The Coq Proof Assistant Reference Manual

April 9, 2015

Version 8.4pl6¹

The Coq Development Team

TypiCal Project (formerly LogiCal)

¹This research was partly supported by IST working group "Types"

V8.4pl6, April 9, 2015

©INRIA 1999-2004 (Coq versions 7.x)

©INRIA 2004-2014 (CoQ versions 8.x)

This material may be distributed only subject to the terms and conditions set forth in the Open Publication License, v1.0 or later (the latest version is presently available at

http://www.opencontent.org/openpub). Options A and B of the licence are not elected.

Introduction

This document is the Reference Manual of version 8.4pl6 of the CoQ proof assistant. A companion volume, the CoQ Tutorial, is provided for the beginners. It is advised to read the Tutorial first. A book [14] on practical uses of the CoQ system was published in 2004 and is a good support for both the beginner and the advanced user.

The CoQ system is designed to develop mathematical proofs, and especially to write formal specifications, programs and to verify that programs are correct with respect to their specification. It provides a specification language named GALLINA. Terms of GALLINA can represent programs as well as properties of these programs and proofs of these properties. Using the so-called *Curry-Howard isomorphism*, programs, properties and proofs are formalized in the same language called *Calculus of Inductive Constructions*, that is a λ -calculus with a rich type system. All logical judgments in CoQ are typing judgments. The very heart of the Coq system is the type-checking algorithm that checks the correctness of proofs, in other words that checks that a program complies to its specification. CoQ also provides an interactive proof assistant to build proofs using specific programs called *tactics*.

All services of the CoQ proof assistant are accessible by interpretation of a command language called *the vernacular*.

CoQ has an interactive mode in which commands are interpreted as the user types them in from the keyboard and a compiled mode where commands are processed from a file.

- The interactive mode may be used as a debugging mode in which the user can develop his theories and proofs step by step, backtracking if needed and so on. The interactive mode is run with the coqtop command from the operating system (which we shall assume to be some variety of UNIX in the rest of this document).
- The compiled mode acts as a proof checker taking a file containing a whole development in order to ensure its correctness. Moreover, CoQ's compiler provides an output file containing a compact representation of its input. The compiled mode is run with the coqc command from the operating system.

These two modes are documented in Chapter 14.

Other modes of interaction with CoQ are possible: through an emacs shell window, an emacs generic user-interface for proof assistant (ProofGeneral [1]) or through a customized interface (PCoq [130]). These facilities are not documented here. There is also a CoQ Integrated Development Environment described in Chapter 16.

How to read this book

This is a Reference Manual, not a User Manual, then it is not made for a continuous reading. However, it has some structure that is explained below.

4 Introduction

• The first part describes the specification language, Gallina. Chapters 1 and 2 describe the concrete syntax as well as the meaning of programs, theorems and proofs in the Calculus of Inductive Constructions. Chapter 3 describes the standard library of Coq. Chapter 4 is a mathematical description of the formalism. Chapter 5 describes the module system.

- The second part describes the proof engine. It is divided in five chapters. Chapter 6 presents all commands (we call them *vernacular commands*) that are not directly related to interactive proving: requests to the environment, complete or partial evaluation, loading and compiling files. How to start and stop proofs, do multiple proofs in parallel is explained in Chapter 7. In Chapter 8, all commands that realize one or more steps of the proof are presented: we call them *tactics*. The language to combine these tactics into complex proof strategies is given in Chapter 9. Examples of tactics are described in Chapter 10.
- The third part describes how to extend the syntax of Coq. It corresponds to the Chapter 12.
- In the fourth part more practical tools are documented. First in Chapter 14, the usage of coqc (batch mode) and coqtop (interactive mode) with their options is described. Then, in Chapter 15, various utilities that come with the CoQ distribution are presented. Finally, Chapter 16 describes the CoQ integrated development environment.

At the end of the document, after the global index, the user can find specific indexes for tactics, vernacular commands, and error messages.

List of additional documentation

This manual does not contain all the documentation the user may need about CoQ. Various informations can be found in the following documents:

Tutorial A companion volume to this reference manual, the CoQ Tutorial, is aimed at gently introducing new users to developing proofs in CoQ without assuming prior knowledge of type theory. In a second step, the user can read also the tutorial on recursive types (document RecTutorial.ps).

Addendum The fifth part (the Addendum) of the Reference Manual is distributed as a separate document. It contains more detailed documentation and examples about some specific aspects of the system that may interest only certain users. It shares the indexes, the page numbers and the bibliography with the Reference Manual. If you see in one of the indexes a page number that is outside the Reference Manual, it refers to the Addendum.

Installation A text file INSTALL that comes with the sources explains how to install Coq.

The CoQ standard library A commented version of sources of the CoQ standard library (including only the specifications, the proofs are removed) is given in the additional document Library.ps.

COQ is a proof assistant for higher-order logic, allowing the development of computer programs consistent with their formal specification. It is the result of about ten years of research of the Coq project. We shall briefly survey here three main aspects: the *logical language* in which we write our axiomatizations and specifications, the *proof assistant* which allows the development of verified mathematical proofs, and the *program extractor* which synthesizes computer programs obeying their formal specifications, written as logical assertions in the language.

The logical language used by CoQ is a variety of type theory, called the Calculus of Inductive Constructions. Without going back to Leibniz and Boole, we can date the creation of what is now called mathematical logic to the work of Frege and Peano at the turn of the century. The discovery of antinomies in the free use of predicates or comprehension principles prompted Russell to restrict predicate calculus with a stratification of types. This effort culminated with *Principia Mathematica*, the first systematic attempt at a formal foundation of mathematics. A simplification of this system along the lines of simply typed λ -calculus occurred with Church's *Simple Theory of Types*. The λ -calculus notation, originally used for expressing functionality, could also be used as an encoding of natural deduction proofs. This Curry-Howard isomorphism was used by N. de Bruijn in the Automath project, the first full-scale attempt to develop and mechanically verify mathematical proofs. This effort culminated with Jutting's verification of Landau's Grundlagen in the 1970's. Exploiting this Curry-Howard isomorphism, notable achievements in proof theory saw the emergence of two type-theoretic frameworks; the first one, Martin-Löf's Intuitionistic Theory of Types, attempts a new foundation of mathematics on constructive principles. The second one, Girard's polymorphic λ -calculus F_{ω} , is a very strong functional system in which we may represent higher-order logic proof structures. Combining both systems in a higher-order extension of the Automath languages, T. Coquand presented in 1985 the first version of the Calculus of Constructions, CoC. This strong logical system allowed powerful axiomatizations, but direct inductive definitions were not possible, and inductive notions had to be defined indirectly through functional encodings, which introduced inefficiencies and awkwardness. The formalism was extended in 1989 by T. Coquand and C. Paulin with primitive inductive definitions, leading to the current Calculus of Inductive Constructions. This extended formalism is not rigorously defined here. Rather, numerous concrete examples are discussed. We refer the interested reader to relevant research papers for more information about the formalism, its meta-theoretic properties, and semantics. However, it should not be necessary to understand this theoretical material in order to write specifications. It is possible to understand the Calculus of Inductive Constructions at a higher level, as a mixture of predicate calculus, inductive predicate definitions presented as typed PROLOG, and recursive function definitions close to the language

Automated theorem-proving was pioneered in the 1960's by Davis and Putnam in propositional calculus. A complete mechanization (in the sense of a semi-decision procedure) of classical first-order logic was proposed in 1965 by J.A. Robinson, with a single uniform inference rule called *resolution*. Resolution relies on solving equations in free algebras (i.e. term structures), using the *unification algorithm*.

Many refinements of resolution were studied in the 1970's, but few convincing implementations were realized, except of course that PROLOG is in some sense issued from this effort. A less ambitious approach to proof development is computer-aided proof-checking. The most notable proof-checkers developed in the 1970's were LCF, designed by R. Milner and his colleagues at U. Edinburgh, specialized in proving properties about denotational semantics recursion equations, and the Boyer and Moore theorem-prover, an automation of primitive recursion over inductive data types. While the Boyer-Moore theorem-prover attempted to synthesize proofs by a combination of automated methods, LCF constructed its proofs through the programming of *tactics*, written in a high-level functional meta-language, ML.

The salient feature which clearly distinguishes our proof assistant from say LCF or Boyer and Moore's, is its possibility to extract programs from the constructive contents of proofs. This computational interpretation of proof objects, in the tradition of Bishop's constructive mathematics, is based on a realizability interpretation, in the sense of Kleene, due to C. Paulin. The user must just mark his intention by separating in the logical statements the assertions stating the existence of a computational object from the logical assertions which specify its properties, but which may be considered as just comments in the corresponding program. Given this information, the system automatically extracts a functional term from a consistency proof of its specifications. This functional term may be in turn compiled into an actual computer program. This methodology of extracting programs from proofs is a revolutionary paradigm for software engineering. Program synthesis has long been a theme of research in artificial intelligence, pioneered by R. Waldinger. The Tablog system of Z. Manna and R. Waldinger allows the deductive synthesis of functional programs from proofs in tableau form of their specifications, written in a variety of first-order logic. Development of a systematic programming logic, based on extensions of Martin-Löf's type theory, was undertaken at Cornell U. by the Nuprl team, headed by R. Constable. The first actual program extractor, PX, was designed and implemented around 1985 by S. Hayashi from Kyoto University. It allows the extraction of a LISP program from a proof in a logical system inspired by the logical formalisms of S. Feferman. Interest in this methodology is growing in the theoretical computer science community. We can foresee the day when actual computer systems used in applications will contain certified modules, automatically generated from a consistency proof of their formal specifications. We are however still far from being able to use this methodology in a smooth interaction with the standard tools from software engineering, i.e. compilers, linkers, run-time systems taking advantage of special hardware, debuggers, and the like. We hope that CoQ can be of use to researchers interested in experimenting with this new methodology.

A first implementation of CoC was started in 1984 by G. Huet and T. Coquand. Its implementation language was CAML, a functional programming language from the ML family designed at INRIA in Rocquencourt. The core of this system was a proof-checker for CoC seen as a typed λ -calculus, called the Constructive Engine. This engine was operated through a high-level notation permitting the declaration of axioms and parameters, the definition of mathematical types and objects, and the explicit construction of proof objects encoded as λ -terms. A section mechanism, designed and implemented by G. Dowek, allowed hierarchical developments of mathematical theories. This high-level language was called the Mathematical Vernacular. Furthermore, an interactive Theorem Prover permitted the incremental construction of proof trees in a top-down manner, subgoaling recursively and backtracking from dead-alleys. The theorem prover executed tactics written in CAML, in the LCF fashion. A basic set of tactics was predefined, which the user could extend by his own specific tactics. This system (Version 4.10) was released in 1989. Then, the system was extended to deal with the new calculus with inductive types by C. Paulin, with corresponding new tactics for proofs by induction. A new standard set of tactics was streamlined, and the vernacular extended for tactics execution. A package to compile programs extracted from proofs to actual computer programs in CAML or some other functional language was designed and implemented by B. Werner. A new user-interface, relying on a CAML-X interface by D.

de Rauglaudre, was designed and implemented by A. Felty. It allowed operation of the theorem-prover through the manipulation of windows, menus, mouse-sensitive buttons, and other widgets. This system (Version 5.6) was released in 1991.

CoQ was ported to the new implementation Caml-light of X. Leroy and D. Doligez by D. de Rauglaudre (Version 5.7) in 1992. A new version of CoQ was then coordinated by C. Murthy, with new tools designed by C. Parent to prove properties of ML programs (this methodology is dual to program extraction) and a new user-interaction loop. This system (Version 5.8) was released in May 1993. A Centaur interface CTCoQ was then developed by Y. Bertot from the Croap project from INRIA-Sophia-Antipolis.

In parallel, G. Dowek and H. Herbelin developed a new proof engine, allowing the general manipulation of existential variables consistently with dependent types in an experimental version of CoQ (V5.9).

The version V5.10 of CoQ is based on a generic system for manipulating terms with binding operators due to Chet Murthy. A new proof engine allows the parallel development of partial proofs for independent subgoals. The structure of these proof trees is a mixed representation of derivation trees for the Calculus of Inductive Constructions with abstract syntax trees for the tactics scripts, allowing the navigation in a proof at various levels of details. The proof engine allows generic environment items managed in an object-oriented way. This new architecture, due to C. Murthy, supports several new facilities which make the system easier to extend and to scale up:

- User-programmable tactics are allowed
- It is possible to separately verify development modules, and to load their compiled images without verifying them again a quick relocation process allows their fast loading
- A generic parsing scheme allows user-definable notations, with a symmetric table-driven prettyprinter
- Syntactic definitions allow convenient abbreviations
- A limited facility of meta-variables allows the automatic synthesis of certain type expressions, allowing generic notations for e.g. equality, pairing, and existential quantification.

In the Fall of 1994, C. Paulin-Mohring replaced the structure of inductively defined types and families by a new structure, allowing the mutually recursive definitions. P. Manoury implemented a translation of recursive definitions into the primitive recursive style imposed by the internal recursion operators, in the style of the ProPre system. C. Muñoz implemented a decision procedure for intuitionistic propositional logic, based on results of R. Dyckhoff. J.C. Filliâtre implemented a decision procedure for first-order logic without contraction, based on results of J. Ketonen and R. Weyhrauch. Finally C. Murthy implemented a library of inversion tactics, relieving the user from tedious definitions of "inversion predicates".

Rocquencourt, Feb. 1st 1995 Gérard Huet

Credits: addendum for version 6.1

The present version 6.1 of CoQ is based on the V5.10 architecture. It was ported to the new language Objective Caml by Bruno Barras. The underlying framework has slightly changed and allows more conversions between sorts.

The new version provides powerful tools for easier developments.

Cristina Cornes designed an extension of the CoQ syntax to allow definition of terms using a powerful pattern-matching analysis in the style of ML programs.

Amokrane Saïbi wrote a mechanism to simulate inheritance between types families extending a proposal by Peter Aczel. He also developed a mechanism to automatically compute which arguments of a constant may be inferred by the system and consequently do not need to be explicitly written.

Yann Coscoy designed a command which explains a proof term using natural language. Pierre Crégut built a new tactic which solves problems in quantifier-free Presburger Arithmetic. Both functionalities have been integrated to the CoQ system by Hugo Herbelin.

Samuel Boutin designed a tactic for simplification of commutative rings using a canonical set of rewriting rules and equality modulo associativity and commutativity.

Finally the organisation of the CoQ distribution has been supervised by Jean-Christophe Filliâtre with the help of Judicaël Courant and Bruno Barras.

Lyon, Nov. 18th 1996 Christine Paulin

Credits: addendum for version 6.2

In version 6.2 of CoQ, the parsing is done using camlp4, a preprocessor and pretty-printer for CAML designed by Daniel de Rauglaudre at INRIA. Daniel de Rauglaudre made the first adaptation of CoQ for camlp4, this work was continued by Bruno Barras who also changed the structure of CoQ abstract syntax trees and the primitives to manipulate them. The result of these changes is a faster parsing procedure with greatly improved syntax-error messages. The user-interface to introduce grammar or pretty-printing rules has also changed.

Eduardo Giménez redesigned the internal tactic libraries, giving uniform names to Caml functions corresponding to CoQ tactic names.

Bruno Barras wrote new more efficient reductions functions.

Hugo Herbelin introduced more uniform notations in the CoQ specification language: the definitions by fixpoints and pattern-matching have a more readable syntax. Patrick Loiseleur introduced user-friendly notations for arithmetic expressions.

New tactics were introduced: Eduardo Giménez improved a mechanism to introduce macros for tactics, and designed special tactics for (co)inductive definitions; Patrick Loiseleur designed a tactic to simplify polynomial expressions in an arbitrary commutative ring which generalizes the previous tactic implemented by Samuel Boutin. Jean-Christophe Filliâtre introduced a tactic for refining a goal, using a proof term with holes as a proof scheme.

David Delahaye designed the **Searchlsos** tool to search an object in the library given its type (up to isomorphism).

Henri Laulhère produced the CoQ distribution for the Windows environment.

Finally, Hugo Herbelin was the main coordinator of the CoQ documentation with principal contributions by Bruno Barras, David Delahaye, Jean-Christophe Filliâtre, Eduardo Giménez, Hugo Herbelin and Patrick Loiseleur.

Orsay, May 4th 1998 Christine Paulin

Credits: addendum for version 6.3

The main changes in version V6.3 was the introduction of a few new tactics and the extension of the guard condition for fixpoint definitions.

- B. Barras extended the unification algorithm to complete partial terms and solved various tricky bugs related to universes.
- D. Delahaye developed the AutoRewrite tactic. He also designed the new behavior of Intro and provided the tacticals First and Solve.
- J.-C. Filliâtre developed the Correctness tactic.
- E. Giménez extended the guard condition in fixpoints.
- H. Herbelin designed the new syntax for definitions and extended the Induction tactic.
- P. Loiseleur developed the Quote tactic and the new design of the Auto tactic, he also introduced the index of errors in the documentation.
- C. Paulin wrote the Focus command and introduced the reduction functions in definitions, this last feature was proposed by J.-F. Monin from CNET Lannion.

Orsay, Dec. 1999 Christine Paulin

Credits: versions 7

The version V7 is a new implementation started in September 1999 by Jean-Christophe Filliâtre. This is a major revision with respect to the internal architecture of the system. The CoQ version 7.0 was distributed in March 2001, version 7.1 in September 2001, version 7.2 in January 2002, version 7.3 in May 2002 and version 7.4 in February 2003.

Jean-Christophe Filliâtre designed the architecture of the new system, he introduced a new representation for environments and wrote a new kernel for type-checking terms. His approach was to use functional data-structures in order to get more sharing, to prepare the addition of modules and also to get closer to a certified kernel.

Hugo Herbelin introduced a new structure of terms with local definitions. He introduced "qualified" names, wrote a new pattern-matching compilation algorithm and designed a more compact algorithm for checking the logical consistency of universes. He contributed to the simplification of CoQ internal structures and the optimisation of the system. He added basic tactics for forward reasoning and coercions in patterns.

David Delahaye introduced a new language for tactics. General tactics using pattern-matching on goals and context can directly be written from the CoQ toplevel. He also provided primitives for the design of user-defined tactics in CAML.

Micaela Mayero contributed the library on real numbers. Olivier Desmettre extended this library with axiomatic trigonometric functions, square, square roots, finite sums, Chasles property and basic plane geometry.

Jean-Christophe Filliâtre and Pierre Letouzey redesigned a new extraction procedure from CoQ terms to CAML or HASKELL programs. This new extraction procedure, unlike the one implemented in previous version of CoQ is able to handle all terms in the Calculus of Inductive Constructions, even involving universes and strong elimination. P. Letouzey adapted user contributions to extract ML programs when it was sensible. Jean-Christophe Filliâtre wrote coqdoc, a documentation tool for CoQ libraries usable from version 7.2.

Bruno Barras improved the reduction algorithms efficiency and the confidence level in the correctness of CoQ critical type-checking algorithm.

Yves Bertot designed the SearchPattern and SearchRewrite tools and the support for the PCOQ interface (http://www-sop.inria.fr/lemme/pcoq/).

Micaela Mayero and David Delahaye introduced Field, a decision tactic for commutative fields.

Christine Paulin changed the elimination rules for empty and singleton propositional inductive types.

Loïc Pottier developed Fourier, a tactic solving linear inequalities on real numbers.

Pierre Crégut developed a new version based on reflexion of the Omega decision tactic.

Claudio Sacerdoti Coen designed an XML output for the CoQ modules to be used in the Hypertextual Electronic Library of Mathematics (HELM cf http://www.cs.unibo.it/helm).

A library for efficient representation of finite maps using binary trees contributed by Jean Goubault was integrated in the basic theories.

Pierre Courtieu developed a command and a tactic to reason on the inductive structure of recursively defined functions.

Jacek Chrząszcz designed and implemented the module system of CoQ whose foundations are in Judicaël Courant's PhD thesis.

The development was coordinated by C. Paulin.

Many discussions within the Démons team and the LogiCal project influenced significantly the design of CoQ especially with J. Courant, J. Duprat, J. Goubault, A. Miquel, C. Marché, B. Monate and B. Werner.

Intensive users suggested improvements of the system: Y. Bertot, L. Pottier, L. Théry, P. Zimmerman from INRIA, C. Alvarado, P. Crégut, J.-F. Monin from France Telecom R & D.

Orsay, May. 2002 Hugo Herbelin & Christine Paulin

Credits: version 8.0

CoQ version 8 is a major revision of the CoQ proof assistant. First, the underlying logic is slightly different. The so-called *impredicativity* of the sort Set has been dropped. The main reason is that it is inconsistent with the principle of description which is quite a useful principle for formalizing mathematics within classical logic. Moreover, even in an constructive setting, the impredicativity of Set does not add so much in practice and is even subject of criticism from a large part of the intuitionistic mathematician community. Nevertheless, the impredicativity of Set remains optional for users interested in investigating mathematical developments which rely on it.

Secondly, the concrete syntax of terms has been completely revised. The main motivations were

- a more uniform, purified style: all constructions are now lowercase, with a functional programming perfume (e.g. abstraction is now written fun), and more directly accessible to the novice (e.g. dependent product is now written forall and allows omission of types). Also, parentheses and are no longer mandatory for function application.
- extensibility: some standard notations (e.g. "<" and ">") were incompatible with the previous syntax. Now all standard arithmetic notations (=, +, *, /, <, <=, ... and more) are directly part of the syntax.

Together with the revision of the concrete syntax, a new mechanism of *interpretation scopes* permits to reuse the same symbols (typically +, -, *, /, <, =) in various mathematical theories without any ambiguities for CoQ, leading to a largely improved readability of CoQ scripts. New commands to easily add new symbols are also provided.

Coming with the new syntax of terms, a slight reform of the tactic language and of the language of commands has been carried out. The purpose here is a better uniformity making the tactics and commands easier to use and to remember.

Thirdly, a restructuration and uniformisation of the standard library of CoQ has been performed. There is now just one Leibniz' equality usable for all the different kinds of CoQ objects. Also, the set of real numbers now lies at the same level as the sets of natural and integer numbers. Finally, the names of the standard properties of numbers now follow a standard pattern and the symbolic notations for the standard definitions as well.

The fourth point is the release of CoQIDE, a new graphical gtk2-based interface fully integrated to CoQ. Close in style from the Proof General Emacs interface, it is faster and its integration with CoQ makes interactive developments more friendly. All mathematical Unicode symbols are usable within CoQIDE.

Finally, the module system of CoQ completes the picture of CoQ version 8.0. Though released with an experimental status in the previous version 7.4, it should be considered as a salient feature of the new version.

Besides, CoQ comes with its load of novelties and improvements: new or improved tactics (including a new tactic for solving first-order statements), new management commands, extended libraries.

Bruno Barras and Hugo Herbelin have been the main contributors of the reflexion and the implementation of the new syntax. The smart automatic translator from old to new syntax released with CoQ is also their work with contributions by Olivier Desmettre.

Hugo Herbelin is the main designer and implementor of the notion of interpretation scopes and of the commands for easily adding new notations.

Hugo Herbelin is the main implementor of the restructuration of the standard library.

Pierre Corbineau is the main designer and implementor of the new tactic for solving first-order statements in presence of inductive types. He is also the maintainer of the non-domain specific automation tactics.

Benjamin Monate is the developer of the CoQIDE graphical interface with contributions by Jean-Christophe Filliâtre, Pierre Letouzey, Claude Marché and Bruno Barras.

Claude Marché coordinated the edition of the Reference Manual for CoQ V8.0.

Pierre Letouzey and Jacek Chrząszcz respectively maintained the extraction tool and module system of Coo.

Jean-Christophe Filliâtre, Pierre Letouzey, Hugo Herbelin and contributors from Sophia-Antipolis and Nijmegen participated to the extension of the library.

Julien Narboux built a NSIS-based automatic CoQ installation tool for the Windows platform.

Hugo Herbelin and Christine Paulin coordinated the development which was under the responsability of Christine Paulin.

Palaiseau & Orsay, Apr. 2004 Hugo Herbelin & Christine Paulin (updated Apr. 2006)

Credits: version 8.1

Coo version 8.1 adds various new functionalities.

Benjamin Grégoire implemented an alternative algorithm to check the convertibility of terms in the CoQ type-checker. This alternative algorithm works by compilation to an efficient bytecode that is interpreted in an abstract machine similar to Xavier Leroy's ZINC machine. Convertibility is performed by comparing the normal forms. This alternative algorithm is specifically interesting for proofs by reflection. More generally, it is convenient in case of intensive computations.

Christine Paulin implemented an extension of inductive types allowing recursively non uniform parameters. Hugo Herbelin implemented sort-polymorphism for inductive types.

Claudio Sacerdoti Coen improved the tactics for rewriting on arbitrary compatible equivalence relations. He also generalized rewriting to arbitrary transition systems.

Claudio Sacerdoti Coen added new features to the module system.

Benjamin Grégoire, Assia Mahboubi and Bruno Barras developed a new more efficient and more general simplification algorithm on rings and semi-rings.

Laurent Théry and Bruno Barras developed a new significantly more efficient simplification algorithm on fields.

Hugo Herbelin, Pierre Letouzey, Julien Forest, Julien Narboux and Claudio Sacerdoti Coen added new tactic features.

Hugo Herbelin implemented matching on disjunctive patterns.

New mechanisms made easier the communication between COQ and external provers. Nicolas Ayache and Jean-Christophe Filliâtre implemented connections with the provers CVCL, SIMPLIFY and ZENON. Hugo Herbelin implemented an experimental protocol for calling external tools from the tactic language.

Matthieu Sozeau developed RUSSELL, an experimental language to specify the behavior of programs with subtypes.

A mechanism to automatically use some specific tactic to solve unresolved implicit has been implemented by Hugo Herbelin.

Laurent Théry's contribution on strings and Pierre Letouzey and Jean-Christophe Filliâtre's contribution on finite maps have been integrated to the CoQ standard library. Pierre Letouzey developed a library about finite sets "à la Objective Caml". With Jean-Marc Notin, he extended the library on lists. Pierre Letouzey's contribution on rational numbers has been integrated and extended..

Pierre Corbineau extended his tactic for solving first-order statements. He wrote a reflection-based intuitionistic tautology solver.

Pierre Courtieu, Julien Forest and Yves Bertot added extra support to reason on the inductive structure of recursively defined functions.

Jean-Marc Notin significantly contributed to the general maintenance of the system. He also took care of cogdoc.

Pierre Castéran contributed to the documentation of (co-)inductive types and suggested improvements to the libraries.

Pierre Corbineau implemented a declarative mathematical proof language, usable in combination with the tactic-based style of proof.

Finally, many users suggested improvements of the system through the Coq-Club mailing list and bug-tracker systems, especially user groups from INRIA Rocquencourt, Radbout University, University of Pennsylvania and Yale University.

Palaiseau, July 2006 Hugo Herbelin

Credits: version 8.2

Coo version 8.2 adds new features, new libraries and improves on many various aspects.

Regarding the language of Coq, the main novelty is the introduction by Matthieu Sozeau of a package of commands providing Haskell-style type classes. Type classes, that come with a few convenient features such as type-based resolution of implicit arguments, plays a new role of landmark in the architecture of Coq with respect to automatization. For instance, thanks to type classes support, Matthieu Sozeau could implement a new resolution-based version of the tactics dedicated to rewriting on arbitrary transitive relations.

Another major improvement of Coq 8.2 is the evolution of the arithmetic libraries and of the tools associated to them. Benjamin Grégoire and Laurent Théry contributed a modular library for building arbitrarily large integers from bounded integers while Evgeny Makarov contributed a modular library of abstract natural and integer arithmetics together with a few convenient tactics. On his side, Pierre Letouzey made numerous extensions to the arithmetic libraries on $\mathbb Z$ and $\mathbb Q$, including extra support for automatization in presence of various number-theory concepts.

Frédéric Besson contributed a reflexive tactic based on Krivine-Stengle Positivstellensatz (the easy way) for validating provability of systems of inequalities. The platform is flexible enough to support the validation of any algorithm able to produce a "certificate" for the Positivstellensatz and this covers the case of Fourier-Motzkin (for linear systems in $\mathbb Q$ and $\mathbb R$), Fourier-Motzkin with cutting planes (for linear systems in $\mathbb Z$) and sum-of-squares (for non-linear systems). Evgeny Makarov made the platform generic over arbitrary ordered rings.

Arnaud Spiwack developed a library of 31-bits machine integers and, relying on Benjamin Grégoire and Laurent Théry's library, delivered a library of unbounded integers in base 2^{31} . As importantly, he developed a notion of "retro-knowledge" so as to safely extend the kernel-located bytecode-based efficient evaluation algorithm of Coq version 8.1 to use 31-bits machine arithmetics for efficiently computing with the library of integers he developed.

Beside the libraries, various improvements contributed to provide a more comfortable end-user language and more expressive tactic language. Hugo Herbelin and Matthieu Sozeau improved the pattern-matching compilation algorithm (detection of impossible clauses in pattern-matching, automatic inference of the return type). Hugo Herbelin, Pierre Letouzey and Matthieu Sozeau contributed various new convenient syntactic constructs and new tactics or tactic features: more inference of redundant information, better unification, better support for proof or definition by fixpoint, more expressive rewriting tactics, better support for meta-variables, more convenient notations, ...

Élie Soubiran improved the module system, adding new features (such as an "include" command) and making it more flexible and more general. He and Pierre Letouzey improved the support for modules in the extraction mechanism.

Matthieu Sozeau extended the RUSSELL language, ending in an convenient way to write programs of given specifications, Pierre Corbineau extended the Mathematical Proof Language and the automatization tools that accompany it, Pierre Letouzey supervised and extended various parts the standard library, Stéphane Glondu contributed a few tactics and improvements, Jean-Marc Notin provided help in debugging, general maintenance and coqdoc support, Vincent Siles contributed extensions of the Scheme command and of injection.

Bruno Barras implemented the <code>coqchk</code> tool: this is a stand-alone type-checker that can be used to certify .vo files. Especially, as this verifier runs in a separate process, it is granted not to be "hijacked" by virtually malicious extensions added to Coq.

Yves Bertot, Jean-Christophe Filliâtre, Pierre Courtieu and Julien Forest acted as maintainers of features they implemented in previous versions of Coq.

Julien Narboux contributed to CoQIDE. Nicolas Tabareau made the adaptation of the interface of the old "setoid rewrite" tactic to the new version. Lionel Mamane worked on the interaction between Coq and its external interfaces. With Samuel Mimram, he also helped making Coq compatible with recent software tools. Russell O'Connor, Cezary Kaliscyk, Milad Niqui contributed to improved the libraries of integers, rational, and real numbers. We also thank many users and partners for suggestions and feedback, in particular Pierre Castéran and Arthur Charguéraud, the INRIA Marelle team, Georges Gonthier and the INRIA-Microsoft Mathematical Components team, the Foundations group at Radbout university in Nijmegen, reporters of bugs and participants to the Coq-Club mailing list.

