Library Coq.FSets.FMapList
Finite map library
Require Import FMapInterface.
Set Implicit Arguments.
Module Raw (X:OrderedType).
Module Import MX := OrderedTypeFacts X.
Module Import PX := KeyOrderedType X.
Definition key := X.t.
Definition t (elt:Type) := list (X.t * elt).
Section Elt.
Variable elt : Type.
Notation eqk := (eqk (elt:=elt)).
Notation eqke := (eqke (elt:=elt)).
Notation ltk := (ltk (elt:=elt)).
Notation MapsTo := (MapsTo (elt:=elt)).
Notation In := (In (elt:=elt)).
Notation Sort := (sort ltk).
Notation Inf := (lelistA (ltk)).
Definition empty : t elt := nil.
Definition Empty m := forall (a : key)(e:elt) , ~ MapsTo a e m.
Lemma empty_1 : Empty empty.
Hint Resolve empty_1.
Lemma empty_sorted : Sort empty.
Definition is_empty (l : t elt) : bool := if l then true else false.
Lemma is_empty_1 :forall m, Empty m -> is_empty m = true.
Lemma is_empty_2 : forall m, is_empty m = true -> Empty m.
Function mem (k : key) (s : t elt) {struct s} : bool :=
match s with
| nil => false
| (k´,_) :: l =>
match X.compare k k´ with
| LT _ => false
| EQ _ => true
| GT _ => mem k l
end
end.
Lemma mem_1 : forall m (Hm:Sort m) x, In x m -> mem x m = true.
Lemma mem_2 : forall m (Hm:Sort m) x, mem x m = true -> In x m.
Function find (k:key) (s: t elt) {struct s} : option elt :=
match s with
| nil => None
| (k´,x)::s´ =>
match X.compare k k´ with
| LT _ => None
| EQ _ => Some x
| GT _ => find k s´
end
end.
Lemma find_2 : forall m x e, find x m = Some e -> MapsTo x e m.
Lemma find_1 : forall m (Hm:Sort m) x e, MapsTo x e m -> find x m = Some e.
Function add (k : key) (x : elt) (s : t elt) {struct s} : t elt :=
match s with
| nil => (k,x) :: nil
| (k´,y) :: l =>
match X.compare k k´ with
| LT _ => (k,x)::s
| EQ _ => (k,x)::l
| GT _ => (k´,y) :: add k x l
end
end.
Lemma add_1 : forall m x y e, X.eq x y -> MapsTo y e (add x e m).
Lemma add_2 : forall m x y e e´,
~ X.eq x y -> MapsTo y e m -> MapsTo y e (add x e´ m).
Lemma add_3 : forall m x y e e´,
~ X.eq x y -> MapsTo y e (add x e´ m) -> MapsTo y e m.
Lemma add_Inf : forall (m:t elt)(x x´:key)(e e´:elt),
Inf (x´,e´) m -> ltk (x´,e´) (x,e) -> Inf (x´,e´) (add x e m).
Hint Resolve add_Inf.
Lemma add_sorted : forall m (Hm:Sort m) x e, Sort (add x e m).
Function remove (k : key) (s : t elt) {struct s} : t elt :=
match s with
| nil => nil
| (k´,x) :: l =>
match X.compare k k´ with
| LT _ => s
| EQ _ => l
| GT _ => (k´,x) :: remove k l
end
end.
Lemma remove_1 : forall m (Hm:Sort m) x y, X.eq x y -> ~ In y (remove x m).
Lemma remove_2 : forall m (Hm:Sort m) x y e,
~ X.eq x y -> MapsTo y e m -> MapsTo y e (remove x m).
Lemma remove_3 : forall m (Hm:Sort m) x y e,
MapsTo y e (remove x m) -> MapsTo y e m.
Lemma remove_Inf : forall (m:t elt)(Hm : Sort m)(x x´:key)(e´:elt),
Inf (x´,e´) m -> Inf (x´,e´) (remove x m).
Hint Resolve remove_Inf.
Lemma remove_sorted : forall m (Hm:Sort m) x, Sort (remove x m).
Definition elements (m: t elt) := m.
Lemma elements_1 : forall m x e,
MapsTo x e m -> InA eqke (x,e) (elements m).
