Library Coq.FSets.FSetBridge
Finite sets library
Module DepOfNodep (Import M: S) <: Sdep with Module E := M.E.
Definition empty : {s : t | Empty s}.
Definition is_empty : forall s : t, {Empty s} + {~ Empty s}.
Definition mem : forall (x : elt) (s : t), {In x s} + {~ In x s}.
Definition Add (x : elt) (s s´ : t) :=
forall y : elt, In y s´ <-> E.eq x y \/ In y s.
Definition add : forall (x : elt) (s : t), {s´ : t | Add x s s´}.
Definition singleton :
forall x : elt, {s : t | forall y : elt, In y s <-> E.eq x y}.
Definition remove :
forall (x : elt) (s : t),
{s´ : t | forall y : elt, In y s´ <-> ~ E.eq x y /\ In y s}.
Definition union :
forall s s´ : t, {s´´ : t | forall x : elt, In x s´´ <-> In x s \/ In x s´}.
Definition inter :
forall s s´ : t, {s´´ : t | forall x : elt, In x s´´ <-> In x s /\ In x s´}.
Definition diff :
forall s s´ : t, {s´´ : t | forall x : elt, In x s´´ <-> In x s /\ ~ In x s´}.
Definition equal : forall s s´ : t, {Equal s s´} + {~ Equal s s´}.
Definition subset : forall s s´ : t, {Subset s s´} + {~Subset s s´}.
Definition elements :
forall s : t,
{l : list elt | sort E.lt l /\ (forall x : elt, In x s <-> InA E.eq x l)}.
Definition fold :
forall (A : Type) (f : elt -> A -> A) (s : t) (i : A),
{r : A | let (l,_) := elements s in
r = fold_left (fun a e => f e a) l i}.
Definition cardinal :
forall s : t,
{r : nat | let (l,_) := elements s in r = length l }.
Definition fdec (P : elt -> Prop) (Pdec : forall x : elt, {P x} + {~ P x})
(x : elt) := if Pdec x then true else false.
Lemma compat_P_aux :
forall (P : elt -> Prop) (Pdec : forall x : elt, {P x} + {~ P x}),
compat_P E.eq P -> compat_bool E.eq (fdec Pdec).
Hint Resolve compat_P_aux.
Definition filter :
forall (P : elt -> Prop) (Pdec : forall x : elt, {P x} + {~ P x}) (s : t),
{s´ : t | compat_P E.eq P -> forall x : elt, In x s´ <-> In x s /\ P x}.
Definition for_all :
forall (P : elt -> Prop) (Pdec : forall x : elt, {P x} + {~ P x}) (s : t),
{compat_P E.eq P -> For_all P s} + {compat_P E.eq P -> ~ For_all P s}.
Definition exists_ :
forall (P : elt -> Prop) (Pdec : forall x : elt, {P x} + {~ P x}) (s : t),
{compat_P E.eq P -> Exists P s} + {compat_P E.eq P -> ~ Exists P s}.
Definition partition :
forall (P : elt -> Prop) (Pdec : forall x : elt, {P x} + {~ P x}) (s : t),
{partition : t * t |
let (s1, s2) := partition in
compat_P E.eq P ->
For_all P s1 /\
For_all (fun x => ~ P x) s2 /\
(forall x : elt, In x s <-> In x s1 \/ In x s2)}.
Definition choose_aux: forall s : t,
{ x : elt | M.choose s = Some x } + { M.choose s = None }.
Definition choose : forall s : t, {x : elt | In x s} + {Empty s}.
Lemma choose_ok1 :
forall s x, M.choose s = Some x <-> exists H:In x s,
choose s = inleft _ (exist (fun x => In x s) x H).
Lemma choose_ok2 :
forall s, M.choose s = None <-> exists H:Empty s,
choose s = inright _ H.
Lemma choose_equal : forall s s´, Equal s s´ ->
match choose s, choose s´ with
| inleft (exist x _), inleft (exist x´ _) => E.eq x x´
| inright _, inright _ => True
| _, _ => False
end.
Definition min_elt :
forall s : t,
{x : elt | In x s /\ For_all (fun y => ~ E.lt y x) s} + {Empty s}.
Definition max_elt :
forall s : t,
{x : elt | In x s /\ For_all (fun y => ~ E.lt x y) s} + {Empty s}.
Definition elt := elt.
Definition t := t.
Definition In := In.
Definition Equal s s´ := forall a : elt, In a s <-> In a s´.
Definition Subset s s´ := forall a : elt, In a s -> In a s´.
Definition Empty s := forall a : elt, ~ In a s.
Definition For_all (P : elt -> Prop) (s : t) :=
forall x : elt, In x s -> P x.
Definition Exists (P : elt -> Prop) (s : t) :=
exists x : elt, In x s /\ P x.
Definition eq_In := In_1.