Palaiseau, June 2008 Hugo Herbelin

Credits: version 8.3

CoQ version 8.3 is before all a transition version with refinements or extensions of the existing features and libraries and a new tactic nsatz based on Hilbert's Nullstellensatz for deciding systems of equations over rings.

With respect to libraries, the main evolutions are due to Pierre Letouzey with a rewriting of the library of finite sets FSets and a new round of evolutions in the modular development of arithmetic (library Numbers). The reason for making FSets evolve is that the computational and logical contents were quite intertwined in the original implementation, leading in some cases to longer computations than expected and this problem is solved in the new MSets implementation. As for the modular arithmetic library, it was only dealing with the basic arithmetic operators in the former version and its current extension adds the standard theory of the division, min and max functions, all made available for free to any implementation of \mathbb{N} , \mathbb{Z} or $\mathbb{Z}/n\mathbb{Z}$.

The main other evolutions of the library are due to Hugo Herbelin who made a revision of the sorting library (includingh a certified merge-sort) and to Guillaume Melquiond who slightly revised and cleaned up the library of reals.

The module system evolved significantly. Besides the resolution of some efficiency issues and a more flexible construction of module types, Élie Soubiran brought a new model of name equivalence, the Δ -equivalence, which respects as much as possible the names given by the users. He also designed with Pierre Letouzey a new convenient operator <+ for nesting functor application, what provides a light notation for inheriting the properties of cascading modules.

The new tactic nsatz is due to Loïc Pottier. It works by computing Gröbner bases. Regarding the existing tactics, various improvements have been done by Matthieu Sozeau, Hugo Herbelin and Pierre Letouzey.

Matthieu Sozeau extended and refined the type classes and Program features (the RUSSELL language). Pierre Letouzey maintained and improved the extraction mechanism. Bruno Barras and Élie Soubiran maintained the Coq checker, Julien Forest maintained the Function mechanism for reasoning over recursively defined functions. Matthieu Sozeau, Hugo Herbelin and Jean-Marc Notin maintained coqdoc. Frédéric Besson maintained the MICROMEGA plateform for deciding systems of inequalities. Pierre Courtieu maintained the support for the Proof General Emacs interface. Claude Marché maintained the plugin for calling external provers (dp). Yves Bertot made some improvements to the libraries of lists and integers. Matthias Puech improved the search functions. Guillaume Melquiond usefully contributed here and there. Yann Régis-Gianas grounded the support for Unicode on a more standard and more robust basis.

Though invisible from outside, Arnaud Spiwack improved the general process of management of existential variables. Pierre Letouzey and Stéphane Glondu improved the compilation scheme of the Coq archive. Vincent Gross provided support to CoQIDE. Jean-Marc Notin provided support for benchmarking and archiving.

Many users helped by reporting problems, providing patches, suggesting improvements or making useful comments, either on the bug tracker or on the Coq-club mailing list. This includes but not exhaustively Cédric Auger, Arthur Charguéraud, François Garillot, Georges Gonthier, Robin Green, Stéphane Lescuyer, Eelis van der Weegen, ...

Though not directly related to the implementation, special thanks are going to Yves Bertot, Pierre Castéran, Adam Chlipala, and Benjamin Pierce for the excellent teaching materials they provided.

Paris, April 2010 Hugo Herbelin

Credits: version 8.4

CoQ version 8.4 contains the result of three long-term projects: a new modular library of arithmetic by Pierre Letouzey, a new proof engine by Arnaud Spiwack and a new communication protocol for CoQIDE by Vincent Gross.

The new modular library of arithmetic extends, generalizes and unifies the existing libraries on Peano arithmetic (types nat, N and BigN), positive arithmetic (type positive), integer arithmetic (Z and BigZ) and machine word arithmetic (type Int31). It provides with unified notations (e.g. systematic use of add and mul for denoting the addition and multiplication operators), systematic and generic development of operators and properties of these operators for all the types mentioned above, including gcd, pcm, power, square root, base 2 logarithm, division, modulo, bitwise operations, logical shifts, comparisons, iterators, ...

The most visible feature of the new proof engine is the support for structured scripts (bullets and proof brackets) but, even if yet not user-available, the new engine also provides the basis for refining existential variables using tactics, for applying tactics to several goals simultaneously, for reordering goals, all features which are planned for the next release. The new proof engine forced to reimplement info and Show Script differently, what was done by Pierre Letouzey.

Before version 8.4, CoQIDE was linked to CoQ with the graphical interface living in a separate thread. From version 8.4, CoQIDE is a separate process communicating with CoQ through a textual channel. This allows for a more robust interfacing, the ability to interrupt CoQ without interrupting the interface, and the ability to manage several sessions in parallel. Relying on the infrastructure work made by Vincent Gross, Pierre Letouzey, Pierre Boutillier and Pierre-Marie Pédrot contributed many various refinements of CoQIDE.

CoQ 8.4 also comes with a bunch of many various smaller-scale changes and improvements regarding the different components of the system.

The underlying logic has been extended with η -conversion thanks to Hugo Herbelin, Stéphane Glondu and Benjamin Grégoire. The addition of η -conversion is justified by the confidence that the formulation of the Calculus of Inductive Constructions based on typed equality (such as the one considered in Lee and Werner to build a set-theoretic model of CIC [91]) is applicable to the concrete implementation of CoQ.

The underlying logic benefited also from a refinement of the guard condition for fixpoints by Pierre Boutillier, the point being that it is safe to propagate the information about structurally smaller arguments through β -redexes that are blocked by the "match" construction (blocked commutative cuts).

Relying on the added permissiveness of the guard condition, Hugo Herbelin could extend the patternmatching compilation algorithm so that matching over a sequence of terms involving dependencies of a term or of the indices of the type of a term in the type of other terms is systematically supported.

Regarding the high-level specification language, Pierre Boutillier introduced the ability to give implicit arguments to anonymous functions, Hugo Herbelin introduced the ability to define notations with several binders (e.g. exists x y z, P), Matthieu Sozeau made the type classes inference mechanism more robust and predictable, Enrico Tassi introduced a command Arguments that generalizes Implicit Arguments and Arguments Scope for assigning various properties to arguments of constants. Various improvements in the type inference algorithm were provided by Matthieu Sozeau and Hugo Herbelin with contributions from Enrico Tassi.

Regarding tactics, Hugo Herbelin introduced support for referring to expressions occurring in the goal by pattern in tactics such as set or destruct. Hugo Herbelin also relied on ideas from Chung-Kil Hur's Heq plugin to introduce automatic computation of occurrences to generalize when using destruct and induction on types with indices. Stéphane Glondu introduced new tactics constr_eq, is_evar and has_evar to be used when writing complex tactics. Enrico Tassi added support to fine-tuning the behavior of simpl. Enrico Tassi added the ability to specify over which variables of a section a lemma has to be exactly generalized. Pierre Letouzey added a tactic timeout and the interruptibility of vm_compute. Bug fixes and miscellaneous improvements of the tactic language came from Hugo Herbelin, Pierre Letouzey and Matthieu Sozeau.

Regarding decision tactics, Loïc Pottier maintained Nsatz, moving in particular to a type-class based reification of goals while Frédéric Besson maintained Micromega, adding in particular support for division.

Regarding vernacular commands, Stéphane Glondu provided new commands to analyze the structure of type universes.

Regarding libraries, a new library about lists of a given length (called vectors) has been provided by Pierre Boutillier. A new instance of finite sets based on Red-Black trees and provided by Andrew Appel has been adapted for the standard library by Pierre Letouzey. In the library of real analysis, Yves Bertot changed the definition of π and provided a proof of the long-standing fact yet remaining unproved in this library, namely that $sin\frac{\pi}{2}=1$.

Pierre Corbineau maintained the Mathematical Proof Language (C-zar).

Bruno Barras and Benjamin Grégoire maintained the call-by-value reduction machines.

The extraction mechanism benefited from several improvements provided by Pierre Letouzey.

Pierre Letouzey maintained the module system, with contributions from Elie Soubiran.

Julien Forest maintained the Function command.

Matthieu Sozeau maintained the setoid rewriting mechanism.

CoQ related tools have been upgraded too. In particular, <code>coq_makefile</code> has been largely revised by Pierre Boutillier. Also, patches from Adam Chlipala for <code>coqdoc</code> have been integrated by Pierre Boutillier.

Bruno Barras and Pierre Letouzey maintained the cogchk checker.

Pierre Courtieu and Arnaud Spiwack contributed new features for using CoQ through Proof General.

The Do plugin has been removed. Use the plugin provided with Why. 3 instead (http://why.3)

The Dp plugin has been removed. Use the plugin provided with Why 3 instead (http://why3.lri.fr).

Under the hood, the COQ architecture benefited from improvements in terms of efficiency and robustness, especially regarding universes management and existential variables management, thanks to Pierre Letouzey and Yann Régis-Gianas with contributions from Stéphane Glondu and Matthias Puech. The build system is maintained by Pierre Letouzey with contributions from Stéphane Glondu and Pierre Boutillier.

A new backtracking mechanism simplifying the task of external interfaces has been designed by Pierre Letouzey.

The general maintenance was done by Pierre Letouzey, Hugo Herbelin, Pierre Boutillier, Matthieu Sozeau and Stéphane Glondu with also specific contributions from Guillaume Melquiond, Julien Narboux and Pierre-Marie Pédrot.

Packaging tools were provided by Pierre Letouzey (Windows), Pierre Boutillier (MacOS), Stéphane Glondu (Debian). Releasing, testing and benchmarking support was provided by Jean-Marc Notin.

Many suggestions for improvements were motivated by feedback from users, on either the bug tracker or the coq-club mailing list. Special thanks are going to the users who contributed patches, starting with Tom Prince. Other patch contributors include Cédric Auger, David Baelde, Dan Grayson, Paolo Herms, Robbert Krebbers, Marc Lasson, Hendrik Tews and Eelis van der Weegen.

Paris, December 2011 Hugo Herbelin

I	The	langua	nge	33								
1	The	The GALLINA specification language										
	1.1	Lexical	l conventions	35								
	1.2	Terms		37								
		1.2.1	Syntax of terms	37								
		1.2.2	Types	37								
		1.2.3	Qualified identifiers and simple identifiers	37								
		1.2.4	Numerals	37								
		1.2.5	Sorts	37								
		1.2.6	Binders	39								
		1.2.7	Abstractions	40								
		1.2.8	Products	40								
		1.2.9	Applications	40								
		1.2.10	Type cast	40								
		1.2.11	Inferable subterms	40								
		1.2.12	Local definitions (let-in)	40								
		1.2.13	Definition by case analysis	41								
		1.2.14	Recursive functions	42								
	1.3	The Ve	rnacular	43								
		1.3.1	Assumptions	44								
		1.3.2	Definitions	45								
		1.3.3	Inductive definitions	46								
		1.3.4	Definition of recursive functions	51								
		1.3.5	Assertions and proofs	55								
2	Exte	ensions o	of Gallina	59								
	2.1	Record	I types	59								
	2.2	Variant	ts and extensions of match	63								
		2.2.1	Multiple and nested pattern-matching	63								
		2.2.2	Pattern-matching on boolean values: the if expression	63								
		2.2.3	Irrefutable patterns: the destructuring let variants	63								
		2.2.4	Controlling pretty-printing of match expressions	64								
	2.3	Advano	ced recursive functions	67								
	2.4	Section	n mechanism	70								
		2.4.1	Section ident	70								
		242	End ident	70								

2.5	Modul	e system
	2.5.1	Module <i>ident</i>
	2.5.2	End <i>ident</i>
	2.5.3	Module ident := module_expression
	2.5.4	Module Type <i>ident</i>
	2.5.5	End <i>ident</i> 73
	2.5.6	Module Type ident := module_type
	2.5.7	Declare Module ident: module_type 73
	2.5.8	Import qualid
	2.5.9	Print Module ident
		Print Module Type <i>ident</i>
		Locate Module qualid
2.6		es and qualified names
	2.6.1	Names of libraries and files
	2.6.2	Qualified names
2.7		it arguments
	2.7.1	The different kinds of implicit arguments
	2.7.2	Maximal or non maximal insertion of implicit arguments
	2.7.3	Casual use of implicit arguments
	2.7.4	Declaration of implicit arguments for a constant
	2.7.5	Automatic declaration of implicit arguments for a constant
	2.7.6	Mode for automatic declaration of implicit arguments
	2.7.7	Controlling strict implicit arguments
	2.7.8	Controlling contextual implicit arguments
	2.7.9	Controlling reversible-pattern implicit arguments
		Controlling the insertion of implicit arguments not followed by explicit argu-
	2.7.10	ments
	2711	Explicit applications
		Renaming implicit arguments
		Deprecated Implicit Arguments command
		Displaying what the implicit arguments are
		Explicit displaying of implicit arguments for pretty-printing
		Interaction with subtyping
		Deactivation of implicit arguments for parsing
		Canonical structures
		Implicit types of variables
		Implicit types of variables
2.8		ons
2.9		g constructions in full
		g universes
		g universes
2.11		Explicit displaying of existential instances for pretty-printing
	2.11.1	Explicit displaying of existential instances for pretty-printing
ani.		
1 ne	Coq lil	orary 95
3.1		95 sic library 95

3

		3.1.3 Datatypes
		3.1.4 Specification
		3.1.5 Basic Arithmetics
		3.1.6 Well-founded recursion
		3.1.7 Accessing the Type level
		3.1.8 Tactics
	3.2	The standard library
		3.2.1 Survey
		3.2.2 Notations for integer arithmetics
		3.2.3 Peano's arithmetic (nat)
		3.2.4 Real numbers library
		3.2.5 List library
	3.3	Users' contributions
	~ .	
4		culus of Inductive Constructions 111
	4.1	The terms
		4.1.1 Sorts
		4.1.2 Constants
	4.2	1110 1011110 1 1 1 1 1 1 1 1 1 1 1 1 1
	4.2 4.3	Typed terms
	4.4	Derived rules for environments
	4.4	Inductive Definitions
	4.5	4.5.1 Representing an inductive definition
		4.5.2 Types of inductive objects
		4.5.3 Well-formed inductive definitions
		4.5.4 Destructors
		4.5.5 Fixpoint definitions
	4.6	Co-inductive types
	4.7	CIC: the Calculus of Inductive Construction with impredicative Set
	7.7	ere, the calculus of inductive constitution with impredictative con-
5	The	Module System 135
	5.1	Modules and module types
	5.2	Typing Modules
II	Th	e proof engine
_		
6		nacular commands 143
	6.1	Displaying
		6.1.1 Print qualid
		6.1.2 Print All
	6.2	Flags, Options and Tables
		6.2.1 Set flag
		6.2.2 Unset flag
		\boldsymbol{c}
		6.2.4 Set option value
		0.2.3 Onset Opuon

	6.2.6	Test option
	6.2.7	Tables
	6.2.8	Print Options
6.3	Reques	ts to the environment
	6.3.1	Check term
	6.3.2	Eval convtactic in term
	6.3.3	Compute <i>term</i>
	6.3.4	Extraction <i>term</i>
	6.3.5	Print Assumptions qualid
	6.3.6	Search <i>term</i>
	6.3.7	SearchAbout qualid
	6.3.8	SearchPattern term_pattern
	6.3.9	SearchRewrite term
	6.3.10	Locate <i>qualid</i>
		The WHELP searching tool
6.4		g files
	6.4.1	Load <i>ident.</i>
6.5	Compi	ed files
	6.5.1	Require <i>qualid</i>
	6.5.2	Print Libraries
	6.5.3	Declare ML Module $string_1$ $string_n$
	6.5.4	Print ML Modules
6.6	Loadpa	th
	6.6.1	Pwd
	6.6.2	Cd string
	6.6.3	Add LoadPath string as dirpath
	6.6.4	Add Rec LoadPath string as dirpath
	6.6.5	Remove LoadPath string
	6.6.6	Print LoadPath
	6.6.7	Add ML Path string
	6.6.8	Add Rec ML Path string
	6.6.9	Print ML Path string
		Locate File <i>string</i>
		Locate Library dirpath
6.7		acking
	6.7.1	Reset ident
	6.7.2	Back
	6.7.3	BackTo <i>num</i>
6.8		les
	6.8.1	Write State <i>string</i>
	6.8.2	Restore State string
6.9		g and debugging
0.,	6.9.1	Quit
	6.9.2	Drop
	6.9.3	Time command
	6.9.4	Timeout int command
	6.9.5	Set Default Timeout int

		6.9.6	Unset Default Timeout
		6.9.7	Test Default Timeout
	6.10	Contro	lling display
		6.10.1	Set Silent
		6.10.2	Unset Silent
		6.10.3	Set Printing Width integer
		6.10.4	Unset Printing Width
		6.10.5	Test Printing Width
		6.10.6	Set Printing Depth integer
		6.10.7	Unset Printing Depth
		6.10.8	Test Printing Depth
	6.11		lling the reduction strategies and the conversion algorithm
		6.11.1	Opaque $qualid_1$ $qualid_n$
			Transparent $qualid_1$ $qualid_n$
			Strategy level [qualid ₁ qualid _n]
			Declare Reduction ident := convtactic
		6.11.5	Set Virtual Machine
		6.11.6	Unset Virtual Machine
			Test Virtual Machine
	6.12		lling the locality of commands
		6.12.1	Local, Global
7		f handl	
	7.1	Switch	ing on/off the proof editing mode
		7.1.1	Goal form
		7.1.1 7.1.2	Qed
		7.1.1 7.1.2 7.1.3	Qed.
		7.1.1 7.1.2 7.1.3 7.1.4	Qed. 164 Admitted. 164 Proof term. 164
		7.1.1 7.1.2 7.1.3 7.1.4 7.1.5	Qed. 164 Admitted. 164 Proof term. 164 Proof using $ident_1$. $ident_n$. 164
		7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.1.6	Qed. 164 Admitted. 164 Proof term. 164 Proof using $ident_1$. $ident_n$. 164 Abort. 164
		7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.1.6 7.1.7	Qed. 164 Admitted. 164 Proof term. 164 Proof using $ident_1$. $ident_n$. 164 Abort. 164 Existential $num := term$. 164
		7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.1.6 7.1.7 7.1.8	Qed. 164 Admitted. 164 Proof term. 164 Proof using $ident_1$. $ident_n$. 165 Abort. 165 Existential $num := term$. 165 Grab Existential Variables. 165
	7.2	7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.1.6 7.1.7 7.1.8 Naviga	Qed. 164 Admitted. 164 Proof term. 164 Proof using $ident_1$. $ident_n$. 165 Abort. 165 Existential $num := term$. 165 Grab Existential Variables. 165 tion in the proof tree 165
	7.2	7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.1.6 7.1.7 7.1.8 Naviga 7.2.1	Qed. 164 Admitted. 164 Proof term. 164 Proof using $ident_1$. $ident_n$. 165 Abort. 165 Existential $num := term$. 165 Grab Existential Variables. 165 tion in the proof tree 165 Undo. 165
	7.2	7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.1.6 7.1.7 7.1.8 Naviga 7.2.1 7.2.2	Qed. 164 Admitted. 164 Proof term. 164 Proof using $ident_1$. $ident_n$. 165 Abort. 165 Existential $num := term$. 165 Grab Existential Variables. 165 tion in the proof tree 165 Undo. 165 Restart. 165
	7.2	7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.1.6 7.1.7 7.1.8 Naviga 7.2.1 7.2.2 7.2.3	Qed. 164 Admitted. 164 Proof term. 164 Proof using $ident_1$. $ident_n$. 165 Abort. 165 Existential $num := term$. 165 Grab Existential Variables. 165 tion in the proof tree. 165 Undo. 165 Restart. 166 Focus. 166
	7.2	7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.1.6 7.1.7 7.1.8 Naviga 7.2.1 7.2.2 7.2.3 7.2.4	Qed. 164 Admitted. 164 Proof term. 164 Proof using $ident_1$. $ident_n$. 165 Abort. 165 Existential $num := term$. 165 Grab Existential Variables. 165 tion in the proof tree 165 Undo. 165 Restart. 166 Unfocus. 166 Unfocus. 166
	7.2	7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.1.6 7.1.7 7.1.8 Naviga 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5	Qed. 164 Admitted. 164 Proof term. 164 Proof using $ident_1$. $ident_n$. 165 Abort. 165 Existential $num := term$. 165 Grab Existential Variables. 165 tion in the proof tree. 165 Undo. 165 Restart. 166 Unfocus. 166 Unfocused. 166 Unfocused. 166
	7.2	7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.1.6 7.1.7 7.1.8 Naviga 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5 7.2.6	Qed. 164 Admitted. 164 Proof term. 164 Proof using $ident_1$. $ident_n$. 165 Abort. 165 Existential $num := term$. 165 Grab Existential Variables. 165 tion in the proof tree. 165 Undo. 165 Restart. 166 Unfocus. 166 Unfocused. 166 $\{$ and $\}$ 166
	7.2	7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.1.6 7.1.7 7.1.8 Naviga 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5 7.2.6 7.2.7	Qed. 164 Admitted. 164 Proof term. 164 Proof using ident1identn. 165 Abort. 165 Existential num := term. 165 Grab Existential Variables. 165 tion in the proof tree. 165 Undo. 165 Restart. 166 Unfocus. 166 Unfocused. 166 { and } 166 Bullets. 167
	7.2	7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.1.6 7.1.7 7.1.8 Naviga 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5 7.2.6 7.2.7 Reques	Qed. 164 Admitted. 164 Proof term. 164 Proof using ident1 .identn. 165 Abort. 165 Existential num := term. 165 Grab Existential Variables. 165 tion in the proof tree. 165 Undo. 166 Restart. 166 Unfocus. 166 Unfocused. 166 { and } 166 Bullets 167 sting information 167
		7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.1.6 7.1.7 7.1.8 Naviga 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5 7.2.6 7.2.7 Reques 7.3.1	Qed. 164 Admitted. 164 Proof term. 164 Proof using ident1identn. 165 Abort. 165 Existential num := term. 165 Grab Existential Variables. 165 tion in the proof tree. 165 Undo. 166 Restart. 166 Focus. 166 Unfocus. 166 Unfocused. 166 Infocused. 166 Bullets 167 Sting information 167 Show. 167
	7.3	7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.1.6 7.1.7 7.1.8 Naviga 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5 7.2.6 7.2.7 Reques 7.3.1 7.3.2	Qed. 164 Admitted. 164 Proof term. 164 Proof using ident1 identn. 165 Abort. 165 Existential num := term. 165 Grab Existential Variables 165 tion in the proof tree 165 Undo. 165 Restart. 166 Focus. 166 Unfocused. 166 4 and } 166 Bullets 166 Sting information 167 Show. 166 Guarded. 168
		7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.1.6 7.1.7 7.1.8 Naviga 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5 7.2.6 7.2.7 Reques 7.3.1 7.3.2 Control	Qed. 164 Admitted. 164 Proof term. 164 Proof using ident1 .identn. 165 Abort. 165 Existential num := term. 165 Grab Existential Variables 165 tion in the proof tree. 165 Undo. 165 Restart. 166 Focus. 166 Unfocused. 166 Quand } 166 Bullets 166 Show. 167 Guarded. 166 Iling the effect of proof editing commands 166
	7.3	7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.1.6 7.1.7 7.1.8 Naviga 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5 7.2.6 7.2.7 Reques 7.3.1 7.3.2 Contro 7.4.1	Qed. 164 Admitted. 164 Proof term. 164 Proof using ident1 . identn. 165 Abort. 165 Existential num := term. 165 Grab Existential Variables. 165 tion in the proof tree. 165 Undo. 165 Restart. 166 Focus. 166 Unfocused. 166 { and } 166 Bullets 166 sting information 167 Show. 167 Guarded. 168 Illing the effect of proof editing commands 169 Set Hyps Limit num. 169
	7.3	7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.1.6 7.1.7 7.1.8 Naviga 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5 7.2.6 7.2.7 Reques 7.3.1 7.3.2 Control	Qed. 164 Admitted. 164 Proof term. 164 Proof using ident1 .identn. 165 Abort. 165 Existential num := term. 165 Grab Existential Variables 165 tion in the proof tree. 165 Undo. 165 Restart. 166 Focus. 166 Unfocused. 166 Quand } 166 Bullets 166 Show. 167 Guarded. 166 Iling the effect of proof editing commands 166

8	Tact	ics	17	11
	8.1	Invocat	ion of tactics	71
		8.1.1	Bindings list	71
		8.1.2	Occurrences sets and occurrences clauses	12
	8.2	Applyi	ng theorems	13
		8.2.1	exact <i>term</i>	13
		8.2.2	assumption	13
		8.2.3	refine <i>term</i>	13
		8.2.4	apply <i>term</i>	14
		8.2.5	apply term in ident	17
		8.2.6	constructor num	19
	8.3	Manag	ing the local context	30
		8.3.1	intro	30
		8.3.2	intros intro_pattern intro_pattern	31
		8.3.3	clear <i>ident</i>	
		8.3.4	revert $ident_1$ $ident_n$	35
		8.3.5	move $ident_1$ after $ident_2$	
		8.3.6	rename $ident_1$ into $ident_2$	36
		8.3.7	set (ident := term)	36
		8.3.8	decompose [$qualid_1$ $qualid_n$] $term$	
	8.4	Contro	lling the proof flow	
		8.4.1	assert (ident : form)	
		8.4.2	generalize <i>term</i>	39
		8.4.3	evar (<i>ident</i> : <i>term</i>)	
		8.4.4	instantiate (<i>num</i> := <i>term</i>)	
		8.4.5	admit	
		8.4.6	absurd <i>term</i>)1
		8.4.7	contradiction)1
		8.4.8	contradict ident	
		8.4.9	exfalso)1
	8.5	Case ar	nalysis and induction)1
		8.5.1	destruct <i>term</i>	
		8.5.2	induction <i>term</i>)4
		8.5.3	double induction $ident_1$ $ident_2$)7
		8.5.4	dependent induction ident	
		8.5.5	functional induction (qualid $term_1$ $term_n$)	8(
		8.5.6	discriminate term	
		8.5.7	injection <i>term</i>)1
		8.5.8	inversion ident)2
		8.5.9	fix ident num)7
		8.5.10	cofix <i>ident</i>)7
	8.6		ng expressions	
		8.6.1	rewrite <i>term</i>	
		8.6.2	cutrewrite \rightarrow $term_1 = term_2 \dots \dots$	
		8.6.3	replace $term_1$ with $term_2$	
		8.6.4	reflexivity	
		8.6.5	symmetry	

	8.6.6	transitivity term	. 210
	8.6.7	subst ident	. 210
	8.6.8	stepl <i>term</i>	. 210
	8.6.9	change term	. 211
8.7	Perform	ning computations	
	8.7.1	cbv flag_1 flag_n , lazy flag_1 flag_n and compute	. 212
	8.7.2	red	
	8.7.3	hnf	
	8.7.4	$\verb simpl $	
	8.7.5	unfold <i>qualid</i>	
	8.7.6	fold term	
	8.7.7	pattern <i>term</i>	
	8.7.8	Conversion tactics applied to hypotheses	
8.8		ation	
	8.8.1	auto	
	8.8.2	eauto	
	8.8.3	autounfold with ident_1 ident_n	
	8.8.4	autorewrite with $ident_1$ $ident_n$	
8.9		lling automation	
	8.9.1	The hints databases for auto and eauto	
	8.9.2	Hint databases defined in the CoQ standard library	
	8.9.3	Print Hint	
	8.9.4	Hint Rewrite $term_1 \dots term_n$: $ident \dots \dots$	
	8.9.5	Hints and sections	
	8.9.6	Setting implicit automation tactics	
8.10		on procedures	
		tauto	
		intuition <i>tactic</i>	
		rtauto	
		firstorder	
		congruence	
8.11	_	that do not fit other sections	
8.12	-	hing after this point has yet to be sorted	
		$\texttt{constr_eq} \ \textit{term}_1 \ \textit{term}_2 \ \dots \dots \dots \dots \dots \dots \dots \dots \dots$	
		unify $term_1$ $term_2$	
		is_evar term	
		has_evar <i>term</i>	
		is_var <i>term</i>	
8.13	-	y	
		f_equal	
8.14	-	ty and inductive sets	
		decide equality	
		compare $term_1$ $term_2$	
		simplify_eq term	
		dependent rewrite -> ident	
8.15		on	
	8.15.1	functional inversion ident	. 231

			quote ident	
	8.16		al tactics	
			<pre>classical_left, classical_right</pre>	
	8.17		atizing	
		8.17.1	omega	233
		8.17.2	ring and ring_simplify $term_1$ $term_n$	233
			field, field_simplify $term_1 \dots term_n$ and field_simplify_eq	
		8.17.4	fourier	234
	8.18	Simple	tactic macros	234
•				
9			6 6	235
	9.1	•		
	9.2		tics	
	9.3		toplevel definitions	
		9.3.1	Defining \mathcal{L}_{tac} functions	
			Printing \mathcal{L}_{tac} tactics	
	9.4	Debugg	ging \mathcal{L}_{tac} tactics	247
10	Data	ilad awa	mulas of 4s of as	249
10			amples of tactics	
	10.1	_		
	10.2		A larger example	
			ewrite	
	10.3	_		
			Introducing variables map	
	10.4		Combining variables and constants	
	10.4	_	the tactical language	
			About the cardinality of the set of natural numbers	
			Permutation on closed lists	
			Deciding intuitionistic propositional logic	
		10.4.4	Deciding type isomorphisms	262
11	The	Mathan	natical Proof Language	267
11			uction	
	11.1		Foreword	
			What is a declarative proof?	
			Well-formedness and Completeness	
			Note for tactics users	
			Compatibility	
	11.0		* *	
	11.2	-	T	
	11.2		Temporary names	
	11.3	•	age description	
			Starting and Ending a mathematical proof	
			Switching modes	
			Computation steps	
			Deduction steps	
			Iterated equalities	
		11.3.6	Subproofs	274