Lemma elements_2 : forall m x e,
InA eqke (x,e) (elements m) -> MapsTo x e m.
Lemma elements_3 : forall m (Hm:Sort m), sort ltk (elements m).
Lemma elements_3w : forall m (Hm:Sort m), NoDupA eqk (elements m).
Function fold (A:Type)(f:key->elt->A->A)(m:t elt) (acc:A) {struct m} : A :=
match m with
| nil => acc
| (k,e)::m´ => fold f m´ (f k e acc)
end.
Lemma fold_1 : forall m (A:Type)(i:A)(f:key->elt->A->A),
fold f m i = fold_left (fun a p => f (fst p) (snd p) a) (elements m) i.
Function equal (cmp:elt->elt->bool)(m m´ : t elt) {struct m} : bool :=
match m, m´ with
| nil, nil => true
| (x,e)::l, (x´,e´)::l´ =>
match X.compare x x´ with
| EQ _ => cmp e e´ && equal cmp l l´
| _ => false
end
| _, _ => false
end.
Definition Equivb cmp m m´ :=
(forall k, In k m <-> In k m´) /\
(forall k e e´, MapsTo k e m -> MapsTo k e´ m´ -> cmp e e´ = true).
Lemma equal_1 : forall m (Hm:Sort m) m´ (Hm´: Sort m´) cmp,
Equivb cmp m m´ -> equal cmp m m´ = true.
Lemma equal_2 : forall m (Hm:Sort m) m´ (Hm:Sort m´) cmp,
equal cmp m m´ = true -> Equivb cmp m m´.
This lemma isn't part of the spec of Equivb, but is used in FMapAVL
Lemma equal_cons : forall cmp l1 l2 x y, Sort (x::l1) -> Sort (y::l2) ->
eqk x y -> cmp (snd x) (snd y) = true ->
(Equivb cmp l1 l2 <-> Equivb cmp (x :: l1) (y :: l2)).
Variable elt´:Type.
Fixpoint map (f:elt -> elt´) (m:t elt) : t elt´ :=
match m with
| nil => nil
| (k,e)::m´ => (k,f e) :: map f m´
end.
Fixpoint mapi (f: key -> elt -> elt´) (m:t elt) : t elt´ :=
match m with
| nil => nil
| (k,e)::m´ => (k,f k e) :: mapi f m´
end.
End Elt.
Section Elt2.
Variable elt elt´ : Type.
Specification of map
Lemma map_1 : forall (m:t elt)(x:key)(e:elt)(f:elt->elt´),
MapsTo x e m -> MapsTo x (f e) (map f m).
Lemma map_2 : forall (m:t elt)(x:key)(f:elt->elt´),
In x (map f m) -> In x m.
Lemma map_lelistA : forall (m: t elt)(x:key)(e:elt)(e´:elt´)(f:elt->elt´),
lelistA (@ltk elt) (x,e) m ->
lelistA (@ltk elt´) (x,e´) (map f m).
Hint Resolve map_lelistA.
Lemma map_sorted : forall (m: t elt)(Hm : sort (@ltk elt) m)(f:elt -> elt´),
sort (@ltk elt´) (map f m).
Specification of mapi
Lemma mapi_1 : forall (m:t elt)(x:key)(e:elt)(f:key->elt->elt´),
MapsTo x e m ->
exists y, X.eq y x /\ MapsTo x (f y e) (mapi f m).
Lemma mapi_2 : forall (m:t elt)(x:key)(f:key->elt->elt´),
In x (mapi f m) -> In x m.
Lemma mapi_lelistA : forall (m: t elt)(x:key)(e:elt)(f:key->elt->elt´),
lelistA (@ltk elt) (x,e) m ->
lelistA (@ltk elt´) (x,f x e) (mapi f m).
Hint Resolve mapi_lelistA.
Lemma mapi_sorted : forall m (Hm : sort (@ltk elt) m)(f: key ->elt -> elt´),
sort (@ltk elt´) (mapi f m).
End Elt2.
Section Elt3.
Variable elt elt´ elt´´ : Type.
Variable f : option elt -> option elt´ -> option elt´´.
