull" "not" "in" "*" "using" ident(db) :=
pull not using db; pull not in * |- using db.
Tactic Notation "pull" "not" "in" "*" :=
pull not in * using core.
A simple test case to see how this works.
Lemma test_pull : forall P Q R : Prop,
decidable P ->
decidable Q ->
(~ True) ->
(~ False) ->
(~ ~ P) ->
(~ (P /\ Q) -> ~ R) ->
((P /\ Q) \/ ~ R) ->
(~ (P /\ Q) \/ R) ->
(R \/ ~ (P /\ Q)) ->
(~ R \/ (P /\ Q)) ->
(~ P -> R) ->
(~ (R -> P) /\ ~ (Q -> R)) ->
(~ P \/ ~ R) ->
(P /\ ~ R) ->
(~ R /\ P) ->
True.
End FSetLogicalFacts.
Import FSetLogicalFacts.
decidable P ->
decidable Q ->
(~ True) ->
(~ False) ->
(~ ~ P) ->
(~ (P /\ Q) -> ~ R) ->
((P /\ Q) \/ ~ R) ->
(~ (P /\ Q) \/ R) ->
(R \/ ~ (P /\ Q)) ->
(~ R \/ (P /\ Q)) ->
(~ P -> R) ->
(~ (R -> P) /\ ~ (Q -> R)) ->
(~ P \/ ~ R) ->
(P /\ ~ R) ->
(~ R /\ P) ->
True.
End FSetLogicalFacts.
Import FSetLogicalFacts.
Auxiliary Tactics
Again, these lemmas and tactics are in a module so that they do not affect the namespace if you import the enclosing module Decide.Generic Tactics
We begin by defining a few generic, useful tactics.Module FSetDecideTestCases.
Lemma test_eq_trans_1 : forall x y z s,
E.eq x y ->
~ ~ E.eq z y ->
In x s ->
In z s.
Lemma test_eq_trans_2 : forall x y z r s,
In x (singleton y) ->
~ In z r ->
~ ~ In z (add y r) ->
In x s ->
In z s.
Lemma test_eq_neq_trans_1 : forall w x y z s,
E.eq x w ->
~ ~ E.eq x y ->
~ E.eq y z ->
In w s ->
In w (remove z s).
Lemma test_eq_neq_trans_2 : forall w x y z r1 r2 s,
In x (singleton w) ->
~ In x r1 ->
In x (add y r1) ->
In y r2 ->
In y (remove z r2) ->
In w s ->
In w (remove z s).
Lemma test_In_singleton : forall x,
In x (singleton x).
Lemma test_add_In : forall x y s,
In x (add y s) ->
~ E.eq x y ->
In x s.
Lemma test_Subset_add_remove : forall x s,
s [<=] (add x (remove x s)).
Lemma test_eq_disjunction : forall w x y z,
In w (add x (add y (singleton z))) ->
E.eq w x \/ E.eq w y \/ E.eq w z.
Lemma test_not_In_disj : forall x y s1 s2 s3 s4,
~ In x (union s1 (union s2 (union s3 (add y s4)))) ->
~ (In x s1 \/ In x s4 \/ E.eq y x).
Lemma test_not_In_conj : forall x y s1 s2 s3 s4,
~ In x (union s1 (union s2 (union s3 (add y s4)))) ->
~ In x s1 /\ ~ In x s4 /\ ~ E.eq y x.
Lemma test_iff_conj : forall a x s s´,
(In a s´ <-> E.eq x a \/ In a s) ->
(In a s´ <-> In a (add x s)).
Lemma test_set_ops_1 : forall x q r s,
(singleton x) [<=] s ->
Empty (union q r) ->
Empty (inter (diff s q) (diff s r)) ->
~ In x s.
Lemma eq_chain_test : forall x1 x2 x3 x4 s1 s2 s3 s4,
Empty s1 ->
In x2 (add x1 s1) ->
In x3 s2 ->
~ In x3 (remove x2 s2) ->
~ In x4 s3 ->
In x4 (add x3 s3) ->
In x1 s4 ->
Subset (add x4 s4) s4.
Lemma test_too_complex : forall x y z r s,
E.eq x y ->
(In x (singleton y) -> r [<=] s) ->
In z r ->
In z s.
fsetdec is not intended to solve this directly.
Lemma function_test_1 :
forall (f : t -> t),
forall (g : elt -> elt),
forall (s1 s2 : t),
forall (x1 x2 : elt),
Equal s1 (f s2) ->
E.eq x1 (g (g x2)) ->
In x1 s1 ->
In (g (g x2)) (f s2).
Lemma function_test_2 :
forall (f : t -> t),
forall (g : elt -> elt),
forall (s1 s2 : t),
forall (x1 x2 : elt),
Equal s1 (f s2) ->
E.eq x1 (g x2) ->
In x1 s1 ->
g x2 = g (g x2) ->
In (g (g x2)) (f s2).
fsetdec is not intended to solve this directly.
Lemma test_baydemir :
forall (f : t -> t),
forall (s : t),
forall (x y : elt),
In x (add y (f s)) ->
~ E.eq x y ->
In x (f s).
End FSetDecideTestCases.
End WDecide_fun.
Require Import FSetInterface.
Now comes variants for self-contained weak sets and for full sets.
For these variants, only one argument is necessary. Thanks to
the subtyping WS<=S, the Decide functor which is meant to be
used on modules (M:S) can simply be an alias of WDecide.