		11.2.7 Canalysian stans	275
		11.3.7 Conclusion steps	
		11.3.8 Declaring an Abbreviation	
		11.3.9 Introduction steps	
		11.3.10 Tuple elimination steps	
		11.3.11 Disjunctive reasoning	
		11.3.12 Proofs per cases	
		11.3.13 Proofs by induction	
		11.3.14 Justifications	
	11.4	More details and Formal Semantics	288
III	Us	er extensions	289
12	•	ax extensions and interpretation scopes	291
	12.1	Notations	
		12.1.1 Basic notations	
		12.1.2 Precedences and associativity	
		12.1.3 Complex notations	
		12.1.4 Simple factorization rules	
		12.1.5 Displaying symbolic notations	
		12.1.6 The Infix command	
		12.1.7 Reserving notations	
		12.1.8 Simultaneous definition of terms and notations	
		12.1.9 Displaying informations about notations	
		12.1.10 Locating notations	
		12.1.11 Notations and simple binders	
		12.1.12 Notations with recursive patterns	
		12.1.13 Notations with recursive patterns involving binders	
		12.1.14 Summary	
	12.2	Interpretation scopes	
		12.2.1 Global interpretation rules for notations	
		12.2.2 Local interpretation rules for notations	
		12.2.3 The type_scope interpretation scope	
		12.2.4 Interpretation scopes used in the standard library of Coq	
		12.2.5 Displaying informations about scopes	
		Abbreviations	
	12.4	Tactic Notations	306
13		f schemes	309
	13.1	Generation of induction principles with Scheme	
		13.1.1 Automatic declaration of schemes	
		13.1.2 Combined Scheme	
		Generation of induction principles with Functional Scheme	
	13.3	Generation of inversion principles with Derive Inversion	315

IV	Practical tools	317
14	The CoQ commands	319
	14.1 Interactive use (coqtop)	319
	14.2 Batch compilation (coqc)	319
	14.3 Customization	320
	14.3.1 By resource file	320
	14.4 By environment variables	320
	14.4.1 By command line options	
	14.5 Compiled libraries checker (coqchk)	
15	Utilities	325
	15.1 Building a toplevel extended with user tactics	325
	15.2 Modules dependencies	
	15.3 Creating a Makefile for CoQ modules	
	15.4 Documenting CoQ files with coqdoc	
	15.4.1 Principles	
	15.4.2 Usage	
	15.4.3 The coqdoc LATEX style file	
	15.5 Exporting CoQ theories to XML	
	15.5.1 Practical use of the XML exportation tool	
	15.5.2 Reflection of the logical structure into the file system	
	15.5.3 What is exported?	
	15.5.4 Inner types	
	15.5.5 Interactive exportation commands	
	15.5.6 Applications: rendering, searching and publishing	
	15.5.7 Technical informations	
	15.6 Embedded Coq phrases inside LATEX documents	
	15.7 CoQ and GNU EMACS	
	15.7.1 The Coq Emacs mode	
	15.7.2 Proof General	
	15.8 Module specification	
	15.9 Man pages	339
16	CoQ Integrated Development Environment	341
	16.1 Managing files and buffers, basic edition	341
	16.2 Interactive navigation into CoQ scripts	342
	16.3 Try tactics automatically	343
	16.4 Proof folding	343
	16.5 Vernacular commands, templates	343
	16.6 Queries	343
	16.7 Compilation	
	16.8 Customizations	
	16.9 Using unicode symbols	
	16.9.1 Displaying unicode symbols	
	16.9.2 Defining an input method for non ASCII symbols	
	16.9.3 Character encoding for saved files	

V	Addendum to the Reference Manual	347
17	Extended pattern-matching	353
	17.1 Patterns	. 353
	17.2 About patterns of parametric types	. 356
	17.3 Matching objects of dependent types	. 357
	17.3.1 Understanding dependencies in patterns	. 357
	17.3.2 When the elimination predicate must be provided	. 358
	17.4 Using pattern matching to write proofs	. 359
	17.5 Pattern-matching on inductive objects involving local definitions	
	17.6 Pattern-matching and coercions	
	17.7 When does the expansion strategy fail?	
18	Implicit Coercions	363
	18.1 General Presentation	. 363
	18.2 Classes	. 363
	18.3 Coercions	. 364
	18.4 Identity Coercions	
	18.5 Inheritance Graph	
	18.6 Declaration of Coercions	
	18.6.1 Coercion qualid : $class_1 >-> class_2$	
	18.6.2 Identity Coercion $ident: class_1 > -> class_2$	
	18.7 Displaying Available Coercions	
	18.7.1 Print Classes	
	18.7.2 Print Coercions	
	18.7.3 Print Graph	
	18.7.4 Print Coercion Paths $class_1$ $class_2$	
	18.8 Activating the Printing of Coercions	
	18.8.1 Set Printing Coercions	
	18.8.2 Set Printing Coercion qualid	
	18.9 Classes as Records	
	18.10Coercions and Sections	
	18.11Coercions and Modules	
	18.12Examples	. 368
19	Type Classes	373
	19.1 Class and Instance declarations	
	19.2 Binding classes	
	19.3 Parameterized Instances	
	19.4 Sections and contexts	. 376
	19.5 Building hierarchies	. 376
	19.5.1 Superclasses	. 376
	19.5.2 Substructures	. 377
	19.6 Summary of the commands	. 377
	19.6.1 Class ident binder ₁ binder _n : sort:= { field ₁ ;;	
	$\texttt{field}_k \ \}. \ \ldots \ldots \ldots \ldots \ldots \ldots$. 377

		10.60	Taskan as ident binden binden a Class to the			
			Instance $ident\ binder_1\ \dots binder_n\ :\ \texttt{Class}\ \texttt{t}_1\ \dots \texttt{t}_n\ [\ \]$			270
			$priority$] := { field ₁ := b ₁ ;; field _i := b _i }			
			Existing Instance <i>ident</i>			
			Context $binder_1$ $binder_n$			
			Typeclasses Transparent, Opaque ident_1 \ldots ident_n \ldots			
		19.6.6	Typeclasses eauto := [debug] [dfs bfs] [$depth$]	•	 	379
20	Omo	an a cal	ver of quantifier-free problems in Presburger Arithmetic			381
4 U		_	tion of omega			
	20.1	•	Arithmetical goals recognized by omega			
			Messages from omega			
	20.2					
		_	mega			
	20.3		al data			
			Overview of the tactic			
			Overview of the <i>OMEGA</i> decision procedure			
	20.4	Bugs		•	 • •	384
21	Micr	omaga •	tactics for solving arithmetic goals over ordered rings			385
41		_	escription of the tactics			
			tellensatz refutations			
			decision procedure for linear real and rational arithmetic			
		_	: a proof procedure for non-linear arithmetic			
			tactic for linear integer arithmetic			
	21.0	nıa:a	proof procedure for non-linear integer arithmetic	•	 •	388
22	Extr	action of	programs in Objective Caml and Haskell			389
			ing ML code			
			on options			
			Setting the target language			
			Inlining and optimizations			
			Extra elimination of useless arguments			
			Realizing axioms			
			Avoiding conflicts with existing filenames			
	22.2		e e			
			ices between CoQ and ML type systems			
	22.4		camples			
			A detailed example: Euclidean division			
			Extraction's horror museum			
		22.4.3 U	Users' Contributions	•		397
23	Ppo	GRAM				399
4 3			ting programs			
	49,1		Syntactic control over equalities			
			Program Definition ident := term			
			Program Fixpoint <i>ident params</i> {order} : type := term			
	22.2		Program Lemma <i>ident</i> : type			
		_	obligations			
	23.3	Frequent	tly Asked Questions		 	403

24	The ring and field tactic families	405				
	24.1 What does this tactic do?	. 405				
	24.2 The variables map	. 406				
	24.3 Is it automatic?	. 406				
	24.4 Concrete usage in CoQ	. 406				
	24.5 Adding a ring structure	. 408				
	24.6 How does it work?	. 411				
	24.7 Dealing with fields	. 412				
	24.8 Adding a new field structure	. 414				
	24.9 Legacy implementation	. 414				
	$24.9.1$ legacy ring $term_1$ $term_n$. 415				
	24.9.2 Add a ring structure	. 415				
	24.9.3 legacy field	. 417				
	24.9.4 Add Legacy Field	. 417				
	24.10 History of ring	. 418				
	24.11Discussion	. 418				
25	Nsatz: tactics for proving equalities in integral domains	421				
	25.1 Using the basic tactic nsatz					
	25.2 More about nsatz					
26	User defined equalities and relations	423				
	26.1 Relations and morphisms					
	26.2 Adding new relations and morphisms	. 425				
	26.3 Rewriting and non reflexive relations	. 427				
	26.4 Rewriting and non symmetric relations	. 428				
	26.5 Rewriting in ambiguous setoid contexts	. 428				
	26.6 First class setoids and morphisms					
	26.7 Tactics enabled on user provided relations					
	26.8 Printing relations and morphisms					
	26.9 Deprecated syntax and backward incompatibilities					
	26.10Rewriting under binders					
	26.11 Sub-relations					
	26.12Constant unfolding	. 433				
Bil	bliography	435				
Gle	obal Index	444				
Ta	ctics Index	455				
Ve	Vernacular Commands Index					
Inc	Index of Error Messages					

Part I The language

Chapter 1

The GALLINA specification language

This chapter describes Gallina, the specification language of CoQ. It allows to develop mathematical theories and to prove specifications of programs. The theories are built from axioms, hypotheses, parameters, lemmas, theorems and definitions of constants, functions, predicates and sets. The syntax of logical objects involved in theories is described in Section 1.2. The language of commands, called *The Vernacular* is described in section 1.3.

In CoQ, logical objects are typed to ensure their logical correctness. The rules implemented by the typing algorithm are described in Chapter 4.

About the grammars in the manual

Grammars are presented in Backus-Naur form (BNF). Terminal symbols are set in typewriter font. In addition, there are special notations for regular expressions.

An expression enclosed in square brackets [...] means at most one occurrence of this expression (this corresponds to an optional component).

The notation "entry sep ... sep entry" stands for a non empty sequence of expressions parsed by entry and separated by the literal "sep".

Similarly, the notation "entry" ... entry" stands for a non empty sequence of expressions parsed by the "entry" entry, without any separator between.

At the end, the notation "[entry sep ... sep entry]" stands for a possibly empty sequence of expressions parsed by the "entry" entry, separated by the literal "sep".

1.1 Lexical conventions

Blanks Space, newline and horizontal tabulation are considered as blanks. Blanks are ignored but they separate tokens.

Comments Comments in CoQ are enclosed between (* and *), and can be nested. They can contain any character. However, string literals must be correctly closed. Comments are treated as blanks.

Identifiers and access identifiers Identifiers, written *ident*, are sequences of letters, digits, _ and ', that do not start with a digit or '. That is, they are recognized by the following lexical class:

¹This is similar to the expression "entry { sep entry }" in standard BNF, or "entry (sep entry)*" in the syntax of regular expressions.

```
first_letter ::= a..z|A..Z|_|unicode-letter
subsequent_letter ::= a..z|A..Z|0..9|_|'|unicode-letter|unicode-id-part
ident ::= first_letter [subsequent_letter...subsequent_letter]
```

All characters are meaningful. In particular, identifiers are case-sensitive. The entry unicode-letter non-exhaustively includes Latin, Greek, Gothic, Cyrillic, Arabic, Hebrew, Georgian, Hangul, Hiragana and Katakana characters, CJK ideographs, mathematical letter-like symbols, hyphens, non-breaking space, ... The entry unicode-id-part non-exhaustively includes symbols for prime letters and subscripts.

Access identifiers, written *access_ident*, are identifiers prefixed by . (dot) without blank. They are used in the syntax of qualified identifiers.

Natural numbers and integers Numerals are sequences of digits. Integers are numerals optionally preceded by a minus sign.

```
digit ::= 0..9

num ::= digit...digit

integer ::= [-]num
```

Strings Strings are delimited by " (double quote), and enclose a sequence of any characters different from " or the sequence "" to denote the double quote character. In grammars, the entry for quoted strings is *string*.

Keywords The following identifiers are reserved keywords, and cannot be employed otherwise:

```
at
                   cofix else
                                 end
       as
               fix for
                          forall
                                 fun
exists
      exists2
if
       IF
               in
                   let
                          match
                                 mod
               Set then
Prop
       return
                          Type
                                 using
where
       with
```

Special tokens The following sequences of characters are special tokens:

```
አ አ
                      ()
                           )
        ++
                      ->
. ( . .
        /
                      ::
            <
                      <->
            => = D >
   <>
                           >->
<=
       =
        ?=
            <sub>@</sub>
                }
```

Lexical ambiguities are resolved according to the "longest match" rule: when a sequence of non alphanumerical characters can be decomposed into several different ways, then the first token is the longest possible one (among all tokens defined at this moment), and so on.

1.2 Terms 37

1.2 Terms

1.2.1 Syntax of terms

Figures 1.1 and 1.2 describe the basic syntax of the terms of the *Calculus of Inductive Constructions* (also called pCIC). The formal presentation of pCIC is given in Chapter 4. Extensions of this syntax are given in chapter 2. How to customize the syntax is described in Chapter 12.

1.2.2 Types

CoQ terms are typed. CoQ types are recognized by the same syntactic class as *term*. We denote by *type* the semantic subclass of types inside the syntactic class *term*.

1.2.3 Qualified identifiers and simple identifiers

Qualified identifiers (qualid) denote global constants (definitions, lemmas, theorems, remarks or facts), global variables (parameters or axioms), inductive types or constructors of inductive types. Simple identifiers (or shortly ident) are a syntactic subset of qualified identifiers. Identifiers may also denote local variables, what qualified identifiers do not.

1.2.4 Numerals

Numerals have no definite semantics in the calculus. They are mere notations that can be bound to objects through the notation mechanism (see Chapter 12 for details). Initially, numerals are bound to Peano's representation of natural numbers (see 3.1.3).

Note: negative integers are not at the same level as num, for this would make precedence unnatural.

1.2.5 Sorts

There are three sorts Set, Prop and Type.

- Prop is the universe of *logical propositions*. The logical propositions themselves are typing the proofs. We denote propositions by *form*. This constitutes a semantic subclass of the syntactic class *term*.
- Set is is the universe of *program types* or *specifications*. The specifications themselves are typing the programs. We denote specifications by *specif*. This constitutes a semantic subclass of the syntactic class *term*.
- Type is the type of Set and Prop

More on sorts can be found in Section 4.1.1.

CoQ terms are typed. CoQ types are recognized by the same syntactic class as *term*. We denote by *type* the semantic subclass of types inside the syntactic class *term*.

```
term
              forall binders, term
                                                                                    (1.2.8)
         ::=
              fun binders => term
                                                                                    (1.2.7)
              fix fix_bodies
                                                                                   (1.2.14)
              cofix cofix_bodies
                                                                                   (1.2.14)
              let ident [binders][: term] := term in term
                                                                                   (1.2.12)
              let fix fix_body in term
                                                                                   (1.2.14)
              let cofix cofix_body in term
                                                                                   (1.2.14)
              let ([name, ..., name]) [dep_ret_type] := term in term
                                                                             (1.2.13, 2.2.1)
              let ' pattern [in term] := term [return_type] in term
                                                                             (1.2.13, 2.2.1)
              if term [dep_ret_type] then term else term
                                                                             (1.2.13, 2.2.1)
              term: term
                                                                                   (1.2.10)
              term <: term
                                                                                   (1.2.10)
              term:>
                                                                                   (23.1.1)
              term -> term
                                                                                    (1.2.8)
                                                                                    (1.2.9)
              term arg ... arg
              @ qualid [term ... term]
                                                                                   (2.7.11)
              term % ident
                                                                                   (12.2.2)
              match match_item , ... , match_item [return_type] with
                [[|] equation | ... | equation] end
                                                                                   (1.2.13)
              qualid
                                                                                    (1.2.3)
              sort
                                                                                    (1.2.5)
              num
                                                                                    (1.2.4)
                                                                                   (1.2.11)
               (term)
arg
              term
               ( ident := term )
                                                                                   (2.7.11)
              binder ... binder
binders
         ::=
binder
                                                                                    (1.2.6)
         ::=
              name
               ( name ... name : term )
               ( name [: term] := term )
             ident
name
         ::=
qualid
         ::=
             ident
              qualid access_ident
              Prop | Set | Type
sort
```

Figure 1.1: Syntax of terms

1.2 Terms 39

```
fix bodies
                    fix_body
               ::=
                    fix_body with fix_body with ... with fix_body for ident
                    cofix_body
cofix_bodies
               ::=
                    cofix_body with cofix_body with ... with cofix_body for ident
fix_body
                    ident binders [annotation][: term] := term
               ::=
cofix_body
                    ident [binders] [: term] := term
               ::=
                    { struct ident }
annotation
               ::=
match item
               ::=
                    term [as name] [in term]
dep_ret_type
                    [as name] return_type
              ::=
return_type
                    return term
equation
                    mult_pattern | ... | mult_pattern => term
               ::=
mult_pattern
               ::=
                    pattern, ..., pattern
pattern
               ::=
                    qualid pattern ... pattern
                    pattern as ident
                    pattern % ident
                    qualid
                    num
                    (or_pattern, ..., or_pattern)
                    pattern | ... | pattern
or_pattern
               ::=
```

Figure 1.2: Syntax of terms (continued)

1.2.6 Binders

Various constructions such as fun, forall, fix and cofix *bind* variables. A binding is represented by an identifier. If the binding variable is not used in the expression, the identifier can be replaced by the symbol $_$. When the type of a bound variable cannot be synthesized by the system, it can be specified with the notation (*ident*: type). There is also a notation for a sequence of binding variables sharing the same type: ($ident_1...ident_n$: type).

Some constructions allow the binding of a variable to value. This is called a "let-binder". The entry binder of the grammar accepts either an assumption binder as defined above or a let-binder. The notation in the latter case is (ident := term). In a let-binder, only one variable can be introduced at the same time. It is also possible to give the type of the variable as follows: (ident : term := term).

Lists of binder are allowed. In the case of fun and forall, it is intended that at least one binder of the list is an assumption otherwise fun and forall gets identical. Moreover, parentheses can be omitted in the case of a single sequence of bindings sharing the same type (e.g.: fun $(x \ y \ z : A) => t$ can be shortened in fun $x \ y \ z : A => t$).

1.2.7 Abstractions

The expression "fun *ident*: type => term" defines the *abstraction* of the variable *ident*, of type type, over the term term. It denotes a function of the variable *ident* that evaluates to the expression term (e.g. fun x:A => x denotes the identity function on type A). The keyword fun can be followed by several binders as given in Section 1.2.6. Functions over several variables are equivalent to an iteration of one-variable functions. For instance the expression "fun $ident_1 \dots ident_n : type => term$ " denotes the same function as "fun $ident_1 : type => \dots$ fun $ident_n : type => term$ ". If a let-binder occurs in the list of binders, it is expanded to a local definition (see Section 1.2.12).

1.2.8 Products

The expression "forall ident: type, term" denotes the product of the variable ident of type type, over the term term. As for abstractions, forall is followed by a binder list, and products over several variables are equivalent to an iteration of one-variable products. Note that term is intended to be a type.

If the variable *ident* occurs in *term*, the product is called *dependent product*. The intention behind a dependent product forall x:A, B is twofold. It denotes either the universal quantification of the variable x of type A in the proposition B or the functional dependent product from A to B (a construction usually written $\Pi_{x:A}.B$ in set theory).

Non dependent product types have a special notation: " $A \rightarrow B$ " stands for "forall $_:A$, B". The non dependent product is used both to denote the propositional implication and function types.

1.2.9 Applications

The expression $term_0$ $term_1$ denotes the application of $term_0$ to $term_1$.

The expression $term_0$ $term_1$... $term_n$ denotes the application of the term $term_0$ to the arguments $term_1$... then $term_n$. It is equivalent to (... ($term_0$ $term_1$) ...) $term_n$: associativity is to the left.

The notation (ident := term) for arguments is used for making explicit the value of implicit arguments (see Section 2.7.11).

1.2.10 Type cast

The expression "term: type" is a type cast expression. It enforces the type of term to be type.

"term <: type" locally sets up the virtual machine (as if option Virtual Machine were on, see 6.11.5) for checking that term has type type.

1.2.11 Inferable subterms

Expressions often contain redundant pieces of information. Subterms that can be automatically inferred by CoQ can be replaced by the symbol "_" and CoQ will guess the missing piece of information.

1.2.12 Local definitions (let-in)

let $ident := term_1$ in $term_2$ denotes the local binding of $term_1$ to the variable ident in $term_2$. There is a syntactic sugar for local definition of functions: let ident $binder_1 \dots binder_n := term_1$ in $term_2$ stands for let ident := fun $binder_1 \dots binder_n => term_1$ in $term_2$.

1.2 Terms 41

1.2.13 Definition by case analysis

Objects of inductive types can be destructurated by a case-analysis construction called *pattern-matching* expression. A pattern-matching expression is used to analyze the structure of an inductive objects and to apply specific treatments accordingly.

This paragraph describes the basic form of pattern-matching. See Section 2.2.1 and Chapter 17 for the description of the general form. The basic form of pattern-matching is characterized by a single match_item expression, a mult_pattern restricted to a single pattern and pattern restricted to the form qualid ident ... ident.

The expression match $term_0$ return_type with $pattern_1 = term_1 \mid \dots \mid pattern_n = term_n$ end, denotes a pattern-matching over the term $term_0$ (expected to be of an inductive type I). The terms $term_1 \dots term_n$ are the branches of the pattern-matching expression. Each of $pattern_i$ has a form qualid ident \dots ident where qualid must denote a constructor. There should be exactly one branch for every constructor of I.

The return_type expresses the type returned by the whole match expression. There are several cases. In the *non dependent* case, all branches have the same type, and the return_type is the common type of branches. In this case, return_type can usually be omitted as it can be inferred from the type of the branches².

In the *dependent* case, there are three subcases. In the first subcase, the type in each branch may depend on the exact value being matched in the branch. In this case, the whole pattern-matching itself depends on the term being matched. This dependency of the term being matched in the return type is expressed with an "as *ident*" clause where *ident* is dependent in the return type. For instance, in the following example:

```
Coq < Inductive bool : Type := true : bool | false : bool.</pre>
Coq < Inductive eq (A:Type) (x:A) : A -> Prop := eq_refl : eq A x x.
Cog < Inductive or (A:Prop) (B:Prop) : Prop :=</pre>
Coq < | or_introl : A -> or A B
Coq < | or_intror : B -> or A B.
Coq < Definition bool_case (b:bool) : or (eq bool b true) (eq bool b false)</pre>
Cog < := match b as x return or (eg bool x true) (eg bool x false) with
Coq <
         | true => or_introl (eq bool true true) (eq bool true false)
                       (eq_refl bool true)
Coq <
Coq <
         | false => or_intror (eq bool false true) (eq bool false false)
Coq <
                      (eq_refl bool false)
Coa <
         end.
```

the branches have respective types or (eq bool true true) (eq bool true false) and or (eq bool false true) (eq bool false false) while the whole pattern-matching expression has type or (eq bool b true) (eq bool b false), the identifier x being used to represent the dependency. Remark that when the term being matched is a variable, the as clause can be omitted and the term being matched can serve itself as binding name in the return type. For instance, the following alternative definition is accepted and has the same meaning as the previous one.

²Except if the inductive type is empty in which case there is no equation that can be used to infer the return type.

The second subcase is only relevant for annotated inductive types such as the equality predicate (see Section 3.1.2), the order predicate on natural numbers or the type of lists of a given length (see Section 17.3). In this configuration, the type of each branch can depend on the type dependencies specific to the branch and the whole pattern-matching expression has a type determined by the specific dependencies in the type of the term being matched. This dependency of the return type in the annotations of the inductive type is expressed using a "in I _ ... _ $ident_1$... $ident_n$ " clause, where

- *I* is the inductive type of the term being matched;
- the names *ident*_i's correspond to the arguments of the inductive type that carry the annotations: the return type is dependent on them;
- the _'s denote the family parameters of the inductive type: the return type is not dependent on them.

For instance, in the following example:

```
Coq < Definition eq_sym (A:Type) (x y:A) (H:eq A x y) : eq A y x :=
Coq < match H in eq _ z return eq A z x with
Coq < | eq_refl => eq_refl A x
Coq < end.</pre>
```

the type of the branch has type $eq A \times x$ because the third argument of eq is x in the type of the pattern $refl_equal$. On the contrary, the type of the whole pattern-matching expression has type $eq A y \times$ because the third argument of eq is y in the type of H. This dependency of the case analysis in the third argument of eq is expressed by the identifier z in the return type.

Finally, the third subcase is a combination of the first and second subcase. In particular, it only applies to pattern-matching on terms in a type with annotations. For this third subcase, both the clauses as and in are available.

There are specific notations for case analysis on types with one or two constructors: "if ... then ... else ..." and "let (..., ..., ...) := ... in ..." (see Sections 2.2.2 and 2.2.3).

1.2.14 Recursive functions

The expression "fix $ident_1$ $binder_1$: $type_1$:= $term_1$ with ... with $ident_n$ $binder_n$: $type_n$:= $term_n$ for $ident_i$ " denotes the ithcomponent of a block of functions defined by mutual well-founded recursion. It is the local counterpart of the Fixpoint command. See Section 1.3.4 for more details. When n = 1, the "for $ident_i$ " clause is omitted.

The expression "cofix $ident_1$ $binder_1$: $type_1$ with ... with $ident_n$ $binder_n$: $type_n$ for $ident_i$ " denotes the ithcomponent of a block of terms defined by a mutual guarded co-recursion. It is the local counterpart of the CoFixpoint command. See Section 1.3.4 for more details. When n=1, the "for $ident_i$ " clause is omitted.

The association of a single fixpoint and a local definition have a special syntax: "let fix $f \dots := \dots$ in ..." stands for "let $f := \text{fix } f \dots := \dots$ in ...". The same applies for co-fixpoints.

```
sentence
                     ::=
                         assumption
                         definition
                         inductive
                         fixpoint
                         assertion proof
assumption
                         assumption_keyword assums .
                    ::= Axiom | Conjecture
assumption_keyword
                         Parameter | Parameters
                         Variable | Variables
                         Hypothesis | Hypotheses
assums
                     ::= ident ... ident : term
                          ( ident ... ident : term ) ... ( ident ... ident : term )
definition
                     ::= Definition ident [binders][: term] := term .
                         Let ident [binders][: term] := term .
inductive
                     ::= Inductive ind\_body with ... with ind\_body .
                         CoInductive ind_body with ... with ind_body .
ind_body
                    ::= ident [binders] : term :=
                          [[|] ident [binders] [:term] | ... | ident [binders] [:term]]
fixpoint
                     ::= Fixpoint fix\_body with ... with fix\_body .
                         CoFixpoint cofix_body with ... with cofix_body .
                         assertion_keyword ident [binders]: term.
assertion
                     ::=
assertion_keyword
                     ::= Theorem | Lemma
                         Remark | Fact
                         Corollary | Proposition
                         Definition | Example
                     ∷= Proof . ... Qed .
proof
                         Proof . ... Defined .
                         Proof . ... Admitted .
```

Figure 1.3: Syntax of sentences

1.3 The Vernacular

Figure 1.3 describes *The Vernacular* which is the language of commands of GALLINA. A sentence of the vernacular language, like in many natural languages, begins with a capital letter and ends with a dot.

The different kinds of command are described hereafter. They all suppose that the terms occurring in the sentences are well-typed.

1.3.1 Assumptions

Assumptions extend the environment with axioms, parameters, hypotheses or variables. An assumption binds an *ident* to a *type*. It is accepted by CoQ if and only if this *type* is a correct type in the environment preexisting the declaration and if *ident* was not previously defined in the same module. This *type* is considered to be the type (or specification, or statement) assumed by *ident* and we say that *ident* has type *type*.

```
Axiom ident :term .
```

This command links *term* to the name *ident* as its specification in the global context. The fact asserted by *term* is thus assumed as a postulate.

Error messages:

1. ident already exists

Variants:

```
    Parameter ident : term.
        Is equivalent to Axiom ident : term

    Parameter ident<sub>1</sub>...ident<sub>n</sub> : term.
        Adds n parameters with specification term
```

- 3. Parameter ($ident_{1,1} \dots ident_{1,k_1} : term_1$) . . . ($ident_{n,1} \dots ident_{n,k_n} : term_n$) . Adds n blocks of parameters with different specifications.
- 4. Conjecture *ident*: term.

 Is equivalent to Axiom *ident*: term.

Remark: It is possible to replace Parameter by Parameters.

```
Variable ident :term.
```

This command links *term* to the name *ident* in the context of the current section (see Section 2.4 for a description of the section mechanism). When the current section is closed, name *ident* will be unknown and every object using this variable will be explicitly parametrized (the variable is *discharged*). Using the Variable command out of any section is equivalent to using Parameter.

Error messages:

1. ident already exists

Variants:

```
1. Variable ident_1...ident_n: term. Links term to names ident_1...ident_n.
```

- 2. Variable ($ident_{1,1}...ident_{1,k_1}: term_1$) ... ($ident_{n,1}...ident_{n,k_n}: term_n$). Adds n blocks of variables with different specifications.
- 3. Hypothesis *ident*: term.

 Hypothesis is a synonymous of Variable

Remark: It is possible to replace Variable by Variables and Hypothesis by Hypotheses. It is advised to use the keywords Axiom and Hypothesis for logical postulates (i.e. when the assertion *term* is of sort Prop), and to use the keywords Parameter and Variable in other cases (corresponding to the declaration of an abstract mathematical entity).

1.3.2 Definitions

Definitions extend the environment with associations of names to terms. A definition can be seen as a way to give a meaning to a name or as a way to abbreviate a term. In any case, the name can later be replaced at any time by its definition.

The operation of unfolding a name into its definition is called δ -conversion (see Section 4.3). A definition is accepted by the system if and only if the defined term is well-typed in the current context of the definition and if the name is not already used. The name defined by the definition is called a *constant* and the term it refers to is its *body*. A definition has a type which is the type of its body.

A formal presentation of constants and environments is given in Section 4.2.

```
Definition ident := term.
```

This command binds term to the name ident in the environment, provided that term is well-typed.

Error messages:

1. *ident* already exists

Variants:

```
1. Definition ident : term_1 := term_2. It checks that the type of term_2 is definitionally equal to term_1, and registers ident as being of type term_1, and bound to value term_2.
```

```
2. Definition ident\ binder_1 \dots binder_n\ : term_1\ :=\ term_2. This is equivalent to Definition ident\ : for all binder_1 \dots binder_n, term_1\ :=\ fun\ binder_1 \dots binder_n\ =>\ term_2.
```

```
3. Example ident := term. Example ident : term_1 := term_2. Example ident \ binder_1 \dots binder_n : term_1 := term_2. These are synonyms of the Definition forms.
```

Error messages:

1. Error: The term has type type while it is expected to have type type

```
See also: Sections 6.11.1, 6.11.2, 8.7.5.
```

```
Let ident := term.
```

This command binds the value *term* to the name *ident* in the environment of the current section. The name *ident* disappears when the current section is eventually closed, and, all persistent objects (such as theorems) defined within the section and depending on *ident* are prefixed by the local definition let *ident* := *term* in.

Error messages:

```
1. ident already exists
```

Variants:

```
1. Let ident : term_1 := term_2.
```

See also: Sections 2.4 (section mechanism), 6.11.1, 6.11.2 (opaque/transparent constants), 8.7.5 (tactic unfold).