Definition eq := Equal.
Definition lt := lt.
Definition eq_refl := eq_refl.
Definition eq_sym := eq_sym.
Definition eq_trans := eq_trans.
Definition lt_trans := lt_trans.
Definition lt_not_eq := lt_not_eq.
Definition compare := compare.
Module E := E.
End DepOfNodep.
Module NodepOfDep (M: Sdep) <: S with Module E := M.E.
Import M.
Module ME := OrderedTypeFacts E.
Definition empty : t := let (s, _) := empty in s.
Lemma empty_1 : Empty empty.
Definition is_empty (s : t) : bool :=
if is_empty s then true else false.
Lemma is_empty_1 : forall s : t, Empty s -> is_empty s = true.
Lemma is_empty_2 : forall s : t, is_empty s = true -> Empty s.
Definition mem (x : elt) (s : t) : bool :=
if mem x s then true else false.
Lemma mem_1 : forall (s : t) (x : elt), In x s -> mem x s = true.
Lemma mem_2 : forall (s : t) (x : elt), mem x s = true -> In x s.
Definition eq_dec := equal.
Definition equal (s s´ : t) : bool :=
if equal s s´ then true else false.
Lemma equal_1 : forall s s´ : t, Equal s s´ -> equal s s´ = true.
Lemma equal_2 : forall s s´ : t, equal s s´ = true -> Equal s s´.
Definition subset (s s´ : t) : bool :=
if subset s s´ then true else false.
Lemma subset_1 : forall s s´ : t, Subset s s´ -> subset s s´ = true.
Lemma subset_2 : forall s s´ : t, subset s s´ = true -> Subset s s´.
Definition choose (s : t) : option elt :=
match choose s with
| inleft (exist x _) => Some x
| inright _ => None
end.
Lemma choose_1 : forall (s : t) (x : elt), choose s = Some x -> In x s.
Lemma choose_2 : forall s : t, choose s = None -> Empty s.
Lemma choose_3 : forall s s´ x x´,
choose s = Some x -> choose s´ = Some x´ -> Equal s s´ -> E.eq x x´.
Definition elements (s : t) : list elt := let (l, _) := elements s in l.
Lemma elements_1 : forall (s : t) (x : elt), In x s -> InA E.eq x (elements s).
Lemma elements_2 : forall (s : t) (x : elt), InA E.eq x (elements s) -> In x s.
Lemma elements_3 : forall s : t, sort E.lt (elements s).
Hint Resolve elements_3.
Lemma elements_3w : forall s : t, NoDupA E.eq (elements s).
Definition min_elt (s : t) : option elt :=
match min_elt s with
| inleft (exist x _) => Some x
| inright _ => None
end.
Lemma min_elt_1 : forall (s : t) (x : elt), min_elt s = Some x -> In x s.
Lemma min_elt_2 :
forall (s : t) (x y : elt), min_elt s = Some x -> In y s -> ~ E.lt y x.
Lemma min_elt_3 : forall s : t, min_elt s = None -> Empty s.
Definition max_elt (s : t) : option elt :=
match max_elt s with
| inleft (exist x _) => Some x
| inright _ => None
end.
Lemma max_elt_1 : forall (s : t) (x : elt), max_elt s = Some x -> In x s.
Lemma max_elt_2 :
forall (s : t) (x y : elt), max_elt s = Some x -> In y s -> ~ E.lt x y.
Lemma max_elt_3 : forall s : t, max_elt s = None -> Empty s.
Definition add (x : elt) (s : t) : t := let (s´, _) := add x s in s´.
Lemma add_1 : forall (s : t) (x y : elt), E.eq x y -> In y (add x s).
Lemma add_2 : forall (s : t) (x y : elt), In y s -> In y (add x s).
Lemma add_3 :
forall (s : t) (x y : elt), ~ E.eq x y -> In y (add x s) -> In y s.
Definition remove (x : elt) (s : t) : t := let (s´, _) := remove x s in s´.
Lemma remove_1 : forall (s : t) (x y : elt), E.eq x y -> ~ In y (remove x s).
Lemma remove_2 :
forall (s : t) (x y : elt), ~ E.eq x y -> In y s -> In y (remove x s).
Lemma remove_3 : forall (s : t) (x y : elt), In y (remove x s) -> In y s.
Definition singleton (x : elt) : t := let (s, _) := singleton x in s.
Lemma singleton_1 : forall x y : elt, In y (singleton x) -> E.eq x y.
Lemma singleton_2 : forall x y : elt, E.eq x y -> In y (singleton x).
Definition union (s s´ : t) : t := let (s´´, _) := union s s´ in s´´.
Lemma union_1 :
forall (s s´ : t) (x : elt), In x (union s s´) -> In x s \/ In x s´.
Lemma union_2 : forall (s s´ : t) (x : elt), In x s -> In x (union s s´).
