Library Coq.ZArith.Zpow_def


Require Import BinInt Ring_theory.
Local Open Scope Z_scope.

Power functions over Z

Nota : this file is mostly deprecated. The definition of Z.pow and its usual properties are now provided by module BinInt.Z.

Notation Zpower_pos := Z.pow_pos (compat "8.3").
Notation Zpower := Z.pow (compat "8.3").
Notation Zpower_0_r := Z.pow_0_r (compat "8.3").
Notation Zpower_succ_r := Z.pow_succ_r (compat "8.3").
Notation Zpower_neg_r := Z.pow_neg_r (compat "8.3").
Notation Zpower_Ppow := Pos2Z.inj_pow (compat "8.3").

Lemma Zpower_theory : power_theory 1 Z.mul (@eq Z) Z.of_N Z.pow.