1.3.3 Inductive definitions

We gradually explain simple inductive types, simple annotated inductive types, simple parametric inductive types, mutually inductive types. We explain also co-inductive types.

Simple inductive types

The definition of a simple inductive type has the following form:

```
Inductive ident : sort := ident_1 : type_1
| \dots | ident_n : type_n
```

The name ident is the name of the inductively defined type and sort is the universes where it lives. The names $ident_1, \ldots, ident_n$ are the names of its constructors and $type_1, \ldots, type_n$ their respective types. The types of the constructors have to satisfy a positivity condition (see Section 4.5.3) for ident. This condition ensures the soundness of the inductive definition. If this is the case, the constants ident, $ident_1, \ldots, ident_n$ are added to the environment with their respective types. Accordingly to the universe where the inductive type lives (e.g. its type sort), COQ provides a number of destructors for ident. Destructors are named $ident_ind$, $ident_rec$ or $ident_rec$ which respectively correspond to elimination principles on Prop, Set and Type. The type of the destructors expresses structural induction/recursion principles over objects of ident. We give below two examples of the use of the Inductive definitions.

The set of natural numbers is defined as:

The type nat is defined as the least Set containing 0 and closed by the S constructor. The constants nat, 0 and S are added to the environment.

Now let us have a look at the elimination principles. They are three of them: nat_ind, nat_rec and nat_rect. The type of nat_ind is:

```
Coq < Check nat_ind.
nat_ind
    : forall P : nat -> Prop,
        P O -> (forall n : nat, P n -> P (S n)) -> forall n : nat, P n
```

This is the well known structural induction principle over natural numbers, i.e. the second-order form of Peano's induction principle. It allows to prove some universal property of natural numbers (forall n:nat, P n) by induction on n.

The types of nat_rec and nat_rect are similar, except that they pertain to (P:nat->Set) and (P:nat->Type) respectively. They correspond to primitive induction principles (allowing dependent types) respectively over sorts Set and Type. The constant <code>ident_ind</code> is always provided, whereas <code>ident_rec</code> and <code>ident_rect</code> can be impossible to derive (for example, when <code>ident</code> is a proposition).

Variants:

```
1. Coq < Inductive nat : Set := O | S (_:nat).

In the case where inductive types have no annotations (next section gives an example of such annotations), a constructor can be defined by only giving the type of its arguments.
```

Simple annotated inductive types

In an annotated inductive types, the universe where the inductive type is defined is no longer a simple sort, but what is called an arity, which is a type whose conclusion is a sort.

As an example of annotated inductive types, let us define the *even* predicate:

The type nat->Prop means that even is a unary predicate (inductively defined) over natural numbers. The type of its two constructors are the defining clauses of the predicate even. The type of even_ind is:

```
Coq < Check even_ind.
even_ind
   : forall P : nat -> Prop,
        P O ->
        (forall n : nat, even n -> P n -> P (S (S n))) ->
        forall n : nat, even n -> P n
```

From a mathematical point of view it asserts that the natural numbers satisfying the predicate even are exactly in the smallest set of naturals satisfying the clauses even_0 or even_SS. This is why, when we want to prove any predicate P over elements of even, it is enough to prove it for 0 and to

prove that if any natural number n satisfies P its double successor (S (S n)) satisfies also P. This is indeed analogous to the structural induction principle we got for nat.

Error messages:

- 1. Non strictly positive occurrence of ident in type
- 2. The conclusion of type is not valid; it must be built from ident

Parametrized inductive types

In the previous example, each constructor introduces a different instance of the predicate even. In some cases, all the constructors introduces the same generic instance of the inductive definition, in which case, instead of an annotation, we use a context of parameters which are binders shared by all the constructors of the definition.

The general scheme is:

```
Inductive ident binder<sub>1</sub>... binder<sub>k</sub>: term := ident<sub>1</sub>: term<sub>1</sub> | ... | ident<sub>n</sub>: term<sub>n</sub>.
```

Parameters differ from inductive type annotations in the fact that the conclusion of each type of constructor $term_i$ invoke the inductive type with the same values of parameters as its specification.

A typical example is the definition of polymorphic lists:

Note that in the type of nil and cons, we write (list A) and not just list. The constants nil and cons will have respectively types:

```
Coq < Check nil.
nil
    : forall A : Set, list A

Coq < Check cons.
cons
    : forall A : Set, A -> list A -> list A
```

Types of destructors are also quantified with (A:Set).

Variants:

1. Coq < Inductive list (A:Set) : Set := nil | cons (_:A) (_:list A). This is an alternative definition of lists where we specify the arguments of the constructors rather than their full type.

Error messages:

1. The numth argument of ident must be ident' in type

New from Coq V8.1 The condition on parameters for inductive definitions has been relaxed since Coq V8.1. It is now possible in the type of a constructor, to invoke recursively the inductive definition on an argument which is not the parameter itself.

One can define:

that can also be written by specifying only the type of the arguments:

```
Coq < Inductive list2 (A:Set) : Set := nil2 \mid cons2 (_:A) (_:list2 (A*A)).
```

But the following definition will give an error:

Because the conclusion of the type of constructors should be listw A in both cases.

A parametrized inductive definition can be defined using annotations instead of parameters but it will sometimes give a different (bigger) sort for the inductive definition and will produce a less convenient rule for case elimination.

See also: Sections 4.5 and 8.5.2.

Mutually defined inductive types

The definition of a block of mutually inductive types has the form:

It has the same semantics as the above Inductive definition for each $ident_1, \ldots, ident_m$. All names $ident_1, \ldots, ident_m$ and $ident_1^1, \ldots, ident_{n_m}^m$ are simultaneously added to the environment. Then well-typing of constructors can be checked. Each one of the $ident_1, \ldots, ident_m$ can be used on its own.

It is also possible to parametrize these inductive definitions. However, parameters correspond to a local context in which the whole set of inductive declarations is done. For this reason, the parameters must be strictly the same for each inductive types The extended syntax is:

Example: The typical example of a mutual inductive data type is the one for trees and forests. We assume given two types A and B as variables. It can be declared the following way.

This declaration generates automatically six induction principles. They are respectively called tree_rec, tree_ind, tree_rect, forest_rec, forest_ind, forest_rect. These ones are not the most general ones but are just the induction principles corresponding to each inductive part seen as a single inductive definition.

To illustrate this point on our example, we give the types of tree_rec and forest_rec.

Assume we want to parametrize our mutual inductive definitions with the two type variables A and B, the declaration should be done the following way:

Assume we define an inductive definition inside a section. When the section is closed, the variables declared in the section and occurring free in the declaration are added as parameters to the inductive definition.

See also: Section 2.4.

Co-inductive types

The objects of an inductive type are well-founded with respect to the constructors of the type. In other words, such objects contain only a *finite* number of constructors. Co-inductive types arise from relaxing this condition, and admitting types whose objects contain an infinity of constructors. Infinite objects are introduced by a non-ending (but effective) process of construction, defined in terms of the constructors of the type.

An example of a co-inductive type is the type of infinite sequences of natural numbers, usually called streams. It can be introduced in CoQ using the CoInductive command:

```
Coq < CoInductive Stream : Set :=
Coq < Seq : nat -> Stream -> Stream.
Stream is defined
```

The syntax of this command is the same as the command Inductive (see Section 1.3.3). Notice that no principle of induction is derived from the definition of a co-inductive type, since such principles only make sense for inductive ones. For co-inductive ones, the only elimination principle is case analysis. For example, the usual destructors on streams hd:Stream->nat and tl:Str->Str can be defined as follows:

```
Coq < Definition hd (x:Stream) := let (a,s) := x in a. hd is defined

Coq < Definition tl (x:Stream) := let (a,s) := x in s. tl is defined
```

Definition of co-inductive predicates and blocks of mutually co-inductive definitions are also allowed. An example of a co-inductive predicate is the extensional equality on streams:

In order to prove the extensionally equality of two streams s_1 and s_2 we have to construct an infinite proof of equality, that is, an infinite object of type (EqSt s_1 s_2). We will see how to introduce infinite objects in Section 1.3.4.

1.3.4 Definition of recursive functions

Definition of functions by recursion over inductive objects

This section describes the primitive form of definition by recursion over inductive objects. See Section 2.3 for more advanced constructions. The command:

```
Fixpoint ident params {struct ident_0 } : type<sub>0</sub> := term_0
```

allows to define functions by pattern-matching over inductive objects using a fixed point construction. The meaning of this declaration is to define *ident* a recursive function with arguments specified by the binders in *params* such that *ident* applied to arguments corresponding to these binders has type $type_0$, and is equivalent to the expression $term_0$. The type of the *ident* is consequently forall params, $type_0$ and the value is equivalent to fun $params = term_0$.

To be accepted, a Fixpoint definition has to satisfy some syntactical constraints on a special argument called the decreasing argument. They are needed to ensure that the Fixpoint definition always terminates. The point of the {struct ident} annotation is to let the user tell the system which argument decreases along the recursive calls. For instance, one can define the addition function as:

```
Coq < Fixpoint add (n m:nat) {struct n} : nat :=
Coq < match n with
Coq < | 0 => m
Coq < | S p => S (add p m)
Coq < end.
add is recursively defined (decreasing on 1st argument)</pre>
```

The {struct ident} annotation may be left implicit, in this case the system try successively arguments from left to right until it finds one that satisfies the decreasing condition. Note that some fixpoints may have several arguments that fit as decreasing arguments, and this choice influences the reduction of the fixpoint. Hence an explicit annotation must be used if the leftmost decreasing argument is not the desired one. Writing explicit annotations can also speed up type-checking of large mutual fixpoints.

The match operator matches a value (here n) with the various constructors of its (inductive) type. The remaining arguments give the respective values to be returned, as functions of the parameters of the corresponding constructor. Thus here when n equals 0 we return m, and when n equals (S p) we return (S (add p m)).

The match operator is formally described in detail in Section 4.5.4. The system recognizes that in the inductive call (add p m) the first argument actually decreases because it is a *pattern variable* coming from match n with.

Example: The following definition is not correct and generates an error message:

```
Coq < Fixpoint wrongplus (n m:nat) {struct n} : nat :=</pre>
Coq < match m with
Coq < | O => n
      | S p => S (wrongplus n p)
Coq <
      end.
Coq <
Cog < Cog < Error:
Recursive definition of wrongplus is ill-formed.
In environment
wrongplus : nat -> nat -> nat
n : nat
m : nat
p : nat
Recursive call to wrongplus has principal argument equal to
"n" instead of a subterm of "n".
Recursive definition is:
"fun n m : nat => match m with
                  | 0 = > n
                  | S p => S (wrongplus n p)
                  end".
```

because the declared decreasing argument n actually does not decrease in the recursive call. The function computing the addition over the second argument should rather be written:

```
Coq < Fixpoint plus (n m:nat) {struct m} : nat := Coq < match m with Coq < \mid O => n Coq < \mid S p => S (plus n p) Coq < end.
```

The ordinary match operation on natural numbers can be mimicked in the following way.

```
Coq < Fixpoint nat_match  
Coq < (C:Set) (f0:C) (fS:nat \rightarrow C \rightarrow C) (n:nat) {struct n} : C := Coq < match n with  
Coq < | O => f0  
Coq < | S p => fS p (nat_match C f0 fS p)  
Coq < end.
```

The recursive call may not only be on direct subterms of the recursive variable n but also on a deeper subterm and we can directly write the function mod2 which gives the remainder modulo 2 of a natural number.

In order to keep the strong normalization property, the fixed point reduction will only be performed when the argument in position of the decreasing argument (which type should be in an inductive definition) starts with a constructor.

The Fixpoint construction enjoys also the with extension to define functions over mutually defined inductive types or more generally any mutually recursive definitions.

Variants:

```
1. Fixpoint ident_1 \ params_1 : type_1 := term_1 with ... with ident_m \ params_m : type_m := term_m Allows to define simultaneously ident_1, \ldots, ident_m.
```

Example: The size of trees and forests can be defined the following way:

A generic command Scheme is useful to build automatically various mutual induction principles. It is described in Section 13.1.

Definitions of recursive objects in co-inductive types

The command:

```
Cofixpoint ident : type_0 := term_0
```

introduces a method for constructing an infinite object of a coinductive type. For example, the stream containing all natural numbers can be introduced applying the following method to the number \circ (see Section 1.3.3 for the definition of Stream, hd and t1):

```
Coq < CoFixpoint from (n:nat) : Stream := Seq n (from (S n)).
from is corecursively defined
```

Oppositely to recursive ones, there is no decreasing argument in a co-recursive definition. To be admissible, a method of construction must provide at least one extra constructor of the infinite object for each iteration. A syntactical guard condition is imposed on co-recursive definitions in order to ensure this: each recursive call in the definition must be protected by at least one constructor, and only by constructors. That is the case in the former definition, where the single recursive call of from is guarded by an application of Seq. On the contrary, the following recursive function does not satisfy the guard condition:

```
Coq < CoFixpoint filter (p:nat -> bool) (s:Stream) : Stream :=
Coq < if p (hd s) then Seq (hd s) (filter p (tl s)) else filter p (tl s).
Coq < Coq < Error:
Recursive definition of filter is ill-formed.
In environment
filter : (nat -> bool) -> Stream -> Stream
p : nat -> bool
s : Stream
Unguarded recursive call in "filter p (tl s)".
Recursive definition is:
"fun (p : nat -> bool) (s : Stream) =>
if p (hd s) then Seq (hd s) (filter p (tl s)) else filter p (tl s)".
```

The elimination of co-recursive definition is done lazily, i.e. the definition is expanded only when it occurs at the head of an application which is the argument of a case analysis expression. In any other context, it is considered as a canonical expression which is completely evaluated. We can test this using the command Eval, which computes the normal forms of a term:

Variants:

Cofixpoint ident₁ params: type₁ := term₁
 As for most constructions, arguments of co-fixpoints expressions can be introduced before the := sign.

```
2. Cofixpoint ident_1 : type_1 := term_1 with ... with ident_m : type_m := term_m
```

As in the Fixpoint command (see Section 1.3.4), it is possible to introduce a block of mutually dependent methods.

1.3.5 Assertions and proofs

An assertion states a proposition (or a type) of which the proof (or an inhabitant of the type) is interactively built using tactics. The interactive proof mode is described in Chapter 7 and the tactics in Chapter 8. The basic assertion command is:

```
Theorem ident [binders]: type.
```

After the statement is asserted, COQ needs a proof. Once a proof of *type* under the assumptions represented by *binders* is given and validated, the proof is generalized into a proof of forall [binders], type and the theorem is bound to the name *ident* in the environment.

Error messages:

- 1. The term form has type ... which should be Set, Prop or Type
- 2. ident already exists

The name you provided is already defined. You have then to choose another name.

Variants:

```
1. Lemma ident [binders] : type.
  Remark ident [binders] : type.
  Fact ident [binders] : type.
  Corollary ident [binders] : type.
  Proposition ident [binders] : type.
  These commands are synonyms of Theorem ident [binders] : type.
```

2. Theorem ident [binders]: type with ... with ident [binders]: type.

This command is useful for theorems that are proved by simultaneous induction over a mutually inductive assumption, or that assert mutually dependent statements in some mutual co-inductive type. It is equivalent to Fixpoint or CoFixpoint (see Section 1.3.4) but using tactics to build the proof of the statements (or the body of the specification, depending on the point of view). The inductive or co-inductive types on which the induction or coinduction has to be done is assumed to be non ambiguous and is guessed by the system.

Like in a Fixpoint or CoFixpoint definition, the induction hypotheses have to be used on *structurally smaller* arguments (for a Fixpoint) or be *guarded by a constructor* (for a CoFixpoint). The verification that recursive proof arguments are correct is done only at the

time of registering the lemma in the environment. To know if the use of induction hypotheses is correct at some time of the interactive development of a proof, use the command Guarded (see Section 7.3.2).

The command can be used also with Lemma, Remark, etc. instead of Theorem.

3. Definition ident [binders] : type.

This allows to define a term of type *type* using the proof editing mode. It behaves as Theorem but is intended to be used in conjunction with Defined (see 1) in order to define a constant of which the computational behavior is relevant.

The command can be used also with Example instead of Definition.

See also: Sections 6.11.1 and 6.11.2 (Opaque and Transparent) and 8.7.5 (tactic unfold).

4. Let ident [binders]: type.

Like Definition *ident* [binders]: type. except that the definition is turned into a local definition generalized over the declarations depending on it after closing the current section.

5. Fixpoint ident binders [annotation] [: term] [:= term] with ... with ident binders [annotation] [: term] [:= term].

This generalizes the syntax of Fixpoint so that one or more bodies can be defined interactively using the proof editing mode (when a body is omitted, its type is mandatory in the syntax). When the block of proofs is completed, it is intended to be ended by Defined.

6. CoFixpoint ident [binders] [: term] [:= term] with ... with ident [binders] [: term] [:= term].

This generalizes the syntax of CoFixpoint so that one or more bodies can be defined interactively using the proof editing mode.

```
Proof. ... Qed.
```

A proof starts by the keyword Proof. Then CoQ enters the proof editing mode until the proof is completed. The proof editing mode essentially contains tactics that are described in chapter 8. Besides tactics, there are commands to manage the proof editing mode. They are described in Chapter 7. When the proof is completed it should be validated and put in the environment using the keyword Qed.

Error message:

1. *ident* already exists

Remarks:

- 1. Several statements can be simultaneously asserted.
- 2. Not only other assertions but any vernacular command can be given while in the process of proving a given assertion. In this case, the command is understood as if it would have been given before the statements still to be proved.
- 3. Proof is recommended but can currently be omitted. On the opposite side, Qed (or Defined, see below) is mandatory to validate a proof.

4. Proofs ended by Qed are declared opaque. Their content cannot be unfolded (see 8.7), thus realizing some form of *proof-irrelevance*. To be able to unfold a proof, the proof should be ended by Defined (see below).

Variants:

- 1. Proof. ... Defined.

 Same as Proof. ... Qed. but the proof is then declared transparent, which means that its content can be explicitly used for type-checking and that it can be unfolded in conversion tactics (see 8.7, 6.11.1, 6.11.2).
- 2. Proof. ... Admitted.

 Turns the current asserted statement into an axiom and exits the proof mode.

Chapter 2

Extensions of GALLINA

GALLINA is the kernel language of COQ. We describe here extensions of the Gallina's syntax.

2.1 Record types

The Record construction is a macro allowing the definition of records as is done in many programming languages. Its syntax is described on Figure 2.1. In fact, the Record macro is more general than the usual record types, since it allows also for "manifest" expressions. In this sense, the Record construction allows to define "signatures".

```
record ::= record_keyword ident [binders] [: sort] := [ident] { [field ; ... ; field] } .

record_keyword ::= Record | Inductive | CoInductive

field ::= name [binders] : type [ where notation ] | name [binders] [: term] := term
```

Figure 2.1: Syntax for the definition of Record

In the expression

Record ident params: $sort := ident_0 \ \{ ident_1 \ binders_1 : term_1; \dots ident_n \ binders_n : term_n \ \}.$ the identifier ident is the name of the defined record and sort is its type. The identifier $ident_0$ is the name of its constructor. If $ident_0$ is omitted, the default name $\texttt{Build_ident}$ is used. If sort is omitted, the default sort is "Type". The identifiers $ident_1, \dots, ident_n$ are the names of fields and forall $binders_1$, $term_1, \dots, \texttt{forall}$ $binders_n$, $term_n$ their respective types. Remark that the type of $ident_i$ may depend on the previous $ident_j$ (for j < i). Thus the order of the fields is important. Finally, params are the parameters of the record.

More generally, a record may have explicitly defined (a.k.a. manifest) fields. For instance, Record ident [params] : $sort := \{ ident_1 : type_1 ; ident_2 := term_2 ; ident_3 : type_3 \}$ in which case the correctness of $type_3$ may rely on the instance $term_2$ of $ident_2$ and $term_2$ in turn may depend on $ident_1$.

Example: The set of rational numbers may be defined as:

```
Coq < Record Rat : Set := mkRat
Coq < {sign : bool;</pre>
Coq < top : nat;
Coq < bottom : nat;</pre>
Coq < Rat_bottom_cond : 0 <> bottom;
       Rat_irred_cond :
Coq <
Coq <
        forall x y z:nat, (x * y) = top / (x * z) = bottom -> x = 1.
Rat is defined
Rat_rect is defined
Rat_ind is defined
Rat_rec is defined
sign is defined
top is defined
bottom is defined
Rat bottom cond is defined
Rat_irred_cond is defined
```

Remark here that the field Rat_cond depends on the field bottom.

Let us now see the work done by the Record macro. First the macro generates an inductive definition with just one constructor:

```
Inductive ident params : sort := ident_0 (ident_1: term_1) . (ident_n: term_n).
```

To build an object of type *ident*, one should provide the constructor $ident_0$ with n terms filling the fields of the record.

As an example, let us define the rational 1/2:

```
Coq < Require Import Arith.
Coq < Theorem one_two_irred :
Coq < forall x y z:nat, x * y = 1 /\ x * z = 2 -> x = 1.
...
Coq < Qed.
Coq < Qed.
Coq < Definition half := mkRat true 1 2 (O_S 1) one_two_irred.
half is defined
Coq < Check half.
half
     : Rat</pre>
```

The macro generates also, when it is possible, the projection functions for destructuring an object of type *ident*. These projection functions have the same name that the corresponding fields. If a field is named "_" then no projection is built for it. In our example:

2.1 Record types 61

Records defined with the Record keyword are not allowed to be recursive (references to the record's name in the type of its field raises an error). To define recursive records, one can use the Inductive and CoInductive keywords, resulting in an inductive or co-inductive record. A *caveat*, however, is that records cannot appear in mutually inductive (or co-inductive) definitions.

Warnings:

1. Warning: $ident_i$ cannot be defined.

It can happen that the definition of a projection is impossible. This message is followed by an explanation of this impossibility. There may be three reasons:

- (a) The name $ident_i$ already exists in the environment (see Section 1.3.1).
- (b) The body of *ident*_i uses an incorrect elimination for *ident* (see Sections 1.3.4 and 4.5.4).
- (c) The type of the projections *ident*_i depends on previous projections which themselves could not be defined.

Error messages:

1. Records declared with the keyword Record or Structure cannot be recursive.

The record name *ident* appears in the type of its fields, but uses the keyword Record. Use the keyword Inductive or CoInductive instead.

2. Cannot handle mutually (co)inductive records.

Records cannot be defined as part of mutually inductive (or co-inductive) definitions, whether with records only or mixed with standard definitions.

3. During the definition of the one-constructor inductive definition, all the errors of inductive definitions, as described in Section 1.3.3, may also occur.

See also: Coercions and records in Section 18.9 of the chapter devoted to coercions.

Remark: Structure is a synonym of the keyword Record.

Remark: Creation of an object of record type can be done by calling $ident_0$ and passing arguments in the correct order.

```
Coq < Record point := { x : nat; y : nat }.
point is defined
point_rect is defined
point_ind is defined
point_rec is defined
x is defined
y is defined
Coq < Definition a := Build_point 5 3.
a is defined</pre>
```

The following syntax allows to create objects by using named fields. The fields do not have to be in any particular order, nor do they have to be all present if the missing ones can be inferred or prompted for (see Section 23).

```
term ++= term . ( qualid )

| term . ( qualid arg ... arg )

| term . ( @ qualid term ... term )
```

Figure 2.2: Syntax of Record projections

```
Coq < Definition b := {| x := 5; y := 3 |}. b is defined

Coq < Definition c := {| y := 3; x := 5 |}. c is defined
```

This syntax can be disabled globally for printing by

```
Unset Printing Records.
```

For a given type, one can override this using either

```
Add Printing Record ident.
```

to get record syntax or

```
Add Printing Constructor ident.
```

to get constructor syntax.

This syntax can also be used for pattern matching.

Remark: An experimental syntax for projections based on a dot notation is available. The command to activate it is

```
Set Printing Projections.
```

The corresponding grammar rules are given Figure 2.2. When qualid denotes a projection, the syntax term. (qualid) is equivalent to qualid term, the syntax term. (qualid $arg_1...arg_n$) to qualid $arg_1...arg_n$ term, and the syntax term. (@qualid $term_1...term_n$) to @qualid $term_1...term_n$ term. In each case, term is the object projected and the other arguments are the parameters of the inductive type.

To deactivate the printing of projections, use Unset Printing Projections.

2.2 Variants and extensions of match

2.2.1 Multiple and nested pattern-matching

The basic version of match allows pattern-matching on simple patterns. As an extension, multiple nested patterns or disjunction of patterns are allowed, as in ML-like languages.

The extension just acts as a macro that is expanded during parsing into a sequence of match on simple patterns. Especially, a construction defined using the extended match is generally printed under its expanded form (see Set Printing Matching in section 2.2.4).

See also: Chapter 17.

2.2.2 Pattern-matching on boolean values: the if expression

For inductive types with exactly two constructors and for pattern-matchings expressions which do not depend on the arguments of the constructors, it is possible to use a if ... then ... else notation. For instance, the definition

```
Coq < Definition not (b:bool) :=
Coq < match b with
Coq < | true => false
Coq < | false => true
Coq < end.
not is defined</pre>
```

can be alternatively written

```
Coq < Definition not (b:bool) := if b then false else true.
not is defined</pre>
```

More generally, for an inductive type with constructors C_1 and C_2 , we have the following equivalence

Here is an example.

Notice that the printing uses the if syntax because sumbool is declared as such (see Section 2.2.4).

2.2.3 Irrefutable patterns: the destructuring let variants

Pattern-matching on terms inhabiting inductive type having only one constructor can be alternatively written using let ... in ... constructions. There are two variants of them.

First destructuring let syntax

The expression let ($ident_1,...,ident_n$) := $term_0$ in $term_1$ performs case analysis on a $term_0$ which must be in an inductive type with one constructor having itself n arguments. Variables $ident_1...ident_n$ are bound to the n arguments of the constructor in expression $term_1$. For instance, the definition

can be alternatively written

```
Coq < Definition fst (A B:Set) (p:A \star B) := let (x, _) := p in x. fst is defined
```

Notice that reduction is different from regular let ... in ... construction since it happens only if $term_0$ is in constructor form. Otherwise, the reduction is blocked.

The pretty-printing of a definition by matching on a irrefutable pattern can either be done using match or the let construction (see Section 2.2.4).

```
If term inhabits an inductive type with one constructor C, we have an equivalence between let (ident_1, \ldots, ident_n) [dep\_ret\_type] := term in term' and match term [dep\_ret\_type] with C ident_1 \ldots ident_n => term' end
```

Second destructuring let syntax

Another destructuring let syntax is available for inductive types with one constructor by giving an arbitrary pattern instead of just a tuple for all the arguments. For example, the preceding example can be written:

```
Coq < Definition fst (A B:Set) (p:A*B) := let 'pair x \_ := p in x. fst is defined
```

This is useful to match deeper inside tuples and also to use notations for the pattern, as the syntax let 'p := t in b allows arbitrary patterns to do the deconstruction. For example:

```
Coq < Definition deep_tuple (A:Set) (x:(A*A)*(A*A)) : A*A*A*A :=
Coq < let '((a,b), (c, d)) := x in (a,b,c,d).
deep_tuple is defined

Coq < Notation " x 'with' p " := (exist _ x p) (at level 20).

Coq < Definition projl_sig' (A:Set) (P:A->Prop) (t:{ x:A | P x }) : A :=
Coq < let 'x with p := t in x.
projl_sig' is defined</pre>
```

When printing definitions which are written using this construct it takes precedence over let printing directives for the datatype under consideration (see Section 2.2.4).

2.2.4 Controlling pretty-printing of match expressions

The following commands give some control over the pretty-printing of match expressions.

Printing nested patterns

The Calculus of Inductive Constructions knows pattern-matching only over simple patterns. It is however convenient to re-factorize nested pattern-matching into a single pattern-matching over a nested pattern. CoQ's printer try to do such limited re-factorization.

```
Set Printing Matching.
```

This tells CoQ to try to use nested patterns. This is the default behavior.

```
Unset Printing Matching.
```

This tells CoQ to print only simple pattern-matching problems in the same way as the CoQ kernel handles them.

```
Test Printing Matching.
```

This tells if the printing matching mode is on or off. The default is on.

Printing of wildcard pattern

Some variables in a pattern may not occur in the right-hand side of the pattern-matching clause. There are options to control the display of these variables.

```
Set Printing Wildcard.
```

The variables having no occurrences in the right-hand side of the pattern-matching clause are just printed using the wildcard symbol "_".

```
Unset Printing Wildcard.
```

The variables, even useless, are printed using their usual name. But some non dependent variables have no name. These ones are still printed using a "_".

```
Test Printing Wildcard.
```

This tells if the wildcard printing mode is on or off. The default is to print wildcard for useless variables.

Printing of the elimination predicate

In most of the cases, the type of the result of a matched term is mechanically synthesizable. Especially, if the result type does not depend of the matched term.

```
Set Printing Synth.
```

The result type is not printed when CoQ knows that it can re-synthesize it.

```
Unset Printing Synth.
```

This forces the result type to be always printed.

```
Test Printing Synth.
```

This tells if the non-printing of synthesizable types is on or off. The default is to not print synthesizable types.

Printing matching on irrefutable pattern

If an inductive type has just one constructor, pattern-matching can be written using let ... := ... in ...

```
Add Printing Let ident.
```

This adds *ident* to the list of inductive types for which pattern-matching is written using a let expression.

```
Remove Printing Let ident.
```

This removes ident from this list.

```
Test Printing Let for ident.
```

This tells if *ident* belongs to the list.

```
Print Table Printing Let.
```

This prints the list of inductive types for which pattern-matching is written using a let expression.

The list of inductive types for which pattern-matching is written using a let expression is managed synchronously. This means that it is sensible to the command Reset.

Printing matching on booleans

If an inductive type is isomorphic to the boolean type, pattern-matching can be written using $if \dots then \dots else \dots$

```
Add Printing If ident.
```

This adds *ident* to the list of inductive types for which pattern-matching is written using an if expression.

```
Remove Printing If ident.
```

This removes ident from this list.

```
Test Printing If for ident.
```

This tells if *ident* belongs to the list.

```
Print Table Printing If.
```

This prints the list of inductive types for which pattern-matching is written using an if expression.

The list of inductive types for which pattern-matching is written using an if expression is managed synchronously. This means that it is sensible to the command Reset.

Example

This example emphasizes what the printing options offer.