Lemma union_3 : forall (s s´ : t) (x : elt), In x s´ -> In x (union s s´).
Definition inter (s s´ : t) : t := let (s´´, _) := inter s s´ in s´´.
Lemma inter_1 : forall (s s´ : t) (x : elt), In x (inter s s´) -> In x s.
Lemma inter_2 : forall (s s´ : t) (x : elt), In x (inter s s´) -> In x s´.
Lemma inter_3 :
forall (s s´ : t) (x : elt), In x s -> In x s´ -> In x (inter s s´).
Definition diff (s s´ : t) : t := let (s´´, _) := diff s s´ in s´´.
Lemma diff_1 : forall (s s´ : t) (x : elt), In x (diff s s´) -> In x s.
Lemma diff_2 : forall (s s´ : t) (x : elt), In x (diff s s´) -> ~ In x s´.
Lemma diff_3 :
forall (s s´ : t) (x : elt), In x s -> ~ In x s´ -> In x (diff s s´).
Definition cardinal (s : t) : nat := let (f, _) := cardinal s in f.
Lemma cardinal_1 : forall s, cardinal s = length (elements s).
Definition fold (B : Type) (f : elt -> B -> B) (i : t)
(s : B) : B := let (fold, _) := fold f i s in fold.
Lemma fold_1 :
forall (s : t) (A : Type) (i : A) (f : elt -> A -> A),
fold f s i = fold_left (fun a e => f e a) (elements s) i.
Definition f_dec :
forall (f : elt -> bool) (x : elt), {f x = true} + {f x <> true}.
Lemma compat_P_aux :
forall f : elt -> bool,
compat_bool E.eq f -> compat_P E.eq (fun x => f x = true).
Hint Resolve compat_P_aux.
Definition filter (f : elt -> bool) (s : t) : t :=
let (s´, _) := filter (P:=fun x => f x = true) (f_dec f) s in s´.
Lemma filter_1 :
forall (s : t) (x : elt) (f : elt -> bool),
compat_bool E.eq f -> In x (filter f s) -> In x s.
Lemma filter_2 :
forall (s : t) (x : elt) (f : elt -> bool),
compat_bool E.eq f -> In x (filter f s) -> f x = true.
Lemma filter_3 :
forall (s : t) (x : elt) (f : elt -> bool),
compat_bool E.eq f -> In x s -> f x = true -> In x (filter f s).
Definition for_all (f : elt -> bool) (s : t) : bool :=
if for_all (P:=fun x => f x = true) (f_dec f) s
then true
else false.
Lemma for_all_1 :
forall (s : t) (f : elt -> bool),
compat_bool E.eq f ->
For_all (fun x => f x = true) s -> for_all f s = true.
Lemma for_all_2 :
forall (s : t) (f : elt -> bool),
compat_bool E.eq f ->
for_all f s = true -> For_all (fun x => f x = true) s.
Definition exists_ (f : elt -> bool) (s : t) : bool :=
if exists_ (P:=fun x => f x = true) (f_dec f) s
then true
else false.
Lemma exists_1 :
forall (s : t) (f : elt -> bool),
compat_bool E.eq f -> Exists (fun x => f x = true) s -> exists_ f s = true.
Lemma exists_2 :
forall (s : t) (f : elt -> bool),
compat_bool E.eq f -> exists_ f s = true -> Exists (fun x => f x = true) s.
Definition partition (f : elt -> bool) (s : t) :
t * t :=
let (p, _) := partition (P:=fun x => f x = true) (f_dec f) s in p.
Lemma partition_1 :
forall (s : t) (f : elt -> bool),
compat_bool E.eq f -> Equal (fst (partition f s)) (filter f s).
Lemma partition_2 :
forall (s : t) (f : elt -> bool),
compat_bool E.eq f -> Equal (snd (partition f s)) (filter (fun x => negb (f x)) s).
Definition elt := elt.
Definition t := t.
Definition In := In.
Definition Equal s s´ := forall a : elt, In a s <-> In a s´.
Definition Subset s s´ := forall a : elt, In a s -> In a s´.
Definition Add (x : elt) (s s´ : t) :=
forall y : elt, In y s´ <-> E.eq y x \/ In y s.
Definition Empty s := forall a : elt, ~ In a s.
Definition For_all (P : elt -> Prop) (s : t) :=
forall x : elt, In x s -> P x.
Definition Exists (P : elt -> Prop) (s : t) :=
exists x : elt, In x s /\ P x.
Definition In_1 := eq_In.
Definition eq := Equal.
Definition lt := lt.
Definition eq_refl := eq_refl.
Definition eq_sym := eq_sym.
Definition eq_trans := eq_trans.
Definition lt_trans := lt_trans.
Definition lt_not_eq := lt_not_eq.
Definition compare := compare.
Module E := E.
End NodepOfDep.