Definition option_cons (A:Type)(k:key)(o:option A)(l:list (key*A)) :=
match o with
| Some e => (k,e)::l
| None => l
end.
Fixpoint map2_l (m : t elt) : t elt´´ :=
match m with
| nil => nil
| (k,e)::l => option_cons k (f (Some e) None) (map2_l l)
end.
Fixpoint map2_r (m´ : t elt´) : t elt´´ :=
match m´ with
| nil => nil
| (k,e´)::l´ => option_cons k (f None (Some e´)) (map2_r l´)
end.
Fixpoint map2 (m : t elt) : t elt´ -> t elt´´ :=
match m with
| nil => map2_r
| (k,e) :: l =>
fix map2_aux (m´ : t elt´) : t elt´´ :=
match m´ with
| nil => map2_l m
| (k´,e´) :: l´ =>
match X.compare k k´ with
| LT _ => option_cons k (f (Some e) None) (map2 l m´)
| EQ _ => option_cons k (f (Some e) (Some e´)) (map2 l l´)
| GT _ => option_cons k´ (f None (Some e´)) (map2_aux l´)
end
end
end.
Notation oee´ := (option elt * option elt´)%type.
Fixpoint combine (m : t elt) : t elt´ -> t oee´ :=
match m with
| nil => map (fun e´ => (None,Some e´))
| (k,e) :: l =>
fix combine_aux (m´:t elt´) : list (key * oee´) :=
match m´ with
| nil => map (fun e => (Some e,None)) m
| (k´,e´) :: l´ =>
match X.compare k k´ with
| LT _ => (k,(Some e, None))::combine l m´
| EQ _ => (k,(Some e, Some e´))::combine l l´
| GT _ => (k´,(None,Some e´))::combine_aux l´
end
end
end.
Definition fold_right_pair (A B C:Type)(f: A->B->C->C)(l:list (A*B))(i:C) :=
List.fold_right (fun p => f (fst p) (snd p)) i l.
Definition map2_alt m m´ :=
let m0 : t oee´ := combine m m´ in
let m1 : t (option elt´´) := map (fun p => f (fst p) (snd p)) m0 in
fold_right_pair (option_cons (A:=elt´´)) m1 nil.
Lemma map2_alt_equiv : forall m m´, map2_alt m m´ = map2 m m´.
Lemma combine_lelistA :
forall m m´ (x:key)(e:elt)(e´:elt´)(e´´:oee´),
lelistA (@ltk elt) (x,e) m ->
lelistA (@ltk elt´) (x,e´) m´ ->
lelistA (@ltk oee´) (x,e´´) (combine m m´).
Hint Resolve combine_lelistA.
Lemma combine_sorted :
forall m (Hm : sort (@ltk elt) m) m´ (Hm´ : sort (@ltk elt´) m´),
sort (@ltk oee´) (combine m m´).
Lemma map2_sorted :
forall m (Hm : sort (@ltk elt) m) m´ (Hm´ : sort (@ltk elt´) m´),
sort (@ltk elt´´) (map2 m m´).
Definition at_least_one (o:option elt)(o´:option elt´) :=
match o, o´ with
| None, None => None
| _, _ => Some (o,o´)
end.
Lemma combine_1 :
forall m (Hm : sort (@ltk elt) m) m´ (Hm´ : sort (@ltk elt´) m´) (x:key),
find x (combine m m´) = at_least_one (find x m) (find x m´).
Definition at_least_one_then_f (o:option elt)(o´:option elt´) :=
match o, o´ with
| None, None => None
| _, _ => f o o´
end.
Lemma map2_0 :
forall m (Hm : sort (@ltk elt) m) m´ (Hm´ : sort (@ltk elt´) m´) (x:key),
find x (map2 m m´) = at_least_one_then_f (find x m) (find x m´).
Specification of map2
Lemma map2_1 :
forall m (Hm : sort (@ltk elt) m) m´ (Hm´ : sort (@ltk elt´) m´)(x:key),
In x m \/ In x m´ ->
find x (map2 m m´) = f (find x m) (find x m´).
Lemma map2_2 :
forall m (Hm : sort (@ltk elt) m) m´ (Hm´ : sort (@ltk elt´) m´)(x:key),
In x (map2 m m´) -> In x m \/ In x m´.