2.3 Advanced recursive functions

The experimental command

```
Function ident\ binder_1 \dots binder_n\ \{decrease\_annot\}\ :\ type_0:=term_0
```

can be seen as a generalization of Fixpoint. It is actually a wrapper for several ways of defining a function and other useful related objects, namely: an induction principle that reflects the recursive structure of the function (see 8.5.5), and its fixpoint equality. The meaning of this declaration is to define a function ident, similarly to Fixpoint. Like in Fixpoint, the decreasing argument must be given (unless the function is not recursive), but it must not necessary be structurally decreasing. The point of the {} annotation is to name the decreasing argument and to describe which kind of decreasing criteria must be used to ensure termination of recursive calls.

The Function construction enjoys also the with extension to define mutually recursive definitions. However, this feature does not work for non structural recursive functions.

See the documentation of functional induction (see Section 8.5.5) and Functional Scheme (see Section 13.2 and 13.2) for how to use the induction principle to easily reason about the function.

Remark: To obtain the right principle, it is better to put rigid parameters of the function as first arguments. For example it is better to define plus like this:

```
Coq < Function plus (m n : nat) {struct n} : nat := Coq < match n with Coq < \mid 0 => m Coq < \mid S p => S (plus m p) Coq < end.
```

than like this:

```
Coq < Function plus (n m : nat) {struct n} : nat := Coq < match n with Coq < | 0 => m Coq < | S p => S (plus p m) Coq < end.
```

Limitations $term_0$ must be build as a *pure pattern-matching tree* (match...with) with applications only *at the end* of each branch.

Function does not support partial application of the function being defined. Thus, the following example cannot be accepted due to the presence of partial application of *ident* wrong into the body of *ident* wrong:

```
Coq < Function wrong (C:nat) {\ldots} : nat :=
Coq < List.hd(List.map wrong (C::nil)).</pre>
```

For now dependent cases are not treated for non structurally terminating functions.

Error messages:

- 1. The recursive argument must be specified
- 2. No argument name ident
- Cannot use mutual definition with well-founded recursion or measure
- 4. Cannot define graph for ident... (warning)

The generation of the graph relation (R_ident) used to compute the induction scheme of ident raised a typing error. Only the ident is defined, the induction scheme will not be generated.

This error happens generally when:

- the definition uses pattern matching on dependent types, which Function cannot deal with vet.
- the definition is not a pattern-matching tree as explained above.
- 5. Cannot define principle(s) for ident... (warning)

The generation of the graph relation (R_ident) succeeded but the induction principle could not be built. Only the ident is defined. Please report.

6. Cannot build functional inversion principle (warning) functional inversion will not be available for the function.

```
See also: 13.2, 13.2, 8.5.5
```

Depending on the $\{\ldots\}$ annotation, different definition mechanisms are used by Function. More precise description given below.

Variants:

1. Function ident binder₁...binder_n: type₀ := $term_0$

Defines the not recursive function *ident* as if declared with Definition. Moreover the following are defined:

- *ident_*rect, *ident_*rec and *ident_*ind, which reflect the pattern matching structure of *term*₀ (see the documentation of Inductive 1.3.3);
- The inductive R_ident corresponding to the graph of ident (silently);
- *ident_complete* and *ident_correct* which are inversion information linking the function and its graph.
- 2. Function $ident\ binder_1...binder_n\ \{struct\ ident_0\}\ : type_0:= term_0$ Defines the structural recursive function ident as if declared with Fixpoint. Moreover the following are defined:
 - The same objects as above;
 - The fixpoint equation of ident: ident_equation.
- 3. Function $ident\ binder_1...binder_n\ \{measure\ term_1\ ident_0\}\ :\ type_0\ :=\ term_0$
- 4. Function $ident\ binder_1...binder_n\ \{wf\ term_1\ ident_0\}\ :\ type_0\ :=\ term_0$

Defines a recursive function by well founded recursion. The module Recdef of the standard library must be loaded for this feature. The {} annotation is mandatory and must be one of the following:

- {measure $term_1$ $ident_0$ } with $ident_0$ being the decreasing argument and $term_1$ being a function from type of $ident_0$ to nat for which value on the decreasing argument decreases (for the lt order on nat) at each recursive call of $term_0$, parameters of the function are bound in $term_0$;
- {wf $term_1 \ ident_0$ } with $ident_0$ being the decreasing argument and $term_1$ an ordering relation on the type of $ident_0$ (i.e. of type $T_{ident_0} \to T_{ident_0} \to \texttt{Prop}$) for which the decreasing argument decreases at each recursive call of $term_0$. The order must be well founded. parameters of the function are bound in $term_0$.

Depending on the annotation, the user is left with some proof obligations that will be used to define the function. These proofs are: proofs that each recursive call is actually decreasing with respect to the given criteria, and (if the criteria is wf) a proof that the ordering relation is well founded.

Once proof obligations are discharged, the following objects are defined:

- The same objects as with the struct;
- The lemma ident_tcc which collects all proof obligations in one property;
- The lemmas *ident_terminate* and *ident_F* which is needed to be inlined during extraction of *ident*.

The way this recursive function is defined is the subject of several papers by Yves Bertot and Antonia Balaa on the one hand, and Gilles Barthe, Julien Forest, David Pichardie, and Vlad Rusu on the other hand.

Remark: Proof obligations are presented as several subgoals belonging to a Lemma ident tcc.

2.4 Section mechanism

The sectioning mechanism allows to organize a proof in structured sections. Then local declarations become available (see Section 1.3.2).

2.4.1 Section *ident*

This command is used to open a section named ident.

2.4.2 End *ident*

This command closes the section named *ident*. After closing of the section, the local declarations (variables and local definitions) get *discharged*, meaning that they stop being visible and that all global objects defined in the section are generalized with respect to the variables and local definitions they each depended on in the section.

Here is an example:

```
Coq < Section s1.
Coq < Variables x y : nat.
x is assumed
y is assumed
Coq < Let y' := y.
y' is defined
Coq < Definition x' := S x.
x' is defined
Coq < Definition x'' := x' + y'.
x'' is defined
Coq < Print x'.
x' = S x
     : nat
Coq < End s1.
Coq < Print x'.
x' = fun x : nat => S x
     : nat -> nat
Argument scope is [nat_scope]
Coq < Print x''.
x'' = \text{fun } x y : \text{nat} \Rightarrow \text{let } y' := y \text{ in } x' x + y'
     : nat -> nat -> nat
Argument scopes are [nat_scope nat_scope]
```

Notice the difference between the value of x' and x'' inside section s1 and outside.

Error messages:

1. This is not the last opened section

Remarks:

1. Most commands, like Hint, Notation, option management, ... which appear inside a section are canceled when the section is closed.

2.5 Module system 71

```
module_type
                       qualid
                  ::=
                       module_type with Definition qualid := term
                       module_type with Module qualid := qualid
                       qualid qualid ... qualid
                       !qualid qualid ... qualid
  module_binding
                        ( [Import|Export] ident ...
                                                             ident :
                  ::=
                                                                      module type )
                       module_binding ... module_binding
 module_bindings
                  ::=
module_expression
                       qualid ... qualid
                       !qualid ... qualid
```

Figure 2.3: Syntax of modules

2.5 Module system

The module system provides a way of packaging related elements together, as well as a mean of massive abstraction.

In the syntax of module application, the ! prefix indicates that any Inline directive in the type of the functor arguments will be ignored (see 2.5.4 below).

2.5.1 Module *ident*

This command is used to start an interactive module named ident.

Variants:

- 1. Module *ident module_bindings*Starts an interactive functor with parameters given by *module_bindings*.
- Module ident : module_type
 Starts an interactive module specifying its module type.
- Module ident module_bindings: module_type
 Starts an interactive functor with parameters given by module_bindings, and output module type module_type.
- 4. Module $ident <: module_type_1 <: \dots <: module_type_n$ Starts an interactive module satisfying each $module_type_i$.
- 5. Module *ident module_bindings* <: module_type₁ <: ... <: module_type_n

 Starts an interactive functor with parameters given by module_bindings. The output module type is verified against each module type module_type_i.
- 6. Module [Import|Export]

 Behaves like Module, but automatically imports or exports the module.

Reserved commands inside an interactive module:

1. Include module

Includes the content of *module* in the current interactive module. Here *module* can be a module expression or a module type expression. If *module* is a high-order module or module type expression then the system tries to instanciate *module* by the current interactive module.

2. Include $module_1 <+ \ldots <+ module_n$ is a shortcut for Include $module_1 \ldots$ Include $module_n$

2.5.2 End *ident*

This command closes the interactive module *ident*. If the module type was given the content of the module is matched against it and an error is signaled if the matching fails. If the module is basic (is not a functor) its components (constants, inductive types, submodules etc) are now available through the dot notation.

Error messages:

- 1. No such label ident
- 2. Signature components for label ident do not match
- 3. This is not the last opened module

2.5.3 Module ident := module expression

This command defines the module identifier *ident* to be equal to *module_expression*.

Variants:

- 1. Module *ident module_bindings* := module_expression

 Defines a functor with parameters given by module_bindings and body module_expression.
- Module ident module_bindings: module_type := module_expression
 Defines a functor with parameters given by module_bindings (possibly none), and output module type module_type, with body module_expression.
- 3. Module ident module_bindings <: module_type $_1 <$: ... <: module_type $_n :=$ module_expression
 - Defines a functor with parameters given by $module_bindings$ (possibly none) with body $module_expression$. The body is checked against each $module_type_i$.
- 4. Module ident module_bindings := $module_expression_1 <+ \dots <+ module_expression_n$

is equivalent to an interactive module where each module expression, are included.

2.5 Module system 73

2.5.4 Module Type ident

This command is used to start an interactive module type ident.

Variants:

1. Module Type *ident module_bindings*Starts an interactive functor type with parameters given by *module_bindings*.

Reserved commands inside an interactive module type:

1. Include module

Same as Include inside a module.

- 2. Include $module_1 <+ \ldots <+ module_n$ is a shortcut for Include $module_1 \ldots$ Include $module_n$
- 3. assumption_keyword Inline assums

The instance of this assumption will be automatically expanded at functor application, except when this functor application is prefixed by a ! annotation.

2.5.5 End ident

This command closes the interactive module type ident.

Error messages:

1. This is not the last opened module type

2.5.6 Module Type *ident* := module_type

Defines a module type ident equal to module_type.

Variants:

- Module Type ident module_bindings := module_type
 Defines a functor type ident specifying functors taking arguments module_bindings and returning module_type.
- 2. Module Type ident module_bindings := $module_type_1 <+ \ldots <+ module_type_n$ is equivalent to an interactive module type were each $module_type_i$ are included.

2.5.7 Declare Module *ident* : *module_type*

Declares a module *ident* of type *module_type*.

Variants:

1. Declare Module *ident module_bindings*: *module_type*Declares a functor with parameters *module_bindings* and output module type *module_type*.

Example

Let us define a simple module.

```
Coq < Module M.
Interactive Module M started
Coq < Definition T := nat.
T is defined
Coq < Definition x := 0.
x is defined
Coq < Definition y : bool.
1 subgoal
  bool
Coq < exact true.
No more subgoals.
Coq < Defined.
exact true.
y is defined
Cog < End M.
Module M is defined
```

Inside a module one can define constants, prove theorems and do any other things that can be done in the toplevel. Components of a closed module can be accessed using the dot notation:

A simple module type:

```
Coq < Module Type SIG.
Interactive Module Type SIG started
Coq < Parameter T : Set.
T is assumed
Coq < Parameter x : T.
x is assumed
Coq < End SIG.
Module Type SIG is defined</pre>
```

Now we can create a new module from M, giving it a less precise specification: the y component is dropped as well as the body of x.

2.5 Module system 75

The definition of N using the module type expression SIG with Definition T:=nat is equivalent to the following one:

```
Coq < Module Type SIG'.
Coq < Definition T : Set := nat.
Coq < Parameter x : T.
Coq < End SIG'.
Coq < Module N : SIG' := M.</pre>
```

If we just want to be sure that the our implementation satisfies a given module type without restricting the interface, we can use a transparent constraint

Now let us create a functor, i.e. a parametric module

```
Coq < Module Two (X Y: SIG).
Interactive Module Two started
Coq < Definition T := (X.T * Y.T)%type.
Coq < Definition x := (X.x, Y.x).
Coq < End Two.
Module Two is defined</pre>
```

and apply it to our modules and do some computations

In the end, let us define a module type with two sub-modules, sharing some of the fields and give one of its possible implementations:

```
Coq < Module Type SIG2.
Interactive Module Type SIG2 started
Coq < Declare Module M1 : SIG.
Module M1 is declared
Coq < Module M2 <: SIG.
Interactive Module M2 started
Coq < Definition T := M1.T.
T is defined
Coq < Parameter x : T.
x is assumed
Coq < End M2.</pre>
```

```
Module M2 is defined

Coq < End SIG2.

Module Type SIG2 is defined

Coq < Module Mod <: SIG2.

Coq < Module M1.

Coq < Definition T := nat.

Coq < Definition x := 1.

Coq < End M1.

Coq < Module M2 := M.

Coq < End Mod.

Module Mod is defined
```

Notice that M is a correct body for the component M2 since its T component is equal nat and hence M1.T as specified.

Remarks:

- 1. Modules and module types can be nested components of each other.
- 2. One can have sections inside a module or a module type, but not a module or a module type inside a section.
- 3. Commands like Hint or Notation can also appear inside modules and module types. Note that in case of a module definition like:

```
Module N : SIG := M.
or
Module N : SIG.
...
End N.
```

hints and the like valid for $\mathbb N$ are not those defined in $\mathbb M$ (or the module body) but the ones defined in $\mathbb SIG$.

2.5.8 Import qualid

If *qualid* denotes a valid basic module (i.e. its module type is a signature), makes its components available by their short names.

Example:

```
Coq < Module Mod.
Interactive Module Mod started
Coq < Definition T:=nat.
T is defined
Coq < Check T.
T
: Set</pre>
```

2.5 Module system 77

Some features defined in modules are activated only when a module is imported. This is for instance the case of notations (see Section 12.1).

Variants:

1. Export qualid

When the module containing the command Export qualid is imported, qualid is imported as well.

Error messages:

 $1. \ qualid$ is not a module

Warnings:

1. Warning: Trying to mask the absolute name qualid!

2.5.9 Print Module ident

Prints the module type and (optionally) the body of the module *ident*.

2.5.10 Print Module Type ident

Prints the module type corresponding to ident.

2.5.11 Locate Module qualid

Prints the full name of the module qualid.

2.6 Libraries and qualified names

2.6.1 Names of libraries and files

Libraries The theories developed in CoQ are stored in *library files* which are hierarchically classified into *libraries* and *sublibraries*. To express this hierarchy, library names are represented by qualified identifiers *qualid*, i.e. as list of identifiers separated by dots (see Section 1.2.3). For instance, the library file Mult of the standard CoQ library Arith has name Coq.Arith.Mult. The identifier that starts the name of a library is called a *library root*. All library files of the standard library of CoQ have reserved root Coq but library file names based on other roots can be obtained by using coqc options -I or -R (see Section 14.4.1). Also, when an interactive CoQ session starts, a library of root Top is started, unless option -top or -notop is set (see Section 14.4.1).

As library files are stored on the file system of the underlying operating system, a translation from file-system names to CoQ names is needed. In this translation, names in the file system are called *physical* paths while CoQ names are contrastingly called *logical* names. Logical names are mapped to physical paths using the commands Add LoadPath or Add Rec LoadPath (see Sections 6.6.3 and 6.6.4).

2.6.2 Qualified names

Library files are modules which possibly contain submodules which eventually contain constructions (axioms, parameters, definitions, lemmas, theorems, remarks or facts). The *absolute name*, or *full name*, of a construction in some library file is a qualified identifier starting with the logical name of the library file, followed by the sequence of submodules names encapsulating the construction and ended by the proper name of the construction. Typically, the absolute name <code>Coq.Init.Logic.eq</code> denotes Leibniz' equality defined in the module <code>Logic</code> in the sublibrary <code>Init</code> of the standard library of Coq.

The proper name that ends the name of a construction is the *short name* (or sometimes *base name*) of the construction (for instance, the short name of Coq.Init.Logic.eq is eq). Any partial suffix of the absolute name is a *partially qualified name* (e.g. Logic.eq is a partially qualified name for Coq.Init.Logic.eq). Especially, the short name of a construction is its shortest partially qualified name.

CoQ does not accept two constructions (definition, theorem, ...) with the same absolute name but different constructions can have the same short name (or even same partially qualified names as soon as the full names are different).

Notice that the notion of absolute, partially qualified and short names also applies to library file names.

Visibility CoQ maintains a table called *name table* which maps partially qualified names of constructions to absolute names. This table is updated by the commands Require (see 6.5.1), Import and Export (see 2.5.8) and also each time a new declaration is added to the context. An absolute name is called *visible* from a given short or partially qualified name when this latter name is enough to denote it. This means that the short or partially qualified name is mapped to the absolute name in CoQ name table.

A similar table exists for library file names. It is updated by the vernacular commands Add LoadPath and Add Rec LoadPath (or their equivalent as options of the CoQ executables, -I and -R).

It may happen that a visible name is hidden by the short name or a qualified name of another construction. In this case, the name that has been hidden must be referred to using one more level of

qualification. To ensure that a construction always remains accessible, absolute names can never be hidden.

Examples:

See also: Command Locate in Section 6.3.10 and Locate Library in Section 6.6.11.

2.7 Implicit arguments

An implicit argument of a function is an argument which can be inferred from contextual knowledge. There are different kinds of implicit arguments that can be considered implicit in different ways. There are also various commands to control the setting or the inference of implicit arguments.

2.7.1 The different kinds of implicit arguments

Implicit arguments inferable from the knowledge of other arguments of a function

The first kind of implicit arguments covers the arguments that are inferable from the knowledge of the type of other arguments of the function, or of the type of the surrounding context of the application. Especially, such implicit arguments correspond to parameters dependent in the type of the function. Typical implicit arguments are the type arguments in polymorphic functions. There are several kinds of such implicit arguments.

Strict Implicit Arguments. An implicit argument can be either strict or non strict. An implicit argument is said *strict* if, whatever the other arguments of the function are, it is still inferable from the type of some other argument. Technically, an implicit argument is strict if it corresponds to a parameter which is not applied to a variable which itself is another parameter of the function (since this parameter may erase its arguments), not in the body of a match, and not itself applied or matched against patterns (since the original form of the argument can be lost by reduction).

For instance, the first argument of

```
cons: forall A:Set, A -> list A -> list A
```

in module List.v is strict because list is an inductive type and A will always be inferable from the type list A of the third argument of cons. On the contrary, the second argument of a term of type

```
forall P:nat->Prop, forall n:nat, P n -> ex nat P
```

is implicit but not strict, since it can only be inferred from the type P n of the third argument and if P is, e.g., fun $_$ => True, it reduces to an expression where n does not occur any longer. The first argument P is implicit but not strict either because it can only be inferred from P n and P is not canonically inferable from an arbitrary n and the normal form of P n (consider e.g. that n is 0 and the third argument has type True, then any P of the form fun n => match n with 0 => True | $_$ => anything end would be a solution of the inference problem).

Contextual Implicit Arguments. An implicit argument can be *contextual* or not. An implicit argument is said *contextual* if it can be inferred only from the knowledge of the type of the context of the current expression. For instance, the only argument of

```
nil : forall A:Set, list A
```

is contextual. Similarly, both arguments of a term of type

are contextual (moreover, n is strict and P is not).

Reversible-Pattern Implicit Arguments. There is another class of implicit arguments that can be reinferred unambiguously if all the types of the remaining arguments are known. This is the class of implicit arguments occurring in the type of another argument in position of reversible pattern, which means it is at the head of an application but applied only to uninstantiated distinct variables. Such an implicit argument is called *reversible-pattern implicit argument*. A typical example is the argument P of nat rec in

```
nat\_rec : forall P : nat -> Set, P 0 -> (forall n : nat, P n -> P (S n)) -> forall x : nat, P x.
```

(P is reinferable by abstracting over n in the type P n).

See Section 2.7.9 for the automatic declaration of reversible-pattern implicit arguments.

Implicit arguments inferable by resolution

This corresponds to a class of non dependent implicit arguments that are solved based on the structure of their type only.

2.7.2 Maximal or non maximal insertion of implicit arguments

In case a function is partially applied, and the next argument to be applied is an implicit argument, two disciplines are applicable. In the first case, the function is considered to have no arguments furtherly: one says that the implicit argument is not maximally inserted. In the second case, the function is considered to be implicitly applied to the implicit arguments it is waiting for: one says that the implicit argument is maximally inserted.

Each implicit argument can be declared to have to be inserted maximally or non maximally. This can be governed argument per argument by the command Implicit Arguments (see 2.7.4) or globally by the command Set Maximal Implicit Insertion (see 2.7.10). See also Section 2.7.14.

2.7.3 Casual use of implicit arguments

In a given expression, if it is clear that some argument of a function can be inferred from the type of the other arguments, the user can force the given argument to be guessed by replacing it by "_". If possible, the correct argument will be automatically generated.

Error messages:

```
    Cannot infer a term for this placeholder
    Coo was not able to deduce an instantiation of a " ".
```

2.7.4 Declaration of implicit arguments for a constant

In case one wants that some arguments of a given object (constant, inductive types, constructors, assumptions, local or not) are always inferred by Coq, one may declare once and for all which are the expected implicit arguments of this object. There are two ways to do this, a priori and a posteriori.

Implicit Argument Binders

In the first setting, one wants to explicitly give the implicit arguments of a constant as part of its definition. To do this, one has to surround the bindings of implicit arguments by curly braces:

```
Coq < Definition id \{A : Type\} (x : A) : A := x. id is defined
```

This automatically declares the argument A of id as a maximally inserted implicit argument. One can then do as-if the argument was absent in every situation but still be able to specify it if needed:

The syntax is supported in all top-level definitions: Definition, Fixpoint, Lemma and so on. For (co-)inductive datatype declarations, the semantics are the following: an inductive parameter declared as an implicit argument need not be repeated in the inductive definition but will become implicit for the constructors of the inductive only, not the inductive type itself. For example:

```
Coq < Inductive list {A : Type} : Type :=
Coq < | nil : list
Coq < | cons : A -> list -> list.
list is defined
list_rect is defined
list_ind is defined
list_rec is defined
Coq < Print list.
Inductive list (A : Type) : Type := nil : list | cons : A -> list -> list
For list: Argument A is implicit and maximally inserted
```

```
For nil: Argument A is implicit and maximally inserted For cons: Argument A is implicit and maximally inserted For list: Argument scope is [type_scope] For nil: Argument scope is [type_scope] For cons: Argument scopes are [type_scope _ _]
```

One can always specify the parameter if it is not uniform using the usual implicit arguments disambiguation syntax.

Declaring Implicit Arguments

To set implicit arguments for a constant a posteriori, one can use the command:

```
Arguments qualid possibly_bracketed_ident ... possibly_bracketed_ident
```

where the list of *possibly_bracketed_ident* is the list of all arguments of *qualid* where the ones to be declared implicit are surrounded by square brackets and the ones to be declared as maximally inserted implicits are surrounded by curly braces.

After the above declaration is issued, implicit arguments can just (and have to) be skipped in any expression involving an application of *qualid*.

Variants:

1. Global Arguments qualid possibly_bracketed_ident ... possibly_bracketed_ident

Tell to recompute the implicit arguments of *qualid* after ending of the current section if any, enforcing the implicit arguments known from inside the section to be the ones declared by the command.

- 2. Local Arguments *qualid possibly_bracketed_ident* ... *possibly_bracketed_ident* When in a module, tell not to activate the implicit arguments of *qualid* declared by this command to contexts that require the module.
- 3. [Global / Local] Arguments qualid [possibly_bracketed_ident ... possibly_bracketed_ident , ... , possibly_bracketed_ident ... possibly_bracketed_ident]

For names of constants, inductive types, constructors, lemmas which can only be applied to a fixed number of arguments (this excludes for instance constants whose type is polymorphic), multiple implicit arguments decflarations can be given. Depending on the number of arguments *qualid* is applied to in practice, the longest applicable list of implicit arguments is used to select which implicit arguments are inserted.

For printing, the omitted arguments are the ones of the longest list of implicit arguments of the sequence.

Example:

```
Coq < Inductive list (A:Type) : Type :=
Coq < | nil : list A
Coq < | cons : A -> list A -> list A.
Coq < Check (cons nat 3 (nil nat)).
```

```
cons nat 3 (nil nat)
    : list nat
Coq < Arguments cons [A] _ _.
Coq < Arguments nil [A].
Coq < Check (cons 3 nil).
cons 3 nil
    : list nat
Coq < Fixpoint map (A B:Type) (f:A->B) (1:list A) : list B :=
Coq < match 1 with nil => nil | cons a t => cons (f a) (map A B f t) end.
map is recursively defined (decreasing on 4th argument)
Coq < Fixpoint length (A:Type) (1:list A) : nat :=
Coq < match l with nil => 0 | cons _ m => S (length A m) end.
length is recursively defined (decreasing on 2nd argument)
Coq < Arguments map [A B] f l.
Coq < Arguments length \{A\} 1. (* A has to be maximally inserted *)
Coq < Check (fun l:list (list nat) => map length l).
fun l : list (list nat) => map length l
     : list (list nat) -> list nat
Coq < Arguments map [A B] f l, [A] B f l, A B f l.
Coq < Check (fun 1 => map length 1 = map (list nat) nat length 1).
fun 1 : list (list nat) => map length l = map length l
     : list (list nat) -> Prop
```

Remark: To know which are the implicit arguments of an object, use the command Print Implicit (see 2.7.14).

Remark: If the list of arguments is empty, the command removes the implicit arguments of *qualid*.

2.7.5 Automatic declaration of implicit arguments for a constant

CoQ can also automatically detect what are the implicit arguments of a defined object. The command is just

```
Arguments qualid : default implicits
```

The auto-detection is governed by options telling if strict, contextual, or reversible-pattern implicit arguments must be considered or not (see Sections 2.7.7, 2.7.8, 2.7.9 and also 2.7.10).

Variants:

- 1. Global Arguments *qualid*: default implicits

 Tell to recompute the implicit arguments of *qualid* after ending of the current section if any.
- 2. Local Arguments qualid : default implicits

When in a module, tell not to activate the implicit arguments of *qualid* computed by this declaration to contexts that requires the module.

Example:

The computation of implicit arguments takes account of the unfolding of constants. For instance, the variable p below has type (Transitivity R) which is reducible to forall x,y:U, R x y \rightarrow forall z:U, R y z \rightarrow R x z. As the variables x, y and z appear strictly in body of the type, they are implicit.

```
Coq < Variable X : Type.
Coq < Definition Relation := X -> X -> Prop.
Coq < Definition Transitivity (R:Relation) :=</pre>
       forall x y:X, R x y \rightarrow forall z:X, R y z \rightarrow R x z.
Coq < Variables (R : Relation) (p : Transitivity R).
Coq < Arguments p : default implicits.
Coq < Print p.
*** [ p : Transitivity R ]
Expanded type for implicit arguments
p : forall x y : X, R x y -> forall z : X, R y z -> R x z
Arguments x, y, z are implicit
Coq < Print Implicit p.
p : forall x y : X, R x y -> forall z : X, R y z -> R x z
Arguments x, y, z are implicit
Coq < Variables (a b c : X) (r1 : R a b) (r2 : R b c).
Coq < Check (p r1 r2).
p r1 r2
     : R a c
```

Implicit arguments can be cleared with the following syntax:

```
Arguments qualid : clear implicits
```

In the following example implict arguments declarations for the nil constant are cleared:

```
Coq < Arguments cons : clear implicits.
Coq < Print Implicit cons.
cons : forall A : Set, A -> list A -> list A
```

2.7.6 Mode for automatic declaration of implicit arguments

In case one wants to systematically declare implicit the arguments detectable as such, one may switch to the automatic declaration of implicit arguments mode by using the command

```
Set Implicit Arguments.
```

Conversely, one may unset the mode by using Unset Implicit Arguments. The mode is off by default. Auto-detection of implicit arguments is governed by options controlling whether strict and contextual implicit arguments have to be considered or not.

2.7.7 Controlling strict implicit arguments

When the mode for automatic declaration of implicit arguments is on, the default is to automatically set implicit only the strict implicit arguments plus, for historical reasons, a small subset of the non strict implicit arguments. To relax this constraint and to set implicit all non strict implicit arguments by default, use the command

```
Unset Strict Implicit.
```

Conversely, use the command Set Strict Implicit to restore the original mode that declares implicit only the strict implicit arguments plus a small subset of the non strict implicit arguments.

In the other way round, to capture exactly the strict implicit arguments and no more than the strict implicit arguments, use the command:

```
Set Strongly Strict Implicit.
```

Conversely, use the command Unset Strongly Strict Implicit to let the option "Strict Implicit" decide what to do.

Remark: In versions of CoQ prior to version 8.0, the default was to declare the strict implicit arguments as implicit.

2.7.8 Controlling contextual implicit arguments

By default, CoQ does not automatically set implicit the contextual implicit arguments. To tell CoQ to infer also contextual implicit argument, use command

```
Set Contextual Implicit.
```

Conversely, use command Unset Contextual Implicit to unset the contextual implicit mode.

2.7.9 Controlling reversible-pattern implicit arguments

By default, CoQ does not automatically set implicit the reversible-pattern implicit arguments. To tell CoQ to infer also reversible-pattern implicit argument, use command

```
Set Reversible Pattern Implicit.
```

Conversely, use command Unset Reversible Pattern Implicit to unset the reversible-pattern implicit mode.

```
term ++= @ qualid term ... term
| @ qualid
| qualid argument ... argument

argument ::= term
| (ident:=term)
```

Figure 2.4: Syntax for explicitly giving implicit arguments

2.7.10 Controlling the insertion of implicit arguments not followed by explicit arguments

Implicit arguments can be declared to be automatically inserted when a function is partially applied and the next argument of the function is an implicit one. In case the implicit arguments are automatically declared (with the command Set Implicit Arguments), the command

```
Set Maximal Implicit Insertion.
```

is used to tell to declare the implicit arguments with a maximal insertion status. By default, automatically declared implicit arguments are not declared to be insertable maximally. To restore the default mode for maximal insertion, use command Unset Maximal Implicit Insertion.

2.7.11 Explicit applications

In presence of non strict or contextual argument, or in presence of partial applications, the synthesis of implicit arguments may fail, so one may have to give explicitly certain implicit arguments of an application. The syntax for this is (ident := term) where ident is the name of the implicit argument and term is its corresponding explicit term. Alternatively, one can locally deactivate the hiding of implicit arguments of a function by using the notation $@qualid term_1 ... term_n$. This syntax extension is given Figure 2.4.

Example (continued):

```
Coq < Check (p r1 (z:=c)).
p r1 (z:=c)
     : R b c -> R a c

Coq < Check (p (x:=a) (y:=b) r1 (z:=c) r2).
p r1 r2
     : R a c</pre>
```

2.7.12 Renaming implicit arguments

Implicit arguments names can be redefined using the following syntax:

```
Arguments qualid name ... name : rename
```

Without the rename flag, Arguments can be used to assert that a given constant has the expected number of arguments and that these arguments are named as expected.

