Library Coq.Classes.EquivDec


Decidable equivalences.

Author: Matthieu Sozeau Institution: LRI, CNRS UMR 8623 - University Paris Sud
Export notations.

Require Export Coq.Classes.Equivalence.

The DecidableSetoid class asserts decidability of a Setoid. It can be useful in proofs to reason more classically.

Require Import Coq.Logic.Decidable.
Require Import Coq.Bool.Bool.
Require Import Coq.Arith.Peano_dec.
Require Import Coq.Program.Program.


Open Scope equiv_scope.

Class DecidableEquivalence `(equiv : Equivalence A) :=
  setoid_decidable : forall x y : A, decidable (x === y).

The EqDec class gives a decision procedure for a particular setoid equality.

Class EqDec A R {equiv : Equivalence R} :=
  equiv_dec : forall x y : A, { x === y } + { x =/= y }.

We define the == overloaded notation for deciding equality. It does not take precedence of == defined in the type scope, hence we can have both at the same time.

Notation " x == y " := (equiv_dec (x :>) (y :>)) (no associativity, at level 70) : equiv_scope.

Definition swap_sumbool {A B} (x : { A } + { B }) : { B } + { A } :=
  match x with
    | left H => @right _ _ H
    | right H => @left _ _ H
  end.

Local Open Scope program_scope.

Invert the branches.

Program Definition nequiv_dec `{EqDec A} (x y : A) : { x =/= y } + { x === y } := swap_sumbool (x == y).

Overloaded notation for inequality.

Infix "<>" := nequiv_dec (no associativity, at level 70) : equiv_scope.

Define boolean versions, losing the logical information.

Definition equiv_decb `{EqDec A} (x y : A) : bool :=
  if x == y then true else false.

Definition nequiv_decb `{EqDec A} (x y : A) : bool :=
  negb (equiv_decb x y).

Infix "==b" := equiv_decb (no associativity, at level 70).
Infix "<>b" := nequiv_decb (no associativity, at level 70).

Decidable leibniz equality instances.
The equiv is burried inside the setoid, but we can recover it by specifying which setoid we're talking about.

Program Instance nat_eq_eqdec : EqDec nat eq := eq_nat_dec.

Program Instance bool_eqdec : EqDec bool eq := bool_dec.

Program Instance unit_eqdec : EqDec unit eq := fun x y => in_left.


Obligation Tactic := unfold complement, equiv ; program_simpl.

Program Instance prod_eqdec `(EqDec A eq, EqDec B eq) :
  ! EqDec (prod A B) eq :=
  { equiv_dec x y :=
    let ´(x1, x2) := x in
    let ´(y1, y2) := y in
    if x1 == y1 then
      if x2 == y2 then in_left
      else in_right
    else in_right }.

Program Instance sum_eqdec `(EqDec A eq, EqDec B eq) :
  EqDec (sum A B) eq := {
  equiv_dec x y :=
    match x, y with
      | inl a, inl b => if a == b then in_left else in_right
      | inr a, inr b => if a == b then in_left else in_right
      | inl _, inr _ | inr _, inl _ => in_right
    end }.

Objects of function spaces with countable domains like bool have decidable equality. Proving the reflection requires functional extensionality though.

Program Instance bool_function_eqdec `(EqDec A eq) : ! EqDec (bool -> A) eq :=
  { equiv_dec f g :=
    if f true == g true then
      if f false == g false then in_left
      else in_right
    else in_right }.


Require Import List.

Program Instance list_eqdec `(eqa : EqDec A eq) : ! EqDec (list A) eq :=
  { equiv_dec :=
    fix aux (x y : list A) :=
    match x, y with
      | nil, nil => in_left
      | cons hd tl, cons hd´ tl´ =>
        if hd == hd´ then
          if aux tl tl´ then in_left else in_right
          else in_right
      | _, _ => in_right
    end }.

  Solve Obligations using unfold equiv, complement in * ; program_simpl ; intuition (discriminate || eauto).


  Solve Obligations using unfold equiv, complement in * ; program_simpl ; intuition (discriminate || eauto).