End Elt3.
End Raw.
Module Make (X: OrderedType) <: S with Module E := X.
Module Raw := Raw X.
Module E := X.
Definition key := E.t.
Record slist (elt:Type) :=
{this :> Raw.t elt; sorted : sort (@Raw.PX.ltk elt) this}.
Definition t (elt:Type) : Type := slist elt.
Section Elt.
Variable elt elt´ elt´´:Type.
Implicit Types m : t elt.
Implicit Types x y : key.
Implicit Types e : elt.
Definition empty : t elt := Build_slist (Raw.empty_sorted elt).
Definition is_empty m : bool := Raw.is_empty m.(this).
Definition add x e m : t elt := Build_slist (Raw.add_sorted m.(sorted) x e).
Definition find x m : option elt := Raw.find x m.(this).
Definition remove x m : t elt := Build_slist (Raw.remove_sorted m.(sorted) x).
Definition mem x m : bool := Raw.mem x m.(this).
Definition map f m : t elt´ := Build_slist (Raw.map_sorted m.(sorted) f).
Definition mapi (f:key->elt->elt´) m : t elt´ := Build_slist (Raw.mapi_sorted m.(sorted) f).
Definition map2 f m (m´:t elt´) : t elt´´ :=
Build_slist (Raw.map2_sorted f m.(sorted) m´.(sorted)).
Definition elements m : list (key*elt) := @Raw.elements elt m.(this).
Definition cardinal m := length m.(this).
Definition fold (A:Type)(f:key->elt->A->A) m (i:A) : A := @Raw.fold elt A f m.(this) i.
Definition equal cmp m m´ : bool := @Raw.equal elt cmp m.(this) m´.(this).
Definition MapsTo x e m : Prop := Raw.PX.MapsTo x e m.(this).
Definition In x m : Prop := Raw.PX.In x m.(this).
Definition Empty m : Prop := Raw.Empty m.(this).
Definition Equal m m´ := forall y, find y m = find y m´.
Definition Equiv (eq_elt:elt->elt->Prop) m m´ :=
(forall k, In k m <-> In k m´) /\
(forall k e e´, MapsTo k e m -> MapsTo k e´ m´ -> eq_elt e e´).
Definition Equivb cmp m m´ : Prop := @Raw.Equivb elt cmp m.(this) m´.(this).
Definition eq_key : (key*elt) -> (key*elt) -> Prop := @Raw.PX.eqk elt.
Definition eq_key_elt : (key*elt) -> (key*elt) -> Prop:= @Raw.PX.eqke elt.
Definition lt_key : (key*elt) -> (key*elt) -> Prop := @Raw.PX.ltk elt.
Lemma MapsTo_1 : forall m x y e, E.eq x y -> MapsTo x e m -> MapsTo y e m.
Lemma mem_1 : forall m x, In x m -> mem x m = true.
Lemma mem_2 : forall m x, mem x m = true -> In x m.
Lemma empty_1 : Empty empty.
Lemma is_empty_1 : forall m, Empty m -> is_empty m = true.
Lemma is_empty_2 : forall m, is_empty m = true -> Empty m.
Lemma add_1 : forall m x y e, E.eq x y -> MapsTo y e (add x e m).
Lemma add_2 : forall m x y e e´, ~ E.eq x y -> MapsTo y e m -> MapsTo y e (add x e´ m).
Lemma add_3 : forall m x y e e´, ~ E.eq x y -> MapsTo y e (add x e´ m) -> MapsTo y e m.
Lemma remove_1 : forall m x y, E.eq x y -> ~ In y (remove x m).
Lemma remove_2 : forall m x y e, ~ E.eq x y -> MapsTo y e m -> MapsTo y e (remove x m).
Lemma remove_3 : forall m x y e, MapsTo y e (remove x m) -> MapsTo y e m.
Lemma find_1 : forall m x e, MapsTo x e m -> find x m = Some e.
Lemma find_2 : forall m x e, find x m = Some e -> MapsTo x e m.
Lemma elements_1 : forall m x e, MapsTo x e m -> InA eq_key_elt (x,e) (elements m).
Lemma elements_2 : forall m x e, InA eq_key_elt (x,e) (elements m) -> MapsTo x e m.