Example (continued):

2.7.13 Deprecated Implicit Arguments command

Before version 8.4 the command to specify the implicit arguments of a constant was Implicit Arguments followed by a bracketed list of identifiers. Starting with Coq 8.4 the Argument command must be used (see 2.7.4).

```
Coq < Require Import List.
Coq < Implicit Arguments map [A B].
Warning: Implicit Arguments is deprecated; use Arguments instead
Coq < Implicit Arguments length [[A]].
Warning: Implicit Arguments is deprecated; use Arguments instead</pre>
```

The first example declares the arguments of map named A and B implicit. The second one declares the argument named A implicit and maximally inserted.

2.7.14 Displaying what the implicit arguments are

To display the implicit arguments associated to an object, and to know if each of them is to be used maximally or not, use the command

```
Print Implicit qualid.
```

2.7.15 Explicit displaying of implicit arguments for pretty-printing

By default the basic pretty-printing rules hide the inferable implicit arguments of an application. To force printing all implicit arguments, use command

```
Set Printing Implicit.
```

Conversely, to restore the hiding of implicit arguments, use command

```
Unset Printing Implicit.
```

By default the basic pretty-printing rules display the implicit arguments that are not detected as strict implicit arguments. This "defensive" mode can quickly make the display cumbersome so this can be deactivated by using the command

```
Unset Printing Implicit Defensive.
```

Conversely, to force the display of non strict arguments, use command

```
Set Printing Implicit Defensive.
```

See also: Set Printing All in Section 2.9.

2.7.16 Interaction with subtyping

When an implicit argument can be inferred from the type of more than one of the other arguments, then only the type of the first of these arguments is taken into account, and not an upper type of all of them. As a consequence, the inference of the implicit argument of "=" fails in

```
Coq < Check nat = Prop.
but succeeds in
Coq < Check Prop = nat.</pre>
```

2.7.17 Deactivation of implicit arguments for parsing

Use of implicit arguments can be deactivated by issuing the command:

```
Set Parsing Explicit.
```

In this case, all arguments of constants, inductive types, constructors, etc, including the arguments declared as implicit, have to be given as if none arguments were implicit. By symmetry, this also affects printing. To restore parsing and normal printing of implicit arguments, use:

```
Set Parsing Explicit.
```

2.7.18 Canonical structures

A canonical structure is an instance of a record/structure type that can be used to solve equations involving implicit arguments. Assume that *qualid* denotes an object $(Build_struc\ c_1\ ...\ c_n)$ in the structure *struct* of which the fields are $x_1, ..., x_n$. Assume that *qualid* is declared as a canonical structure using the command

```
Canonical Structure qualid.
```

Then, each time an equation of the form $(x_i) =_{\beta\delta\iota\zeta} c_i$ has to be solved during the type-checking process, *qualid* is used as a solution. Otherwise said, *qualid* is canonically used to extend the field c_i into a complete structure built on c_i .

Canonical structures are particularly useful when mixed with coercions and strict implicit arguments. Here is an example.

```
Coq < Require Import Relations.
Coq < Require Import EqNat.
Coq < Set Implicit Arguments.
Coq < Unset Strict Implicit.
Coq < Structure Setoid : Type :=
Coq < {Carrier :> Set;
```

```
Coq < Equal : relation Carrier;
Coq < Prf_equiv : equivalence Carrier Equal }.

Coq < Definition is_law (A B:Setoid) (f:A -> B) :=
Coq < forall x y:A, Equal x y -> Equal (f x) (f y).

Coq < Axiom eq_nat_equiv : equivalence nat eq_nat.

Coq < Definition nat_setoid : Setoid := Build_Setoid eq_nat_equiv.
Coq < Canonical Structure nat_setoid.</pre>
```

Thanks to nat_setoid declared as canonical, the implicit arguments A and B can be synthesized in the next statement.

Remark: If a same field occurs in several canonical structure, then only the structure declared first as canonical is considered.

Variants:

```
    Canonical Structure ident := term : type.
        Canonical Structure ident := term.
        Canonical Structure ident : type := term.
        These are equivalent to a regular definition of ident followed by the declaration Canonical Structure ident.
```

See also: more examples in user contribution category (Rocq/ALGEBRA).

Print Canonical Projections.

This displays the list of global names that are components of some canonical structure. For each of them, the canonical structure of which it is a projection is indicated. For instance, the above example gives the following output:

```
Coq < Print Canonical Projections.
eq_nat_equiv <- Prf_equiv ( nat_setoid )
eq_nat <- Equal ( nat_setoid )
nat <- Carrier ( nat_setoid )</pre>
```

2.7.19 Implicit types of variables

It is possible to bind variable names to a given type (e.g. in a development using arithmetic, it may be convenient to bind the names n or m to the type nat of natural numbers). The command for that is

```
Implicit Types ident ... ident : type
```

The effect of the command is to automatically set the type of bound variables starting with *ident* (either *ident* itself or *ident* followed by one or more single quotes, underscore or digits) to be *type* (unless the bound variable is already declared with an explicit type in which case, this latter type is considered).

Example:

Variants:

- 1. Implicit Type *ident*: *type*This is useful for declaring the implicit type of a single variable.
- 2. Implicit Types ($ident_{1,1}...ident_{1,k_1}: term_1$) . . . ($ident_{n,1}...ident_{n,k_n}: term_n$) . Adds n blocks of implicit types with different specifications.

2.7.20 Implicit generalization

Implicit generalization is an automatic elaboration of a statement with free variables into a closed statement where these variables are quantified explicitly. Implicit generalization is done inside binders starting with a ' and terms delimited by '{ } and '(), always introducing maximally inserted implicit arguments for the generalized variables. Inside implicit generalization delimiters, free variables in the current context are automatically quantified using a product or a lambda abstraction to generate a closed term. In the following statement for example, the variables n and m are autamatically generalized and become explicit arguments of the lemma as we are using '():

2.8 Coercions 91

One can control the set of generalizable identifiers with the Generalizable vernacular command to avoid unexpected generalizations when mistyping identifiers. There are three variants of the command:

```
Generalizable (All|No) Variable(s)? (ident_1 ident_n)?.
```

Variants:

- 1. Generalizable All Variables. All variables are candidate for generalization if they appear free in the context under a generalization delimiter. This may result in confusing errors in case of typos. In such cases, the context will probably contain some unexpected generalized variable.
- 2. Generalizable No Variables. Disable implicit generalization entirely. This is the default behavior.
- 3. Generalizable Variable (s)? $ident_1$ $ident_n$. Allow generalization of the given identifiers only. Calling this command multiple times adds to the allowed identifiers.
- 4. Global Generalizable Allows to export the choice of generalizable variables.

One can also use implicit generalization for binders, in which case the generalized variables are added as binders and set maximally implicit.

The generalizing binders `{ } and `() work similarly to their explicit counterparts, only binding the generalized variables implicitly, as maximally-inserted arguments. In these binders, the binding name for the bound object is optional, whereas the type is mandatory, dually to regular binders.

2.8 Coercions

Coercions can be used to implicitly inject terms from one *class* in which they reside into another one. A *class* is either a sort (denoted by the keyword Sortclass), a product type (denoted by the keyword Funclass), or a type constructor (denoted by its name), e.g. an inductive type or any constant with a type of the form forall $(x_1 : A_1)..(x_n : A_n)$, s where s is a sort.

Then the user is able to apply an object that is not a function, but can be coerced to a function, and more generally to consider that a term of type A is of type B provided that there is a declared coercion between A and B. The main command is

```
Coercion qualid : class_1 > -> class_2.
```

which declares the construction denoted by qualid as a coercion between class₁ and class₂.

More details and examples, and a description of the commands related to coercions are provided in Chapter 18.

2.9 Printing constructions in full

Coercions, implicit arguments, the type of pattern-matching, but also notations (see Chapter 12) can obfuscate the behavior of some tactics (typically the tactics applying to occurrences of subterms are sensitive to the implicit arguments). The command

```
Set Printing All.
```

deactivates all high-level printing features such as coercions, implicit arguments, returned type of pattern-matching, notations and various syntactic sugar for pattern-matching or record projections. Otherwise said, Set Printing All includes the effects of the commands Set Printing Implicit, Set Printing Coercions, Set Printing Synth, Unset Printing Projections and Unset Printing Notations. To reactivate the high-level printing features, use the command

```
Unset Printing All.
```

2.10 Printing universes

The following command:

```
Set Printing Universes
```

activates the display of the actual level of each occurrence of Type. See Section 4.1.1 for details. This wizard option, in combination with Set Printing All (see section 2.9) can help to diagnose failures to unify terms apparently identical but internally different in the Calculus of Inductive Constructions. To reactivate the display of the actual level of the occurrences of Type, use

```
Unset Printing Universes.
```

The constraints on the internal level of the occurrences of Type (see Section 4.1.1) can be printed using the command

```
Print [Sorted] Universes.
```

If the optional Sorted option is given, each universe will be made equivalent to a numbered label reflecting its level (with a linear ordering) in the universe hierarchy.

This command also accepts an optional output filename:

```
Print [Sorted] Universes string.
```

If *string* ends in .dot or .gv, the constraints are printed in the DOT language, and can be processed by Graphviz tools. The format is unspecified if *string* doesn't end in .dot or .gv.

2.11 Existential variables

Coq terms can include existential variables. An existential variable is a placeholder intended to eventually be replaced by an actual subterm though which subterm it will be replaced by is still unknown.

Existential variables are generated in place of unsolvable implicit arguments when using commands such as Check (see Section 6.3.1) or in place of unsolvable instances when using tactics such as eapply (see Section 4). They can only appear as the result of a command displaying a term and

2.11 Existential variables 93

they are represented by "?" followed by a number. They cannot be entered by the user (though they can be generated from "_" when the corresponding implicit argument is unsolvable).

A given existential variable name can occur several times in a term meaning the corresponding expected instance is shared. Each existential variable is relative to a context, as shown by Show Existential when in the process of proving a goal (see Section 10). Henceforth, each occurrence of an existential variable in a term is subject to an instance of the variables of its context of definition which is specific to this occurrence.

2.11.1 Explicit displaying of existential instances for pretty-printing

The command:

```
Set Printing Existential Instances
```

activates the display of how the context of an existential variable is instantiated on each of its occurrences.

To deactivate the display of the instances of existential variables, use

Unset Printing Existential Instances.

Chapter 3

The Coq library

The Coo library is structured into two parts:

The initial library: it contains elementary logical notions and data-types. It constitutes the basic state of the system directly available when running CoQ;

The standard library: general-purpose libraries containing various developments of CoQ axiomatizations about sets, lists, sorting, arithmetic, etc. This library comes with the system and its modules are directly accessible through the Require command (see Section 6.5.1);

In addition, user-provided libraries or developments are provided by CoQ users' community. These libraries and developments are available for download at http://coq.inria.fr (see Section 3.3). The chapter briefly reviews the CoQ libraries.

3.1 The basic library

This section lists the basic notions and results which are directly available in the standard CoQ system¹.

3.1.1 Notations

This module defines the parsing and pretty-printing of many symbols (infixes, prefixes, etc.). However, it does not assign a meaning to these notations. The purpose of this is to define and fix once for all the precedence and associativity of very common notations. The main notations fixed in the initial state are listed on Figure 3.1.

3.1.2 Logic

The basic library of CoQ comes with the definitions of standard (intuitionistic) logical connectives (they are defined as inductive constructions). They are equipped with an appealing syntax enriching the (subclass *form*) of the syntactic class *term*. The syntax extension is shown on Figure 3.2.

Remark: Implication is not defined but primitive (it is a non-dependent product of a proposition over another proposition). There is also a primitive universal quantification (it is a dependent product over a

¹Most of these constructions are defined in the Prelude module in directory theories/Init at the CoQ root directory; this includes the modules Notations, Logic, Datatypes, Specif, Peano, Wf and Tactics. Module Logic_Type also makes it in the initial state

96 3 The Coq library

Notation	Precedence	Associativity
_ <-> _	95	no
_ \/ _	85	right
_ /\ _	80	right
~ _	75	right
_ = _	70	no
_ = _ = _	70	no
_ = _ :> _	70	no
_ <> _	70	no
_ <> _ :> _	70	no
_ < _	70	no
_ > _	70	no
_ <= _	70	no
_ >= _	70	no
_ < _ < _	70	no
_ < _ <= _	70	no
_ <= _ < _	70	no
_ <= _ <= _	70	no
_ + _	50	left
_ _	50	left
	50	left
_ * _	40	left
_ && _	40	left
_ / _	40	left
	35	right
/ _	35	right
_ ^ _	30	right

Figure 3.1: Notations in the initial state

form	::=	True	(True)
		False	(False)
		~ form	(not)
		form /\ form	(and)
		form \/ form	(or)
		form -> form	(primitive implication)
		form <-> form	(iff)
		forall ident : type , form	(primitive for all)
		<pre>exists ident[: specif], form</pre>	(ex)
		exists2 ident[: specif], form & form	(ex2)
		term = term	(eq)
		term = term :> specif	(eq)

Figure 3.2: Syntax of formulas

3.1 The basic library

proposition). The primitive universal quantification allows both first-order and higher-order quantification.

Propositional Connectives

First, we find propositional calculus connectives:

Quantifiers

Then we find first-order quantifiers:

```
Coq < Definition all (A:Set) (P:A -> Prop) := forall x:A, P x.
Coq < Inductive ex (A: Set) (P:A -> Prop) : Prop :=
Coq < ex_intro (x:A) (_:P x).

Coq < Inductive ex2 (A:Set) (P Q:A -> Prop) : Prop :=
Coq < ex_intro2 (x:A) (_:P x) (_:Q x).</pre>
```

The following abbreviations are allowed:

```
exists x:A, P
exists x, P
exists x, P
exists2 x:A, P & Q
exists2 x, P
```

The type annotation ": A" can be omitted when A can be synthesized by the system.

Equality

Then, we find equality, defined as an inductive relation. That is, given a type \mathbb{A} and an \mathbb{X} of type \mathbb{A} , the predicate (eq \mathbb{A} \mathbb{X}) is the smallest one which contains \mathbb{X} . This definition, due to Christine Paulin-Mohring, is equivalent to define eq as the smallest reflexive relation, and it is also equivalent to Leibniz' equality.

```
Coq < Inductive eq (A:Type) (x:A) : A -> Prop :=
Coq < eq_refl : eq A x x.</pre>
```

Lemmas

Finally, a few easy lemmas are provided.

```
Coq < Theorem absurd : forall A C:Prop, A -> ~ A -> C.
Coq < Section equality.
Coq < Variables A B : Type.
Coq < Variable f : A -> B.
Coq < Variables x y z : A.
Coq < Theorem eq_sym : x = y \rightarrow y = x.
Coq < Theorem eq_trans : x = y \rightarrow y = z \rightarrow x = z.
Coq < Theorem f_{q} = qual : x = y \rightarrow f x = f y.
Coq < Theorem not_eq_sym : x <> y -> y <> x.
Coq < End equality.
Coq < Definition eq_ind_r :</pre>
        forall (A:Type) (x:A) (P:A->Prop), P x -> forall y:A, y = x -> P y.
Coq < Definition eq_rec_r :</pre>
Coq < forall (A:Type) (x:A) (P:A->Set), P x -> forall y:A, y = x -> P y.
Coq < Definition eq_rect_r :</pre>
Coq < forall (A:Type) (x:A) (P:A->Type), P x -> forall y:A, y = x -> P y.
Coq < Hint Immediate eq_sym not_eq_sym : core.</pre>
```

The theorem f_{qual} is extended to functions with two to five arguments. The theorem are names f_{qual} , f_{qual} , f_{qual} . For instance f_{qual} is defined the following way.

```
Coq < Theorem f_equal3 : Coq < forall (A1 A2 A3 B:Type) (f:A1 -> A2 -> A3 -> B) Coq < (x1 y1:A1) (x2 y2:A2) (x3 y3:A3), Coq < x1 = y1 -> x2 = y2 -> x3 = y3 -> f x1 x2 x3 = f y1 y2 y3.
```

3.1 The basic library

```
specif
        ::=
             specif * specif
                                                      (prod)
             specif + specif
                                                        (sum)
             specif + { specif }
                                                     (sumor)
             { specif } + { specif }
                                                  (sumbool)
             { ident : specif | form }
                                                        (sig)
             { ident : specif | form & form }
                                                      (sig2)
             { ident : specif & specif }
                                                      (siqT)
             { ident : specif & specif & specif }
                                                     (sigT2)
             (term, term)
                                                      (pair)
 term
       ::=
```

Figure 3.3: Syntax of data-types and specifications

3.1.3 Datatypes

In the basic library, we find the definition² of the basic data-types of programming, again defined as inductive constructions over the sort Set. Some of them come with a special syntax shown on Figure 3.3.

Programming

```
Coq < Inductive unit : Set := tt.
Coq < Inductive bool : Set := true | false.
Coq < Inductive nat : Set := 0 | S (n:nat).
Coq < Inductive option (A:Set) : Set := Some (_:A) | None.
Coq < Inductive identity (A:Type) (a:A) : A -> Type :=
Coq < refl_identity : identity A a a.</pre>
```

Note that zero is the letter 0, and not the numeral 0.

The predicate identity is logically equivalent to equality but it lives in sort Type. It is mainly maintained for compatibility.

We then define the disjoint sum of A+B of two sets A and B, and their product A*B.

Some operations on bool are also provided: andb (with infix notation &&), orb (with infix notation $|\ |\ |$), xorb, implb and negb.

²They are in Datatypes.v

3.1.4 Specification

The following notions³ allow to build new data-types and specifications. They are available with the syntax shown on Figure 3.3.

For instance, given A: Type and P:A->Prop, the construct $\{x:A \mid P x\}$ (in abstract syntax (sig A P)) is a Type. We may build elements of this set as (exist x p) whenever we have a witness x:A with its justification p:P x.

From such a (exist x p) we may in turn extract its witness x: A (using an elimination construct such as match) but *not* its justification, which stays hidden, like in an abstract data-type. In technical terms, one says that sig is a "weak (dependent) sum". A variant sig2 with two predicates is also provided.

```
Coq < Inductive sig (A:Set) (P:A \rightarrow Prop) : Set := exist (x:A) (_:P x). Coq < Inductive sig2 (A:Set) (P Q:A \rightarrow Prop) : Set := Coq < exist2 (x:A) (_:P x) (_:Q x).
```

A "strong (dependent) sum" $\{x : A \in P \mid x\}$ may be also defined, when the predicate P is now defined as a constructor of types in Type.

```
Coq < Inductive sigT (A:Type) (P:A -> Type) : Type := existT (x:A) (_:P x).
Coq < Section Projections.
Coq < Variable A : Type.
Coq < Variable P : A -> Type.
Coq < Definition projT1 (H:sigT A P) := let (x, h) := H in x.
Coq < Definition projT2 (H:sigT A P) :=
Coq < match H return P (projT1 H) with
Coq < existT x h => h
Coq < end.
Coq < End Projections.
Coq < Inductive sigT2 (A: Type) (P Q:A -> Type) : Type :=
Coq < existT2 (x:A) (_:P x) (_:Q x).</pre>
```

A related non-dependent construct is the constructive sum {A}+{B} of two propositions A and B.

```
Coq < Inductive sumbool (A B:Prop) : Set := left (_:A) | right (_:B).</pre>
```

This sumbool construct may be used as a kind of indexed boolean data-type. An intermediate between sumbool and sum is the mixed sumor which combines A:Set and B:Prop in the Set $A+\{B\}$.

```
Coq < Inductive sumor (A:Set) (B:Prop) : Set :=
Coq < | inleft (_:A)
Coq < | inright (_:B).</pre>
```

We may define variants of the axiom of choice, like in Martin-Löf's Intuitionistic Type Theory.

³They are defined in module Specif.v

3.1 The basic library

```
Coq < Lemma Choice :</pre>
Coq < forall (S S':Set) (R:S -> S' -> Prop),
        (forall x:S, \{y : S' \mid R \times y\}) ->
Coq <
Coa <
         \{f : S \rightarrow S' \mid forall z:S, Rz (fz)\}.
Coq < Lemma Choice2 :</pre>
Coq < forall (S S':Set) (R:S -> S' -> Set),
       (forall x:S, {y : S' & R x y}) ->
         \{f : S \rightarrow S' \& forall z:S, Rz (fz)\}.
Coq <
Coq < Lemma bool_choice :</pre>
Coq < forall (S:Set) (R1 R2:S -> Prop),
        (forall x:S, {R1 x} + {R2 x}) \rightarrow
Coq <
Coq <
          {f : S -> bool |
Coa <
         forall x:S, f x = true /\ R1 \times // f x = false // R2 x}.
```

The next construct builds a sum between a data-type A: Type and an exceptional value encoding errors:

```
Coq < Definition Exc := option.
Coq < Definition value := Some.
Coq < Definition error := None.</pre>
```

This module ends with theorems, relating the sorts Set or Type and Prop in a way which is consistent with the realizability interpretation.

```
Coq < Definition except := False_rec.
Coq < Theorem absurd_set : forall (A:Prop) (C:Set), A -> ~ A -> C.
Coq < Theorem and_rect :
Coq < forall (A B:Prop) (P:Type), (A -> B -> P) -> A /\ B -> P.
```

3.1.5 Basic Arithmetics

The basic library includes a few elementary properties of natural numbers, together with the definitions of predecessor, addition and multiplication⁴. It also provides a scope nat_scope gathering standard notations for common operations (+, *) and a decimal notation for numbers. That is he can write 3 for (S (S O)). This also works on the left hand side of a match expression (see for example section 8.2.3). This scope is opened by default.

The following example is not part of the standard library, but it shows the usage of the notations:

```
Coq < Fixpoint even (n:nat) : bool :=
Coq < match n with
Coq < | 0 => true
Coq < | 1 => false
Coq < | S (S n) => even n
Coq < end.</pre>
Coq < Theorem eq_S : forall x y:nat, x = y -> S x = S y.
```

⁴This is in module Peano. v

102 3 The CoQ library

```
Coq < Definition pred (n:nat) : nat :=</pre>
Coq < match n with
Coq < | 0 => 0
Coq < | Su => u
      end.
Coq <
Coq < Theorem pred_Sn : forall m:nat, m = pred (S m).</pre>
Coq < Theorem eq_add_S : forall n m:nat, S n = S m -> n = m.
Cog < Hint Immediate eq_add_S : core.
Coq < Theorem not_eq_S : forall n m:nat, n <> m -> S n <> S m.
Coq < Definition IsSucc (n:nat) : Prop :=</pre>
Cog < match n with
Coq <
      | 0 => False
Coq <
      | S p => True
Coq <
      end.
Coq < Theorem O_S : forall n:nat, 0 <> S n.
Coq < Theorem n_Sn : forall n:nat, n <> S n.
Coq < Fixpoint plus (n m:nat) {struct n} : nat :=</pre>
Coq < match n with
      | 0 => m
Coq <
Coq <
      | S p => S (p + m)
Coq <
      end.
Coq < where "n + m" := (plus n m) : nat_scope.
Coq < Lemma plus_n_0 : forall n:nat, n = n + 0.
Coq < Lemma plus_n_Sm : forall n m:nat, S (n + m) = n + S m.
Coq < Fixpoint mult (n m:nat) {struct n} : nat :=</pre>
Coq < match n with
Coq <
       | 0 => 0
Coq <
       | S p => m + p * m
Coq <
       end.
Coq < where "n * m" := (mult n m) : nat_scope.
Coq < Lemma mult_n_0 : forall n:nat, 0 = n * 0.
Coq < Lemma mult_n_{m} : forall n m:nat, n * m + n = n * (S m).
  Finally, it gives the definition of the usual orderings le, lt, qe, and qt.
Coq < Inductive le (n:nat) : nat -> Prop :=
Coq < | le_n : le n n
Coq < | le_S : forall m:nat, n <= m -> n <= (S m).
Coq < where "n <= m" := (le n m) : nat_scope.
Coq < Definition lt (n m:nat) := S n <= m.
Coq < Definition ge (n m:nat) := m <= n.
Coq < Definition gt (n m:nat) := m < n.
```

3.1 The basic library 103

Properties of these relations are not initially known, but may be required by the user from modules Le and Lt. Finally, Peano gives some lemmas allowing pattern-matching, and a double induction principle.

3.1.6 Well-founded recursion

The basic library contains the basics of well-founded recursion and well-founded induction⁵.

The automatically generated scheme Acc_rect can be used to define functions by fixpoints using well-founded relations to justify termination. Assuming extensionality of the functional used for the recursive call, the fixpoint equation can be proved.

```
Coq < Section FixPoint.
Coq < Variable P : A -> Type.

Coq < Variable F : forall x:A, (forall y:A, R y x -> P y) -> P x.

Coq < Fixpoint Fix_F (x:A) (r:Acc x) {struct r} : P x :=
Coq < F x (fun (y:A) (p:R y x) => Fix_F y (Acc_inv x r y p)).

Coq < Definition Fix (x:A) := Fix_F x (Rwf x).

Coq < Hypothesis F_ext :
Coq < forall (x:A) (f g:forall y:A, R y x -> P y),
```

⁵This is defined in module Wf.v

```
Coq < (forall (y:A) (p:R y x), f y p = g y p) -> F x f = F x g.

Coq < Lemma Fix_F_eq:
Coq < forall (x:A) (r:Acc x),
Coq < F x (fun (y:A) (p:R y x) => Fix_F y (Acc_inv x r y p)) = Fix_F x r.

Coq < Lemma Fix_F_inv: forall (x:A) (r s:Acc x), Fix_F x r = Fix_F x s.

Coq < Lemma fix_eq: forall x:A, Fix x = F x (fun (y:A) (p:R y x) => Fix y).

Coq < End FixPoint.

Coq < End Well_founded.</pre>
```

3.1.7 Accessing the Type level

The basic library includes the definitions⁶ of the counterparts of some data-types and logical quantifiers at the Type level: negation, pair, and properties of identity.

```
Coq < Definition notT (A:Type) := A -> False.
Coq < Inductive prodT (A B:Type) : Type := pairT (_:A) (_:B).</pre>
```

At the end, it defines data-types at the Type level.

3.1.8 Tactics

A few tactics defined at the user level are provided in the initial state⁷.

3.2 The standard library

3.2.1 Survey

The rest of the standard library is structured into the following subdirectories:

⁶This is in module Logic_Type.v

⁷This is in module Tactics.v

Logic Classical logic and dependent equality

Arith Basic Peano arithmetic

PArith Basic positive integer arithmetic
NArith Basic binary natural number arithmetic

ZArith Basic relative integer arithmetic

Numbers Various approaches to natural, integer and cyclic numbers (currently axiomat-

ically and on top of 231 binary words)

Bool Booleans (basic functions and results)

Lists Monomorphic and polymorphic lists (basic functions and results), Streams (in-

finite sequences defined with co-inductive types)

Sets Sets (classical, constructive, finite, infinite, power set, etc.)

FSets Specification and implementations of finite sets and finite maps (by lists and

by AVL trees)

Reals Axiomatization of real numbers (classical, basic functions, integer part, frac-

tional part, limit, derivative, Cauchy series, power series and results,...)

Relations Relations (definitions and basic results)

Sorting Sorted list (basic definitions and heapsort correctness)

Strings 8-bits characters and strings

Wellfounded Well-founded relations (basic results)

These directories belong to the initial load path of the system, and the modules they provide are compiled at installation time. So they are directly accessible with the command Require (see Chapter 6).

The different modules of the CoQ standard library are described in the additional document Library.dvi. They are also accessible on the WWW through the CoQ homepage 8.

3.2.2 Notations for integer arithmetics

On Figure 3.4 is described the syntax of expressions for integer arithmetics. It is provided by requiring and opening the module ZArith and opening scope Z_scope.

Figure 3.4 shows the notations provided by Z_scope. It specifies how notations are interpreted and, when not already reserved, the precedence and associativity.

106 3 The CoQ library

Notation	Interpretation	Precedence	Associativity
_ < _	Z.lt		
х <= у	Z.le		
_ > _	Z.gt		
x >= A	Z.ge		
x < y < z	x < y /\ y < z		
x < y <= z	x < y /\ y <= z		
$x \le x \le z$	x <= y /\ y < z		
x <= y <= z	x <= y /\ y <= z		
_ ?= _	Z.compare	70	no
_ + _	Z.add		
	Z.sub		
_ * _	Z.mul		
_ / _	Z.div		
_ mod _	Z.modulo	40	no
	Z.opp		
_ ^ _	Z.pow		

Figure 3.4: Definition of the scope for integer arithmetics (Z_scope)

Notation	Interpretation
_ < _	lt
х <= у	le
_ > _	gt
x >= y	ge
x < y < z	x < y /\ y < z
$x < \lambda < = x$	x < y /\ y <= z
$x \le x \le z$	x <= y /\ y < z
x <= y <= z	x <= y /\ y <= z
_ + _	plus
	minus
_ * _	mult

Figure 3.5: Definition of the scope for natural numbers (nat_scope)

3.2.3 Peano's arithmetic (nat)

While in the initial state, many operations and predicates of Peano's arithmetic are defined, further operations and results belong to other modules. For instance, the decidability of the basic predicates are defined here. This is provided by requiring the module Arith.

Figure 3.5 describes notation available in scope nat_scope.

Notation	Interpretation
_ < _	Rlt
х <= у	Rle
_ > _	Rgt
x >= y	Rge
x < y < z	x < y /\ y < z
x < y <= z	x < y /\ y <= z
x <= y < z	x <= y /\ y < z
x <=	x <= y /\ y <= z
_ + _	Rplus
	Rminus
_ * _	Rmult
_ / _	Rdiv
	Ropp
/ _	Rinv
_ ^ _	pow

Figure 3.6: Definition of the scope for real arithmetics (R_scope)

3.2.4 Real numbers library

Notations for real numbers

This is provided by requiring and opening the module Reals and opening scope R_scope. This set of notations is very similar to the notation for integer arithmetics. The inverse function was added.

Some tactics

In addition to the ring, field and fourier tactics (see Chapter 8) there are:

• discrR

Proves that a real integer constant c_1 is different from another real integer constant c_2 .

```
Coq < Require Import DiscrR.
Coq < Goal 5 <> 0.
```

```
Coq < discrR.
No more subgoals.</pre>
```

• split_Rabs allows to unfold Rabs constant and splits corresponding conjunctions.

• split_Rmult allows to split a condition that a product is non null into subgoals corresponding to the condition on each operand of the product.

All this tactics has been written with the tactic language Ltac described in Chapter 9.

3.2.5 List library

Some elementary operations on polymorphic lists are defined here. They can be accessed by requiring module List.