Lemma elements_3 : forall m, sort lt_key (elements m).
Lemma elements_3w : forall m, NoDupA eq_key (elements m).
Lemma cardinal_1 : forall m, cardinal m = length (elements m).
Lemma fold_1 : forall m (A : Type) (i : A) (f : key -> elt -> A -> A),
fold f m i = fold_left (fun a p => f (fst p) (snd p) a) (elements m) i.
Lemma equal_1 : forall m m´ cmp, Equivb cmp m m´ -> equal cmp m m´ = true.
Lemma equal_2 : forall m m´ cmp, equal cmp m m´ = true -> Equivb cmp m m´.
End Elt.
Lemma map_1 : forall (elt elt´:Type)(m: t elt)(x:key)(e:elt)(f:elt->elt´),
MapsTo x e m -> MapsTo x (f e) (map f m).
Lemma map_2 : forall (elt elt´:Type)(m: t elt)(x:key)(f:elt->elt´),
In x (map f m) -> In x m.
Lemma mapi_1 : forall (elt elt´:Type)(m: t elt)(x:key)(e:elt)
(f:key->elt->elt´), MapsTo x e m ->
exists y, E.eq y x /\ MapsTo x (f y e) (mapi f m).
Lemma mapi_2 : forall (elt elt´:Type)(m: t elt)(x:key)
(f:key->elt->elt´), In x (mapi f m) -> In x m.
Lemma map2_1 : forall (elt elt´ elt´´:Type)(m: t elt)(m´: t elt´)
(x:key)(f:option elt->option elt´->option elt´´),
In x m \/ In x m´ ->
find x (map2 f m m´) = f (find x m) (find x m´).
Lemma map2_2 : forall (elt elt´ elt´´:Type)(m: t elt)(m´: t elt´)
(x:key)(f:option elt->option elt´->option elt´´),
In x (map2 f m m´) -> In x m \/ In x m´.
End Make.
Module Make_ord (X: OrderedType)(D : OrderedType) <:
Sord with Module Data := D
with Module MapS.E := X.
Module Data := D.
Module MapS := Make(X).
Import MapS.
Module MD := OrderedTypeFacts(D).
Import MD.
Definition t := MapS.t D.t.
Definition cmp e e´ := match D.compare e e´ with EQ _ => true | _ => false end.
Fixpoint eq_list (m m´ : list (X.t * D.t)) : Prop :=
match m, m´ with
| nil, nil => True
| (x,e)::l, (x´,e´)::l´ =>
match X.compare x x´ with
| EQ _ => D.eq e e´ /\ eq_list l l´
| _ => False
end
| _, _ => False
end.
Definition eq m m´ := eq_list m.(this) m´.(this).
Fixpoint lt_list (m m´ : list (X.t * D.t)) : Prop :=
match m, m´ with
| nil, nil => False
| nil, _ => True
| _, nil => False
| (x,e)::l, (x´,e´)::l´ =>
match X.compare x x´ with
| LT _ => True
| GT _ => False
| EQ _ => D.lt e e´ \/ (D.eq e e´ /\ lt_list l l´)
end
end.
Definition lt m m´ := lt_list m.(this) m´.(this).
Lemma eq_equal : forall m m´, eq m m´ <-> equal cmp m m´ = true.
Lemma eq_1 : forall m m´, Equivb cmp m m´ -> eq m m´.
Lemma eq_2 : forall m m´, eq m m´ -> Equivb cmp m m´.
Lemma eq_refl : forall m : t, eq m m.
Lemma eq_sym : forall m1 m2 : t, eq m1 m2 -> eq m2 m1.
Lemma eq_trans : forall m1 m2 m3 : t, eq m1 m2 -> eq m2 m3 -> eq m1 m3.
Lemma lt_trans : forall m1 m2 m3 : t, lt m1 m2 -> lt m2 m3 -> lt m1 m3.
Lemma lt_not_eq : forall m1 m2 : t, lt m1 m2 -> ~ eq m1 m2.
Ltac cmp_solve := unfold eq, lt; simpl; try Raw.MX.elim_comp; auto.
Definition compare : forall m1 m2, Compare lt eq m1 m2.
End Make_ord.