It defines the following notions:

3.3 Users' contributions

Notation	Interpretation	Precedence	Associativity
_ ++ _	app		right
_ :: _	cons	60	right

Figure 3.7: Definition of the scope for lists (list_scope)

length	length
head	first element (with default)
tail	all but first element
app	concatenation
rev	reverse
nth	accessing n -th element (with default)
map	applying a function
flat_map	applying a function returning lists
fold_left	iterator (from head to tail)
fold_right	iterator (from tail to head)

Table show notations available when opening scope list_scope.

3.3 Users' contributions

Numerous users' contributions have been collected and are available at URL http://coq.inria.fr/contribs/. On this web page, you have a list of all contributions with informations (author, institution, quick description, etc.) and the possibility to download them one by one. You will also find informations on how to submit a new contribution.

3 The Coq library

Chapter 4

Calculus of Inductive Constructions

The underlying formal language of CoQ is a *Calculus of Constructions* with *Inductive Definitions*. It is presented in this chapter. For CoQ version V7, this Calculus was known as the *Calculus of (Co)Inductive Constructions* (CIC in short). The underlying calculus of CoQ version V8.0 and up is a weaker calculus where the sort Set satisfies predicative rules. We call this calculus the *Predicative Calculus of (Co)Inductive Constructions* (pCIC in short). In Section 4.7 we give the extra-rules for CIC. A compiling option of CoQ allows to type-check theories in this extended system.

In pCIC all objects have a *type*. There are types for functions (or programs), there are atomic types (especially datatypes)... but also types for proofs and types for the types themselves. Especially, any object handled in the formalism must belong to a type. For instance, the statement "for all x, P" is not allowed in type theory; you must say instead: "for all x belonging to T, P". The expression "x belonging to T" is written "x:T". One also says: "x has type T". The terms of pCIC are detailed in Section 4.1.

In pCIC there is an internal reduction mechanism. In particular, it allows to decide if two programs are *intentionally* equal (one says *convertible*). Convertibility is presented in section 4.3.

The remaining sections are concerned with the type-checking of terms. The beginner can skip them. The reader seeking a background on the Calculus of Inductive Constructions may read several papers. Giménez and Castéran [68] provide an introduction to inductive and co-inductive definitions in Coq. In their book [14], Bertot and Castéran give a precise description of the pCIC based on numerous practical examples. Barras [9], Werner [137] and Paulin-Mohring [119] are the most recent theses dealing with Inductive Definitions. Coquand-Huet [29, 30, 31] introduces the Calculus of Constructions. Coquand-Paulin [32] extended this calculus to inductive definitions. The pCIC is a formulation of type theory including the possibility of inductive constructions, Barendregt [6] studies the modern form of type theory.

4.1 The terms

In most type theories, one usually makes a syntactic distinction between types and terms. This is not the case for pCIC which defines both types and terms in the same syntactical structure. This is because the type-theory itself forces terms and types to be defined in a mutual recursive way and also because similar constructions can be applied to both terms and types and consequently can share the same syntactic structure.

Consider for instance the \rightarrow constructor and assume nat is the type of natural numbers. Then \rightarrow is used both to denote nat \rightarrow nat which is the type of functions from nat to nat, and to denote nat \rightarrow Prop which is the type of unary predicates over the natural numbers. Consider abstraction which

builds functions. It serves to build "ordinary" functions as $\operatorname{fun} x:\operatorname{nat}\Rightarrow (\operatorname{mult} x\,x)$ (assuming mult is already defined) but may build also predicates over the natural numbers. For instance $\operatorname{fun} x:\operatorname{nat}\Rightarrow (x=x)$ will represent a predicate P, informally written in mathematics $P(x)\equiv x=x$. If P has type $\operatorname{nat}\to\operatorname{Prop}, (P\,x)$ is a proposition, furthermore forall $x:\operatorname{nat}, (P\,x)$ will represent the type of functions which associate to each natural number n an object of type $(P\,n)$ and consequently represent proofs of the formula " $\forall x. P(x)$ ".

4.1.1 Sorts

When manipulated as terms, types have themselves a type which is called a sort.

There is an infinite well-founded typing hierarchy of sorts whose base sorts are Prop and Set.

The sort Prop intends to be the type of logical propositions. If M is a logical proposition then it denotes the class of terms representing proofs of M. An object m belonging to M witnesses the fact that M is provable. An object of type Prop is called a proposition.

The sort Set intends to be the type of small sets. This includes data types such as booleans and naturals, but also products, subsets, and function types over these data types.

Prop and Set themselves can be manipulated as ordinary terms. Consequently they also have a type. Because assuming simply that Set has type Set leads to an inconsistent theory, the language of pCIC has infinitely many sorts. There are, in addition to Set and Prop a hierarchy of universes Type(i) for any integer i.

Like Set, all of the sorts Type(i) contain small sets such as booleans, natural numbers, as well as products, subsets and function types over small sets. But, unlike Set, they also contain large sets, namely the sorts Set and Type(j) for j < i, and all products, subsets and function types over these sorts.

Formally, we call S the set of sorts which is defined by:

$$S \equiv \{ \mathsf{Prop}, \mathsf{Set}, \mathsf{Type}(i) | i \in \mathbb{N} \}$$

The sorts enjoy the following properties¹: Prop:Type(1), Set:Type(1) and Type(i):Type(i + 1).

The user will never mention explicitly the index i when referring to the universe Type(i). One only writes Type. The system itself generates for each instance of Type a new index for the universe and checks that the constraints between these indexes can be solved. From the user point of view we consequently have Type: Type.

We shall make precise in the typing rules the constraints between the indexes.

Implementation issues In practice, the Type hierarchy is implemented using algebraic universes. An algebraic universe u is either a variable (a qualified identifier with a number) or a successor of an algebraic universe (an expression u+1), or an upper bound of algebraic universes (an expression $max(u_1,...,u_n)$), or the base universe (the expression 0) which corresponds, in the arity of sort-polymorphic inductive types, to the predicative sort Set. A graph of constraints between the universe variables is maintained globally. To ensure the existence of a mapping of the universes to the positive integers, the graph of constraints must remain acyclic. Typing expressions that violate the acyclicity of the graph of constraints results in a Universe inconsistency error (see also Section 2.10).

¹In the Reference Manual of versions of Coq prior to 8.4, the level of Type typing Prop and Set was numbered 0. From Coq 8.4, it started to be numbered 1 so as to be able to leave room for re-interpreting Set in the hierarchy as Type(0). This change also put the reference manual in accordance with the internal conventions adopted in the implementation.

4.1 The terms 113

4.1.2 Constants

Besides the sorts, the language also contains constants denoting objects in the environment. These constants may denote previously defined objects but also objects related to inductive definitions (either the type itself or one of its constructors or destructors).

Remark. In other presentations of pCIC, the inductive objects are not seen as external declarations but as first-class terms. Usually the definitions are also completely ignored. This is a nice theoretical point of view but not so practical. An inductive definition is specified by a possibly huge set of declarations, clearly we want to share this specification among the various inductive objects and not to duplicate it. So the specification should exist somewhere and the various objects should refer to it. We choose one more level of indirection where the objects are just represented as constants and the environment gives the information on the kind of object the constant refers to.

Our inductive objects will be manipulated as constants declared in the environment. This roughly corresponds to the way they are actually implemented in the CoQ system. It is simple to map this presentation in a theory where inductive objects are represented by terms.

4.1.3 Terms

Terms are built from variables, global names, constructors, abstraction, application, local declarations bindings ("let-in" expressions) and product.

From a syntactic point of view, types cannot be distinguished from terms, except that they cannot start by an abstraction, and that if a term is a sort or a product, it should be a type.

More precisely the language of the *Calculus of Inductive Constructions* is built from the following rules:

- 1. the sorts Set, Prop, Type are terms.
- 2. names for global constants of the environment are terms.
- 3. variables are terms.
- 4. if x is a variable and T, U are terms then $\forall x:T,U$ (forall x:T,U in CoQ concrete syntax) is a term. If x occurs in U, $\forall x:T,U$ reads as "for all x of type T, U". As U depends on x, one says that $\forall x:T,U$ is a dependent product. If x doesn't occurs in U then $\forall x:T,U$ reads as "if T then U". A non dependent product can be written: $T \to U$.
- 5. if x is a variable and T, U are terms then $\lambda x:T$. U (fun $x:T\Rightarrow U$ in CoQ concrete syntax) is a term. This is a notation for the λ -abstraction of λ -calculus [8]. The term $\lambda x:T$. U is a function which maps elements of T to U.
- 6. if T and U are terms then $(T\ U)$ is a term $(T\ U)$ in CoQ concrete syntax). The term $(T\ U)$ reads as "T applied to U".
- 7. if x is a variable, and T, U are terms then let x := T in U is a term which denotes the term U where the variable x is locally bound to T. This stands for the common "let-in" construction of functional programs such as ML or Scheme.

Notations. Application associates to the left such that $(t \ t_1 \dots t_n)$ represents $(\dots (t \ t_1) \dots t_n)$. The products and arrows associate to the right such that $\forall \ x : A, B \to C \to D$ represents $\forall \ x : A, (B \to (C \to D))$. One uses sometimes $\forall \ x \ y : A, B$ or $\lambda x \ y : A$. B to denote the abstraction or product of several variables of the same type. The equivalent formulation is $\forall \ x : A, \forall y : A, B$ or $\lambda x : A$. $\lambda y : A$. B

Free variables. The notion of free variables is defined as usual. In the expressions $\lambda x:T$. U and $\forall x:T,U$ the occurrences of x in U are bound. They are represented by de Bruijn indexes in the internal structure of terms.

Substitution. The notion of substituting a term t to free occurrences of a variable x in a term u is defined as usual. The resulting term is written $u\{x/t\}$.

4.2 Typed terms

As objects of type theory, terms are subjected to *type discipline*. The well typing of a term depends on an environment which consists in a global environment (see below) and a local context.

Local context. A local context (or shortly context) is an ordered list of declarations of variables. The declaration of some variable x is either an assumption, written x:T (T is a type) or a definition, written x:=t:T. We use brackets to write contexts. A typical example is [x:T;y:=u:U;z:V]. Notice that the variables declared in a context must be distinct. If Γ declares some x, we write $x\in\Gamma$. By writing $(x:T)\in\Gamma$ we mean that either x:T is an assumption in Γ or that there exists some t such that x:=t:T is a definition in Γ . If Γ defines some x:=t:T, we also write $(x:=t:T)\in\Gamma$. Contexts must be themselves well formed. For the rest of the chapter, the notation $\Gamma:(y:T)$ (resp. $\Gamma:(y:=t:T)$) denotes the context Γ enriched with the declaration y:T (resp. y:=t:T). The notation Γ denotes the empty context.

We define the inclusion of two contexts Γ and Δ (written as $\Gamma \subset \Delta$) as the property, for all variable x, type T and term t, if $(x:T) \in \Gamma$ then $(x:T) \in \Delta$ and if $(x:=t:T) \in \Gamma$ then $(x:=t:T) \in \Delta$. A variable x is said to be free in Γ if Γ contains a declaration y:T such that x is free in T.

Environment. Because we are manipulating global declarations (constants and global assumptions), we also need to consider a global environment E.

An environment is an ordered list of declarations of global names. Declarations are either assumptions or "standard" definitions, that is abbreviations for well-formed terms but also definitions of inductive objects. In the latter case, an object in the environment will define one or more constants (that is types and constructors, see Section 4.5).

An assumption will be represented in the environment as $\mathsf{Assum}(\Gamma)(c:T)$ which means that c is assumed of some type T well-defined in some context Γ . An (ordinary) definition will be represented in the environment as $\mathsf{Def}(\Gamma)(c:=t:T)$ which means that c is a constant which is valid in some context Γ whose value is t and type is t.

The rules for inductive definitions (see section 4.5) have to be considered as assumption rules to which the following definitions apply: if the name c is declared in E, we write $c \in E$ and if c : T or c := t : T is declared in E, we write $(c : T) \in E$.

4.2 Typed terms 115

Typing rules. In the following, we assume E is a valid environment w.r.t. inductive definitions. We define simultaneously two judgments. The first one $E[\Gamma] \vdash t : T$ means the term t is well-typed and has type T in the environment E and context Γ . The second judgment $\mathcal{WF}(E)[\Gamma]$ means that the environment E is well-formed and the context Γ is a valid context in this environment. It also means a third property which makes sure that any constant in E was defined in an environment which is included in Γ ².

A term t is well typed in an environment E iff there exists a context Γ and a term T such that the judgment $E[\Gamma] \vdash t : T$ can be derived from the following rules.

W-E

$$\mathcal{WF}([])[[]]$$

W-S

$$\frac{E[\Gamma] \vdash T : s \quad s \in \mathcal{S} \quad x \not\in \Gamma}{\mathcal{WF}(E)[\Gamma :: (x : T)]} \qquad \frac{E[\Gamma] \vdash t : T \quad x \not\in \Gamma}{\mathcal{WF}(E)[\Gamma :: (x := t : T)]}$$

Def

$$\frac{E[\Gamma] \vdash t : T \quad c \notin E \cup \Gamma}{\mathcal{WF}(E; \mathsf{Def}(\Gamma)(c := t : T))[\Gamma]}$$

Assum

$$\frac{E[\Gamma] \vdash T: s \quad s \in \mathcal{S} \quad c \notin E \cup \Gamma}{\mathcal{WF}(E; \mathsf{Assum}(\Gamma)(c:T))[\Gamma]}$$

 $\mathbf{A}\mathbf{x}$

$$\begin{split} \frac{\mathcal{WF}(E)[\Gamma]}{E[\Gamma] \vdash \mathsf{Prop} : \mathsf{Type}(p)} & \frac{\mathcal{WF}(E)[\Gamma]}{E[\Gamma] \vdash \mathsf{Set} : \mathsf{Type}(q)} \\ \frac{\mathcal{WF}(E)[\Gamma] \quad i < j}{E[\Gamma] \vdash \mathsf{Type}(i) : \mathsf{Type}(j)} \end{split}$$

Var

$$\frac{\mathcal{WF}(E)[\Gamma] \quad (x:T) \in \Gamma \ \text{or} \ (x:=t:T) \in \Gamma \text{ for some } t}{E[\Gamma] \vdash x:T}$$

Const

$$\frac{\mathcal{WF}(E)[\Gamma] \quad (c:T) \in E \text{ or } (c:=t:T) \in E \text{ for some } t}{E[\Gamma] \vdash c:T}$$

Prod

$$\frac{E[\Gamma] \vdash T : s \quad s \in \mathcal{S} \quad E[\Gamma :: (x : T)] \vdash U : \mathsf{Prop}}{E[\Gamma] \vdash \forall \, x : T, U : \mathsf{Prop}}$$

$$\frac{E[\Gamma] \vdash T : s \quad s \in \{\mathsf{Prop}, \mathsf{Set}\} \quad E[\Gamma :: (x : T)] \vdash U : \mathsf{Set}}{E[\Gamma] \vdash \forall \, x : T, U : \mathsf{Set}}$$

$$\frac{E[\Gamma] \vdash T : \mathsf{Type}(i) \quad i \leq k \quad E[\Gamma :: (x : T)] \vdash U : \mathsf{Type}(j) \quad j \leq k}{E[\Gamma] \vdash \forall \, x : T, U : \mathsf{Type}(k)}$$

²This requirement could be relaxed if we instead introduced an explicit mechanism for instantiating constants. At the external level, the Coq engine works accordingly to this view that all the definitions in the environment were built in a subcontext of the current context.

Lam

$$\frac{E[\Gamma] \vdash \forall \ x: T, U: s \quad E[\Gamma :: (x:T)] \vdash t: U}{E[\Gamma] \vdash \lambda x: T. \ t: \forall x: T, U}$$

App

$$\frac{E[\Gamma] \vdash t : \forall \ x : U, T \quad E[\Gamma] \vdash u : U}{E[\Gamma] \vdash (t \ u) : T\{x/u\}}$$

Let

$$\frac{E[\Gamma] \vdash t: T \quad E[\Gamma :: (x := t:T)] \vdash u: U}{E[\Gamma] \vdash \mathsf{let} \ x := t \mathsf{ in } u: U\{x/t\}}$$

Remark: We may have let x := t in u well-typed without having $((\lambda x : T. u) t)$ well-typed (where T is a type of t). This is because the value t associated to x may be used in a conversion rule (see Section 4.3).

4.3 Conversion rules

 β -reduction. We want to be able to identify some terms as we can identify the application of a function to a given argument with its result. For instance the identity function over a given type T can be written $\lambda x:T$. x. In any environment E and context Γ , we want to identify any object a (of type T) with the application $((\lambda x:T,x))$ a). We define for this a reduction (or a conversion) rule we call β :

$$E[\Gamma] \vdash ((\lambda x : T. \ t) \ u) \triangleright_{\beta} t\{x/u\}$$

We say that $t\{x/u\}$ is the β -contraction of $((\lambda x:T.\ t)\ u)$ and, conversely, that $((\lambda x:T.\ t)\ u)$ is the β -expansion of $t\{x/u\}$.

According to β -reduction, terms of the *Calculus of Inductive Constructions* enjoy some fundamental properties such as confluence, strong normalization, subject reduction. These results are theoretically of great importance but we will not detail them here and refer the interested reader to [23].

 ι -reduction. A specific conversion rule is associated to the inductive objects in the environment. We shall give later on (see Section 4.5.4) the precise rules but it just says that a destructor applied to an object built from a constructor behaves as expected. This reduction is called ι -reduction and is more precisely studied in [118, 137].

 δ -reduction. We may have defined variables in contexts or constants in the global environment. It is legal to identify such a reference with its value, that is to expand (or unfold) it into its value. This reduction is called δ -reduction and shows as follows.

$$E[\Gamma] \vdash x \triangleright_{\delta} t$$
 if $(x := t : T) \in \Gamma$ $E[\Gamma] \vdash c \triangleright_{\delta} t$ if $(c := t : T) \in E$

 ζ -reduction. CoQ allows also to remove local definitions occurring in terms by replacing the defined variable by its value. The declaration being destroyed, this reduction differs from δ -reduction. It is called ζ -reduction and shows as follows.

$$E[\Gamma] \vdash \mathsf{let} \ x := u \mathsf{ in } t \triangleright_{\zeta} t\{x/u\}$$

4.3 Conversion rules

 η -conversion. An other important concept is η -conversion. It is to identify any term t of functional type $\forall x:T,U$ with its so-called η -expansion $\lambda x:T$. $(t\ x)$ for x an arbitrary variable name fresh in t.

The notion of η -reduction $\lambda x:T.$ $(t\ x)\triangleright t$ (for x not occurring in t) is not type-sound because of subtyping (think about $\lambda x: \mathsf{Type}(1).$ (fx) of type $\forall x: \mathsf{Type}(1), \mathsf{Type}(1)$ for f of type $\forall x: \mathsf{Type}(2), \mathsf{Type}(1)$). On the other side, η -expansion requires to know T and hence requires types. Hence, neither η -expansion nor η -reduction can be type-safely considered on terms we do not know the type. However, η can be used as a conversion rule.

Convertibility. Let us write $E[\Gamma] \vdash t \triangleright u$ for the contextual closure of the relation t reduces to u in the environment E and context Γ with one of the previous reduction β , ι , δ or ζ .

We say that two terms t_1 and t_2 are $\beta\iota\delta\zeta\eta$ -convertible, or simply convertible, or equivalent, in the environment E and context Γ iff there exist terms u_1 and u_2 such that $E[\Gamma] \vdash t_1 \rhd \ldots \rhd u_1$ and $E[\Gamma] \vdash t_2 \rhd \ldots \rhd u_2$ and either u_1 and u_2 are identical, or they are convertible up to η -expansion, i.e. u_1 is $\lambda x:T$. u_1' and u_2x is recursively convertible to u_1' , or, symmetrically, u_2 is $\lambda x:T$. u_2' and u_1x is recursively convertible to u_2' . We then write $E[\Gamma] \vdash t_1 =_{\beta\delta\iota\zeta\eta} t_2$.

The convertibility relation allows to introduce a new typing rule which says that two convertible well-formed types have the same inhabitants.

At the moment, we did not take into account one rule between universes which says that any term in a universe of index i is also a term in the universe of index i + 1 (this is the *cumulativity* rule of pCIC). This property is included into the conversion rule by extending the equivalence relation of convertibility into a *subtyping* relation inductively defined by:

- 1. if $E[\Gamma] \vdash t =_{\beta \delta \iota \zeta \eta} u$ then $E[\Gamma] \vdash t \leq_{\beta \delta \iota \zeta \eta} u$,
- 2. if $i \leq j$ then $E[\Gamma] \vdash \mathsf{Type}(i) \leq_{\beta \delta \iota \zeta \eta} \mathsf{Type}(j)$,
- 3. for any $i, E[\Gamma] \vdash \mathsf{Set} \leq_{\beta\delta\iota\zeta\eta} \mathsf{Type}(i)$,
- 4. $E[\Gamma] \vdash \mathsf{Prop} \leq_{\beta\delta\iota\zeta\eta} \mathsf{Set}$, hence, by transitivity, $E[\Gamma] \vdash \mathsf{Prop} \leq_{\beta\delta\iota\zeta\eta} \mathsf{Type}(i)$, for any i

5. if
$$E[\Gamma] \vdash T =_{\beta \delta \iota \zeta \eta} U$$
 and $E[\Gamma :: (x : T)] \vdash T' \leq_{\beta \delta \iota \zeta \eta} U'$ then $E[\Gamma] \vdash \forall \ x : T, T' \leq_{\beta \delta \iota \zeta \eta} \forall \ x : U, U'$.

The conversion rule is now exactly:

Conv

$$\frac{E[\Gamma] \vdash U : s \quad E[\Gamma] \vdash t : T \quad E[\Gamma] \vdash T \leq_{\beta \delta \iota \zeta \eta} U}{E[\Gamma] \vdash t : U}$$

Normal form. A term which cannot be any more reduced is said to be in *normal form*. There are several ways (or strategies) to apply the reduction rule. Among them, we have to mention the *head reduction* which will play an important role (see Chapter 8). Any term can be written as $\lambda x_1 : T_1 \dots \lambda x_k : T_k \cdot (t_0 t_1 \dots t_n)$ where t_0 is not an application. We say then that t_0 is the *head of t*. If we assume that t_0 is $\lambda x : T$. u_0 then one step of β -head reduction of t is:

$$\lambda x_1 : T_1 \dots \lambda x_k : T_k \cdot (\lambda x : T \cdot u_0 t_1 \dots t_n) > \lambda (x_1 : T_1) \dots (x_k : T_k) \cdot (u_0 \{x/t_1\} t_2 \dots t_n)$$

Iterating the process of head reduction until the head of the reduced term is no more an abstraction leads to the β -head normal form of t:

$$t \triangleright \ldots \triangleright \lambda x_1 : T_1 \ldots \lambda x_k : T_k (v \ u_1 \ldots u_m)$$

where v is not an abstraction (nor an application). Note that the head normal form must not be confused with the normal form since some u_i can be reducible.

Similar notions of head-normal forms involving δ , ι and ζ reductions or any combination of those can also be defined.

4.4 Derived rules for environments

From the original rules of the type system, one can derive new rules which change the context of definition of objects in the environment. Because these rules correspond to elementary operations in the CoQ engine used in the discharge mechanism at the end of a section, we state them explicitly.

Mechanism of substitution. One rule which can be proved valid, is to replace a term c by its value in the environment. As we defined the substitution of a term for a variable in a term, one can define the substitution of a term for a constant. One easily extends this substitution to contexts and environments.

Substitution Property:

$$\frac{\mathcal{WF}(E; \mathsf{Def}(\Gamma)(c := t : T); F)[\Delta]}{\mathcal{WF}(E; F\{c/t\})[\Delta\{c/t\}]}$$

Abstraction. One can modify the context of definition of a constant c by abstracting a constant with respect to the last variable x of its defining context. For doing that, we need to check that the constants appearing in the body of the declaration do not depend on x, we need also to modify the reference to the constant c in the environment and context by explicitly applying this constant to the variable x. Because of the rules for building environments and terms we know the variable x is available at each stage where c is mentioned.

Abstracting property:

$$\frac{\mathcal{WF}(E; \mathsf{Def}(\Gamma :: (x : U))(c := t : T); F)[\Delta] \quad \mathcal{WF}(E)[\Gamma]}{\mathcal{WF}(E; \mathsf{Def}(\Gamma)(c := \lambda x : U. \ t : \forall \ x : U, T); F\{c/(c \ x)\})[\Delta\{c/(c \ x)\}]}$$

Pruning the context. We said the judgment $\mathcal{WF}(E)[\Gamma]$ means that the defining contexts of constants in E are included in Γ . If one abstracts or substitutes the constants with the above rules then it may happen that the context Γ is now bigger than the one needed for defining the constants in E. Because defining contexts are growing in E, the minimum context needed for defining the constants in E is the same as the one for the last constant. One can consequently derive the following property.

Pruning property:

$$\frac{\mathcal{WF}(E;\mathsf{Def}(\Delta)(c:=t:T))[\Gamma]}{\mathcal{WF}(E;\mathsf{Def}(\Delta)(c:=t:T))[\Delta]}$$

4.5 Inductive Definitions

A (possibly mutual) inductive definition is specified by giving the names and the type of the inductive sets or families to be defined and the names and types of the constructors of the inductive predicates.

An inductive declaration in the environment can consequently be represented with two contexts (one for inductive definitions, one for constructors).

Stating the rules for inductive definitions in their general form needs quite tedious definitions. We shall try to give a concrete understanding of the rules by precising them on running examples. We take as examples the type of natural numbers, the type of parameterized lists over a type A, the relation which states that a list has some given length and the mutual inductive definition of trees and forests.

4.5.1 Representing an inductive definition

Inductive definitions without parameters

As for constants, inductive definitions can be defined in a non-empty context.

We write $\operatorname{Ind}(\Gamma)(\Gamma_I := \Gamma_C)$ an inductive definition valid in a context Γ , a context of definitions Γ_I and a context of constructors Γ_C .

Examples. The inductive declaration for the type of natural numbers will be:

$$Ind()(nat : Set := O : nat, S : nat \rightarrow nat)$$

In a context with a variable A: Set, the lists of elements in A are represented by:

$$Ind(A : Set)(List : Set := nil : List, cons : A \rightarrow List \rightarrow List)$$

Assuming Γ_I is $[I_1:A_1;\ldots;I_k:A_k]$, and Γ_C is $[c_1:C_1;\ldots;c_n:C_n]$, the general typing rules are, for $1 \leq j \leq k$ and $1 \leq i \leq n$:

$$\frac{\mathsf{Ind}(\Gamma)(\Gamma_I := \Gamma_C) \in E}{(I_i : A_i) \in E}$$

$$\frac{\operatorname{Ind}(\Gamma)(\Gamma_I := \Gamma_C \) \ \in E}{(c_i : C_i) \in E}$$

Inductive definitions with parameters

We have to slightly complicate the representation above in order to handle the delicate problem of parameters. Let us explain that on the example of List. With the above definition, the type List can only be used in an environment where we have a variable A: Set. Generally one want to consider lists of elements in different types. For constants this is easily done by abstracting the value over the parameter. In the case of inductive definitions we have to handle the abstraction over several objects.

One possible way to do that would be to define the type List inductively as being an inductive family of type $Set \rightarrow Set$:

$$Ind()(List : Set \rightarrow Set := nil : (\forall A : Set, List A), cons : (\forall A : Set, A \rightarrow List A \rightarrow List A))$$

There are drawbacks to this point of view. The information which says that for any A, (List A) is an inductively defined Set has been lost. So we introduce two important definitions.

Inductive parameters, real arguments. An inductive definition $\operatorname{Ind}(\Gamma)(\Gamma_I := \Gamma_C)$ admits r inductive parameters if each type of constructors (c:C) in Γ_C is such that

$$C \equiv \forall p_1 : P_1, \dots, \forall p_r : P_r, \forall a_1 : A_1, \dots, \forall a_n : A_n, (I \ p_1 \ \dots p_r \ t_1 \dots t_q)$$

with I one of the inductive definitions in Γ_I . We say that q is the number of real arguments of the constructor c.

Context of parameters. If an inductive definition $\operatorname{Ind}(\Gamma)(\Gamma_I := \Gamma_C)$ admits r inductive parameters, then there exists a context Γ_P of size r, such that $\Gamma_P = [p_1 : P_1; \ldots; p_r : P_r]$ and if $(t : A) \in \Gamma_I, \Gamma_C$ then A can be written as $\forall p_1 : P_1, \ldots \forall p_r : P_r, A'$. We call Γ_P the context of parameters of the inductive definition and use the notation $\forall \Gamma_P, A'$ for the term A.

Remark. If we have a term t in an instance of an inductive definition I which starts with a constructor c, then the r first arguments of c (the parameters) can be deduced from the type T of t: these are exactly the r first arguments of I in the head normal form of T.

Examples. The List definition has 1 parameter:

```
Ind()(List : Set \rightarrow Set := nil : (\forall A : Set, List A), cons : (\forall A : Set, A \rightarrow List A \rightarrow List A))
```

This is also the case for this more complex definition where there is a recursive argument on a different instance of List:

```
Ind()(List : Set \rightarrow Set := nil : (\forall A : Set, List A), cons : (\forall A : Set, A \rightarrow List (A \rightarrow A) \rightarrow List A))
But the following definition has 0 parameters:
```

```
Ind()(List : Set \rightarrow Set := nil : (\forall A : Set, List A), cons : (\forall A : Set, A \rightarrow List A \rightarrow List (A * A)))
```

Concrete syntax. In the Coq system, the context of parameters is given explicitly after the name of the inductive definitions and is shared between the arities and the type of constructors. We keep track in the syntax of the number of parameters.

Formally the representation of an inductive declaration will be $\operatorname{Ind}(\Gamma)[p](\Gamma_I := \Gamma_C)$ for an inductive definition valid in a context Γ with p parameters, a context of definitions Γ_I and a context of constructors Γ_C .

The definition $\operatorname{Ind}(\Gamma)[p](\Gamma_I := \Gamma_C)$ will be well-formed exactly when $\operatorname{Ind}(\Gamma)(\Gamma_I := \Gamma_C)$ is and when p is (less or equal than) the number of parameters in $\operatorname{Ind}(\Gamma)(\Gamma_I := \Gamma_C)$.

Examples The declaration for parameterized lists is:

```
Ind()[1](List : Set \rightarrow Set := nil : (\forall A : Set, List A), cons : (\forall A : Set, A \rightarrow List A \rightarrow List A))
```

The declaration for the length of lists is:

```
 \begin{split} \mathsf{Ind}()[1](\mathsf{Length}: \forall A : \mathsf{Set}, (\mathsf{List}\ A) \to \mathsf{nat} \to \mathsf{Prop} := \mathsf{Lnil}: \forall A : \mathsf{Set}, \mathsf{Length}\ A\ (\mathsf{nil}\ A)\ \mathsf{O}, \\ \mathsf{Lcons}: \forall A : \mathsf{Set}, \forall a : A, \forall l : (\mathsf{List}\ A), \forall n : \mathsf{nat}, (\mathsf{Length}\ A\ l\ n) \to (\mathsf{Length}\ A\ (\mathsf{cons}\ A\ a\ l)\ (\mathsf{S}\ n))\ ) \end{aligned}
```

The declaration for a mutual inductive definition of forests and trees is:

```
Ind()(tree:Set,forest:Set:=\\ node:forest \rightarrow tree,emptyf:forest,consf:tree \rightarrow forest \rightarrow forest)
```

These representations are the ones obtained as the result of the Coo declaration:

```
Coq < Inductive nat : Set :=</pre>
Coq < | 0 : nat
Coq < | S : nat -> nat.
Coq < Inductive list (A:Set) : Set :=
Coq < | nil : list A
      | cons : A -> list A -> list A.
Coq < Inductive Length (A:Set) : list A -> nat -> Prop :=
Coq < | Lnil : Length A (nil A) O
Coq <
      | Lcons :
Coq <
            forall (a:A) (l:list A) (n:nat),
              Length A l n -> Length A (cons A a l) (S n).
Coq <
Coq < Inductive tree : Set :=</pre>
Coq < node : forest -> tree
Coq < with forest : Set :=</pre>
Coq < | emptyf : forest</pre>
Coq < | consf : tree -> forest -> forest.
```

The CoQ type-checker verifies that all parameters are applied in the correct manner in the conclusion of the type of each constructors :

In particular, the following definition will not be accepted because there is an occurrence of List which is not applied to the parameter variable in the conclusion of the type of cons':

Since CoQ version 8.1, there is no restriction about parameters in the types of arguments of constructors. The following definition is valid:

4.5.2 Types of inductive objects

We have to give the type of constants in an environment E which contains an inductive declaration.

Ind-Const Assuming Γ_I is $[I_1:A_1;\ldots;I_k:A_k]$, and Γ_C is $[c_1:C_1;\ldots;c_n:C_n]$,

$$\frac{\mathsf{Ind}(\Gamma)[p](\Gamma_I := \Gamma_C) \in E \ j = 1 \dots k}{(I_j : A_j) \in E}$$

$$\frac{\operatorname{Ind}(\Gamma)[p](\Gamma_I := \Gamma_C) \in E \quad i = 1..n}{(c_i : C_i) \in E}$$

```
Example. We have (List : Set \rightarrow Set), (cons : \forall A : \text{Set}, A \rightarrow (\text{List } A) \rightarrow (\text{List } A)), (Length : \forall A : \text{Set}, (List A) \rightarrow nat \rightarrow Prop), tree : Set and forest : Set. From now on, we write List A instead of (List A) and Length A for (Length A).
```

4.5.3 Well-formed inductive definitions

We cannot accept any inductive declaration because some of them lead to inconsistent systems. We restrict ourselves to definitions which satisfy a syntactic criterion of positivity. Before giving the formal rules, we need a few definitions:

Definitions A type T is an arity of sort s if it converts to the sort s or to a product $\forall x:T,U$ with U an arity of sort s. (For instance $A \to \mathsf{Set}$ or $\forall A:\mathsf{Prop},A \to \mathsf{Prop}$ are arities of sort respectively Set and Prop). A type of constructor of I is either a term $(I\ t_1\ldots t_n)$ or $\forall x:T,C$ with C recursively a type of constructor of I.

The type of constructor T will be said to *satisfy the positivity condition* for a constant X in the following cases:

- $T = (X t_1 \dots t_n)$ and X does not occur free in any t_i
- $T = \forall x : U, V$ and X occurs only strictly positively in U and the type V satisfies the positivity condition for X

The constant *X occurs strictly positively* in *T* in the following cases:

- \bullet X does not occur in T
- T converts to $(X t_1 \dots t_n)$ and X does not occur in any of t_i
- T converts to $\forall x: U, V$ and X does not occur in type U but occurs strictly positively in type V
- T converts to $(I\ a_1\ldots\ a_m\ t_1\ldots\ t_p)$ where I is the name of an inductive declaration of the form $\operatorname{Ind}(\Gamma)[m](I:A:=c_1:\forall p_1:P_1,\ldots\forall p_m:P_m,C_1;\ldots;c_n:\forall p_1:P_1,\ldots\forall p_m:P_m,C_n)$ (in particular, it is not mutually defined and it has m parameters) and X does not occur in any of the t_i , and the (instantiated) types of constructor $C_i\{p_j/a_j\}_{j=1\ldots m}$ of I satisfy the nested positivity condition for X

The type of constructor T of I satisfies the nested positivity condition for a constant X in the following cases:

- $T = (I \ b_1 \dots b_m \ u_1 \dots u_p), I$ is an inductive definition with m parameters and X does not occur in any u_i
- ullet $T=\forall x:U,V$ and X occurs only strictly positively in U and the type V satisfies the nested positivity condition for X

Example X occurs strictly positively in $A \to X$ or X*A or (list X) but not in $X \to A$ or $(X \to A) \to A$ nor (neg X) assuming the notion of product and lists were already defined and neg is an inductive definition with declaration $\operatorname{Ind}()[A:\operatorname{Set}](\operatorname{neg}:\operatorname{Set}:=\operatorname{neg}:(A \to \operatorname{False}) \to \operatorname{neg})$. Assuming X has arity $\operatorname{nat} \to \operatorname{Prop}$ and ex is the inductively defined existential quantifier, the occurrence of X in (ex nat λ n: nat. (X n)) is also strictly positive.

Correctness rules. We shall now describe the rules allowing the introduction of a new inductive definition.

W-Ind Let E be an environment and $\Gamma, \Gamma_P, \Gamma_I, \Gamma_C$ are contexts such that Γ_I is $[I_1 : \forall \Gamma_P, A_1; \ldots; I_k : \forall \Gamma_P, A_k]$ and Γ_C is $[c_1 : \forall \Gamma_P, C_1; \ldots; c_n : \forall \Gamma_P, C_n]$.

$$\frac{(E[\Gamma; \Gamma_P] \vdash A_j : s_j')_{j=1\dots k} \ (E[\Gamma; \Gamma_I; \Gamma_P] \vdash C_i : s_{q_i})_{i=1\dots n}}{\mathcal{WF}(E; \mathsf{Ind}(\Gamma)[p](\Gamma_I := \Gamma_C))[\Gamma]}$$

provided that the following side conditions hold:

- k > 0 and all of I_j and c_i are distinct names for $j = 1 \dots k$ and $i = 1 \dots n$,
- p is the number of parameters of $\operatorname{Ind}(\Gamma)(\Gamma_I := \Gamma_C)$ and Γ_P is the context of parameters,
- for $j = 1 \dots k$ we have that A_j is an arity of sort s_j and $I_j \notin \Gamma \cup E$,
- for $i=1\ldots n$ we have that C_i is a type of constructor of I_{q_i} which satisfies the positivity condition for $I_1\ldots I_k$ and $c_i\notin \Gamma\cup E$.

One can remark that there is a constraint between the sort of the arity of the inductive type and the sort of the type of its constructors which will always be satisfied for the impredicative sort (Prop) but may fail to define inductive definition on sort Set and generate constraints between universes for inductive definitions in the Type hierarchy.

Examples. It is well known that existential quantifier can be encoded as an inductive definition. The following declaration introduces the second-order existential quantifier $\exists X.P(X)$.

```
Coq < Inductive exProp (P:Prop->Prop) : Prop
Coq < := exP_intro : forall X:Prop, P X -> exProp P.
```

The same definition on **Set** is not allowed and fails:

```
Coq < Inductive exSet (P:Set->Prop) : Set
Coq < := exS_intro : forall X:Set, P X -> exSet P.
Coq < Coq < Error: Large non-propositional inductive types must be in Type.</pre>
```

It is possible to declare the same inductive definition in the universe Type. The exType inductive definition has type $(\mathsf{Type}_i \to \mathsf{Prop}) \to \mathsf{Type}_j$ with the constraint that the parameter X of exT_intro has type Type $_k$ with k < j and $k \le i$.

```
Coq < Inductive exType (P:Type->Prop) : Type
Coq < := exT_intro : forall X:Type, P X -> exType P.
```

Sort-polymorphism of inductive families. From CoQ version 8.1, inductive families declared in Type are polymorphic over their arguments in Type.

If A is an arity and s a sort, we write $A_{/s}$ for the arity obtained from A by replacing its sort with s. Especially, if A is well-typed in some environment and context, then $A_{/s}$ is typable by typability of all products in the Calculus of Inductive Constructions. The following typing rule is added to the theory.

```
Ind-Family Let \operatorname{Ind}(\Gamma)[p](\Gamma_I := \Gamma_C) be an inductive definition. Let \Gamma_P = [p_1 : P_1; \ldots; p_p : P_p] be its context of parameters, \Gamma_I = [I_1 : \forall \Gamma_P, A_1; \ldots; I_k : \forall \Gamma_P, A_k] its context of definitions and \Gamma_C = [c_1 : \forall \Gamma_P, C_1; \ldots; c_n : \forall \Gamma_P, C_n] its context of constructors, with c_i a constructor of I_{q_i}.
```

Let $m \leq p$ be the length of the longest prefix of parameters such that the m first arguments of all occurrences of all I_j in all C_k (even the occurrences in the hypotheses of C_k) are exactly applied to $p_1 \ldots p_m$ (m is the number of recursively uniform parameters and the p-m remaining parameters are the recursively non-uniform parameters). Let q_1, \ldots, q_r , with $0 \leq r \leq m$, be a (possibly) partial instantiation of the recursively uniform parameters of Γ_P . We have:

$$\begin{cases} & \operatorname{Ind}(\Gamma)[p](\Gamma_I := \Gamma_C) \in E \\ & (E[\Gamma] \vdash q_l : P_l')_{l=1\dots r} \\ & (E[\Gamma] \vdash P_l' \leq_{\beta\delta\iota\zeta\eta} P_l\{p_u/q_u\}_{u=1\dots l-1})_{l=1\dots r} \\ & 1 \leq j \leq k \end{cases}$$

$$\overline{E[\Gamma] \vdash (I_j \ q_1 \ \dots \ q_r : \forall [p_{r+1} : P_{r+1}; \dots; p_p : P_p], (A_j)_{/s_j})}$$

provided that the following side conditions hold:

- $\Gamma_{P'}$ is the context obtained from Γ_P by replacing each P_l that is an arity with P'_l for $1 \leq l \leq r$ (notice that P_l arity implies P'_l arity since $E[\Gamma] \vdash P'_l \leq_{\beta\delta\iota\zeta\eta} P_l\{p_u/q_u\}_{u=1...l-1}$);
- there are sorts s_i , for $1 \leq i \leq k$ such that, for $\Gamma_{I'} = [I_1 : \forall \Gamma_{P'}, (A_1)_{/s_1}; \dots; I_k : \forall \Gamma_{P'}, (A_k)_{/s_k}]$ we have $(E[\Gamma; \Gamma_{I'}; \Gamma_{P'}] \vdash C_i : s_{q_i})_{i=1...n};$
- the sorts are such that all eliminations, to Prop, Set and Type(j), are allowed (see section 4.5.4).

Notice that if $I_j q_1 \ldots q_r$ is typable using the rules **Ind-Const** and **App**, then it is typable using the rule **Ind-Family**. Conversely, the extended theory is not stronger than the theory without **Ind-Family**. We get an equiconsistency result by mapping each $\operatorname{Ind}(\Gamma)[p](\Gamma_I := \Gamma_C)$ occurring into a given derivation into as many different inductive types and constructors as the number of different (partial) replacements of sorts, needed for this derivation, in the parameters that are arities (this is possible because $\operatorname{Ind}(\Gamma)[p](\Gamma_I := \Gamma_C)$ well-formed implies that $\operatorname{Ind}(\Gamma)[p](\Gamma_{I'} := \Gamma_{C'})$ is well-formed and has the same allowed eliminations, where $\Gamma_{I'}$ is defined as above and $\Gamma_{C'} = [c_1 : \forall \Gamma_{P'}, C_1; \ldots; c_n : \forall \Gamma_{P'}, C_n]$). That is, the changes in the types of each partial instance $q_1 \ldots q_r$ can be characterized by the ordered sets of arity sorts among the types of parameters, and to each signature is associated a new inductive definition with fresh names. Conversion is preserved as any (partial) instance $I_j q_1 \ldots q_r$ or $C_i q_1 \ldots q_r$ is mapped to the names chosen in the specific instance of $\operatorname{Ind}(\Gamma)[p](\Gamma_I := \Gamma_C)$.

In practice, the rule **Ind-Family** is used by CoQ only when all the inductive types of the inductive definition are declared with an arity whose sort is in the Type hierarchy. Then, the polymorphism is over the parameters whose type is an arity of sort in the Type hierarchy. The sort s_j are chosen canonically so that each s_j is minimal with respect to the hierarchy $\mathsf{Prop} \subset \mathsf{Set}_p \subset \mathsf{Type}$ where Set_p is predicative Set. More precisely, an empty or small singleton inductive definition (i.e. an inductive definition of which all inductive types are singleton – see paragraph 4.5.4) is set in Prop , a small non-singleton inductive family is set in Set (even in case Set is impredicative – see Section 4.7), and otherwise in the Type hierarchy.

Note that the side-condition about allowed elimination sorts in the rule **Ind-Family** is just to avoid to recompute the allowed elimination sorts at each instance of a pattern-matching (see section 4.5.4). As an example, let us consider the following definition:

```
Coq < Inductive option (A:Type) : Type :=
Coq < | None : option A
Coq < | Some : A -> option A.
```

As the definition is set in the Type hierarchy, it is used polymorphically over its parameters whose types are arities of a sort in the Type hierarchy. Here, the parameter A has this property, hence, if option is applied to a type in Set, the result is in Set. Note that if option is applied to a type in Prop, then, the result is not set in Prop but in Set still. This is because option is not a singleton type (see section 4.5.4) and it would loose the elimination to Set and Type if set in Prop.

Here is another example.

```
Coq < Inductive prod (A B:Type) : Type := pair : A -> B -> prod A B.
```

As prod is a singleton type, it will be in Prop if applied twice to propositions, in Set if applied twice to at least one type in Set and none in Type, and in Type otherwise. In all cases, the three kind of eliminations schemes are allowed.

4.5.4 Destructors

The specification of inductive definitions with arities and constructors is quite natural. But we still have to say how to use an object in an inductive type.

This problem is rather delicate. There are actually several different ways to do that. Some of them are logically equivalent but not always equivalent from the computational point of view or from the user point of view.

From the computational point of view, we want to be able to define a function whose domain is an inductively defined type by using a combination of case analysis over the possible constructors of the object and recursion.

Because we need to keep a consistent theory and also we prefer to keep a strongly normalizing reduction, we cannot accept any sort of recursion (even terminating). So the basic idea is to restrict ourselves to primitive recursive functions and functionals.

For instance, assuming a parameter A: Set exists in the context, we want to build a function length of type List $A \rightarrow \text{nat}$ which computes the length of the list, so such that (length (nil A)) = O and

(length (cons A a l)) = (S (length l)). We want these equalities to be recognized implicitly and taken into account in the conversion rule.

From the logical point of view, we have built a type family by giving a set of constructors. We want to capture the fact that we do not have any other way to build an object in this type. So when trying to prove a property $(P\ m)$ for m in an inductive definition it is enough to enumerate all the cases where m starts with a different constructor.

In case the inductive definition is effectively a recursive one, we want to capture the extra property that we have built the smallest fixed point of this recursive equation. This says that we are only manipulating finite objects. This analysis provides induction principles.

For instance, in order to prove $\forall l : \mathsf{List_A}, (\mathsf{Length_A}\ l\ (\mathsf{length}\ l))$ it is enough to prove: (Length A (nil A) (length (nil A))) and

 $\forall a:A, \forall l: \mathsf{List_A}, (\mathsf{Length_A}\ l\ (\mathsf{length}\ l)) \to (\mathsf{Length_A}\ (\mathsf{cons}\ A\ a\ l)\ (\mathsf{length}\ (\mathsf{cons}\ A\ a\ l))).$ which given the conversion equalities satisfied by length is the same as proving: ($\mathsf{Length_A}\ (\mathsf{nil}\ A)\ \mathsf{O}$) and $\forall a:A, \forall l: \mathsf{List_A}, (\mathsf{Length_A}\ l\ (\mathsf{length}\ l)) \to (\mathsf{Length_A}\ (\mathsf{cons}\ A\ a\ l)\ (\mathsf{S}\ (\mathsf{length}\ l))).$

One conceptually simple way to do that, following the basic scheme proposed by Martin-Löf in his Intuitionistic Type Theory, is to introduce for each inductive definition an elimination operator. At the logical level it is a proof of the usual induction principle and at the computational level it implements a generic operator for doing primitive recursion over the structure.

But this operator is rather tedious to implement and use. We choose in this version of Coq to factorize the operator for primitive recursion into two more primitive operations as was first suggested by Th. Coquand in [27]. One is the definition by pattern-matching. The second one is a definition by guarded fixpoints.

The match...with ...end construction.

The basic idea of this destructor operation is that we have an object m in an inductive type I and we want to prove a property $(P \ m)$ which in general depends on m. For this, it is enough to prove the property for $m = (c_i \ u_1 \dots u_{p_i})$ for each constructor of I.

The CoQ term for this proof will be written:

match
$$m$$
 with $(c_1 x_{11} \dots x_{1p_1}) \Rightarrow f_1 \mid \dots \mid (c_n x_{n1} \dots x_{np_n}) \Rightarrow f_n$ end

In this expression, if m is a term built from a constructor $(c_i \ u_1 \dots u_{p_i})$ then the expression will behave as it is specified with i-th branch and will reduce to f_i where the $x_{i1} \dots x_{ip_i}$ are replaced by the $u_1 \dots u_p$ according to the ι -reduction.

Actually, for type-checking a match...with...end expression we also need to know the predicate P to be proved by case analysis. In the general case where I is an inductively defined n-ary relation, P is a n+1-ary relation: the n first arguments correspond to the arguments of I (parameters excluded), and the last one corresponds to object m. CoQ can sometimes infer this predicate but sometimes not. The concrete syntax for describing this predicate uses the as...in...return construction. For instance, let us assume that I is an unary predicate with one parameter. The predicate is made explicit using the syntax:

match
$$m$$
 as x in $I \subseteq a$ return $(P \ x)$ with $(c_1 \ x_{11} \ ... \ x_{1p_1}) \Rightarrow f_1 \ | \ ... \ | \ (c_n \ x_{n1} ... x_{np_n}) \Rightarrow f_n$ end

The as part can be omitted if either the result type does not depend on m (non-dependent elimination) or m is a variable (in this case, the result type can depend on m). The in part can be omitted if the result type does not depend on the arguments of I. Note that the arguments of I corresponding to parameters must

be _, because the result type is not generalized to all possible values of the parameters. The expression after in must be seen as an *inductive type pattern*. As a final remark, expansion of implicit arguments and notations apply to this pattern.

For the purpose of presenting the inference rules, we use a more compact notation:

$$case(m, (\lambda ax. P), \lambda x_{11} \dots x_{1p_1}. f_1 \mid \dots \mid \lambda x_{n1} \dots x_{np_n}. f_n)$$

Allowed elimination sorts. An important question for building the typing rule for match is what can be the type of P with respect to the type of the inductive definitions.

We define now a relation [I:A|B] between an inductive definition I of type A and an arity B. This relation states that an object in the inductive definition I can be eliminated for proving a property P of type B.

The case of inductive definitions in sorts **Set** or **Type** is simple. There is no restriction on the sort of the predicate to be eliminated.

Notations. The [I:A|B] is defined as the smallest relation satisfying the following rules: We write [I|B] for [I:A|B] where A is the type of I.

Prod

$$\frac{[(I\ x):A'|B']}{[I:\forall x:A,A'|\forall x:A,B']}$$

Set & Type

$$\frac{s_1 \in \{\mathsf{Set}, \mathsf{Type}(j)\}, s_2 \in \mathcal{S}}{[I:s_1|I \to s_2]}$$

The case of Inductive definitions of sort Prop is a bit more complicated, because of our interpretation of this sort. The only harmless allowed elimination, is the one when predicate P is also of sort Prop.

Prop

$$[I: \mathsf{Prop}|I \to \mathsf{Prop}]$$

Prop is the type of logical propositions, the proofs of properties P in Prop could not be used for computation and are consequently ignored by the extraction mechanism. Assume A and B are two propositions, and the logical disjunction $A \vee B$ is defined inductively by :

```
Coq < Inductive or (A B:Prop) : Prop :=
Coq < lintro : A -> or A B | rintro : B -> or A B.
```

The following definition which computes a boolean value by case over the proof of or AB is not accepted:

```
Coq < Definition choice (A B: Prop) (x:or A B) :=
Coq < match x with lintro a => true | rintro b => false end.
Coq < Coq < Error:
Incorrect elimination of "x" in the inductive type "or":
the return type has sort "Set" while it should be "Prop".
Elimination of an inductive object of sort Prop
is not allowed on a predicate in sort Set
because proofs can be eliminated only to build proofs.
```

From the computational point of view, the structure of the proof of (or A B) in this term is needed for computing the boolean value.

In general, if I has type Prop then P cannot have type $I \to Set$, because it will mean to build an informative proof of type $(P \ m)$ doing a case analysis over a non-computational object that will disappear in the extracted program. But the other way is safe with respect to our interpretation we can have I a computational object and P a non-computational one, it just corresponds to proving a logical property of a computational object.

In the same spirit, elimination on P of type $I \to \mathsf{Type}$ cannot be allowed because it trivially implies the elimination on P of type $I \to \mathsf{Set}$ by cumulativity. It also implies that there is two proofs of the same property which are provably different, contradicting the proof-irrelevance property which is sometimes a useful axiom :

```
Coq < Axiom proof_irrelevance : forall (P : Prop) (x y : P), x=y.
proof irrelevance is assumed</pre>
```

The elimination of an inductive definition of type Prop on a predicate P of type $I \to \mathsf{Type}$ leads to a paradox when applied to impredicative inductive definition like the second-order existential quantifier exprop defined above, because it give access to the two projections on this type.

Empty and singleton elimination There are special inductive definitions in Prop for which more eliminations are allowed.

Prop-extended

$$\frac{I \text{ is an empty or singleton definition} \quad s \in \mathcal{S}}{[I: \mathsf{Prop}|I \to s]}$$

A singleton definition has only one constructor and all the arguments of this constructor have type Prop. In that case, there is a canonical way to interpret the informative extraction on an object in that type, such that the elimination on any sort s is legal. Typical examples are the conjunction of non-informative propositions and the equality. If there is an hypothesis h: a = b in the context, it can be used for rewriting not only in logical propositions but also in any type.

An empty definition has no constructors, in that case also, elimination on any sort is allowed.

Type of branches. Let c be a term of type C, we assume C is a type of constructor for an inductive definition I. Let P be a term that represents the property to be proved. We assume r is the number of parameters.

We define a new type $\{c:C\}^P$ which represents the type of the branch corresponding to the c:C constructor.

$$\{c : (I_i \ p_1 \dots p_r \ t_1 \dots t_p)\}^P \equiv (P \ t_1 \dots t_p \ c)$$

$$\{c : \forall \ x : T, C\}^P \equiv \forall \ x : T, \{(c \ x) : C\}^P$$

We write $\{c\}^P$ for $\{c:C\}^P$ with C the type of c.

Examples. For List_A the type of P will be List_A $\rightarrow s$ for $s \in S$.

 $\{(\operatorname{\mathsf{cons}} A)\}^P \equiv \forall a : A, \forall l : \operatorname{\mathsf{List_A}}, (P (\operatorname{\mathsf{cons}} A \ a \ l)).$

For Length_A, the type of P will be $\forall l: \text{List_A}, \forall n: \text{nat}, (\text{Length_A}\ l\ n) \to \text{Prop}$ and the expression $\{(\text{Lcons}\ A)\}^P$ is defined as:

 $\forall a: A, \forall l: \mathsf{List_A}, \forall n: \mathsf{nat}, \forall h: (\mathsf{Length_A}\ l\ n), (P\ (\mathsf{cons}\ A\ a\ l)\ (\mathsf{S}\ n)\ (\mathsf{Lcons}\ A\ a\ l\ n\ l)).$

If P does not depend on its third argument, we find the more natural expression:

 $\forall a: A, \forall l: \mathsf{List}\ \mathsf{A}, \forall n: \mathsf{nat}, (\mathsf{Length}\ \mathsf{A}\ l\ n) \to (P\ (\mathsf{cons}\ A\ a\ l)\ (\mathsf{S}\ n)).$

Typing rule. Our very general destructor for inductive definition enjoys the following typing rule

match

$$\frac{E[\Gamma] \vdash c : (I \ q_1 \dots q_r \ t_1 \dots t_s) \ E[\Gamma] \vdash P : B \ [(I \ q_1 \dots q_r) | B] \ (E[\Gamma] \vdash f_i : \{(c_{p_i} \ q_1 \dots q_r)\}^P)_{i=1\dots l}}{E[\Gamma] \vdash \mathsf{case}(c, P, f_1 | \dots | f_l) : (P \ t_1 \dots t_s \ c)}$$

provided I is an inductive type in a declaration $\operatorname{Ind}(\Delta)[r](\Gamma_I := \Gamma_C)$ with $\Gamma_C = [c_1 : C_1; \ldots; c_n : C_n]$ and $c_{p_1} \ldots c_{p_l}$ are the only constructors of I.

Example. For List and Length the typing rules for the match expression are (writing just t: M instead of $E[\Gamma] \vdash t: M$, the environment and context being the same in all the judgments).

$$\frac{l: \mathsf{List_A} \ P: \mathsf{List_A} \to s \quad f_1: (P \ (\mathsf{nil} \ A)) \quad f_2: \forall a: A, \forall l: \mathsf{List_A}, (P \ (\mathsf{cons} \ A \ a \ l))}{\mathsf{case}(l, P, f_1 \mid f_2): (P \ l)}$$

$$H: (\mathsf{Length_A}\ L\ N) \\ P: \forall l: \mathsf{List_A}, \forall n: \mathsf{nat}, (\mathsf{Length_A}\ l\ n) \to \mathsf{Prop} \\ f_1: (P\ (\mathsf{nil}\ A)\ \mathsf{O}\ \mathsf{Lnil}) \\ \underline{f_2: \forall a: A, \forall l: \mathsf{List_A}, \forall n: \mathsf{nat}, \forall h: (\mathsf{Length_A}\ l\ n), (P\ (\mathsf{cons}\ A\ a\ n)\ (\mathsf{S}\ n)\ (\mathsf{Lcons}\ A\ a\ l\ n\ h))} \\ \underline{\mathsf{case}(H, P, f_1\ |\ f_2): (P\ L\ N\ H)}$$

Definition of ι **-reduction.** We still have to define the ι -reduction in the general case.

A ι -redex is a term of the following form:

$$\mathsf{case}((c_{p_i}\ q_1 \dots q_r\ a_1 \dots a_m), P, f_1|\dots|f_l)$$

with c_{p_i} the *i*-th constructor of the inductive type *I* with *r* parameters.

The ι -contraction of this term is $(f_i \ a_1 \dots a_m)$ leading to the general reduction rule:

$$\mathsf{case}((c_{p_i} \ q_1 \ldots q_r \ a_1 \ldots a_m), P, f_1 | \ldots | f_n) \triangleright_{\iota} (f_i \ a_1 \ldots a_m)$$

4.5.5 Fixpoint definitions

The second operator for elimination is fixpoint definition. This fixpoint may involve several mutually recursive definitions. The basic concrete syntax for a recursive set of mutually recursive declarations is (with Γ_i contexts):

fix
$$f_1(\Gamma_1): A_1:=t_1$$
 with . . . with $f_n(\Gamma_n): A_n:=t_n$

The terms are obtained by projections from this set of declarations and are written

fix
$$f_1(\Gamma_1): A_1 := t_1$$
 with . . . with $f_n(\Gamma_n): A_n := t_n$ for f_i

In the inference rules, we represent such a term by

Fix
$$f_i\{f_1: A_1':=t_1'\dots f_n: A_n':=t_n'\}$$

with t_i' (resp. A_i') representing the term t_i abstracted (resp. generalized) with respect to the bindings in the context Γ_i , namely $t_i' = \lambda \Gamma_i$. t_i and $A_i' = \forall \Gamma_i$, A_i .

Typing rule

The typing rule is the expected one for a fixpoint.

Fix

$$\frac{(E[\Gamma] \vdash A_i : s_i)_{i=1...n} \quad (E[\Gamma, f_1 : A_1, \dots, f_n : A_n] \vdash t_i : A_i)_{i=1...n}}{E[\Gamma] \vdash \text{Fix } f_i \{ f_1 : A_1 := t_1 \dots f_n : A_n := t_n \} : A_i}$$

Any fixpoint definition cannot be accepted because non-normalizing terms will lead to proofs of absurdity.

The basic scheme of recursion that should be allowed is the one needed for defining primitive recursive functionals. In that case the fixpoint enjoys a special syntactic restriction, namely one of the arguments belongs to an inductive type, the function starts with a case analysis and recursive calls are done on variables coming from patterns and representing subterms.

For instance in the case of natural numbers, a proof of the induction principle of type

$$\forall P : \mathsf{nat} \to \mathsf{Prop}, (P \ \mathsf{O}) \to (\forall n : \mathsf{nat}, (P \ n) \to (P \ (\mathsf{S} \ n))) \to \forall n : \mathsf{nat}, (P \ n)$$

can be represented by the term:

$$\lambda P: \mathsf{nat} \to \mathsf{Prop.} \ \lambda f: (P \ \mathsf{O}). \ \lambda g: (\forall n: \mathsf{nat}, (P \ n) \to (P \ (\mathsf{S} \ n))).$$
 Fix $h\{h: \forall n: \mathsf{nat}, (P \ n) := \lambda n: \mathsf{nat}. \ \mathsf{case}(n, P, f \mid \lambda p: \mathsf{nat}. \ (q \ p \ (h \ p)))\}$

Before accepting a fixpoint definition as being correctly typed, we check that the definition is "guarded". A precise analysis of this notion can be found in [65].

The first stage is to precise on which argument the fixpoint will be decreasing. The type of this argument should be an inductive definition.

For doing this the syntax of fixpoints is extended and becomes

Fix
$$f_i\{f_1/k_1: A_1:=t_1\dots f_n/k_n: A_n:=t_n\}$$

where k_i are positive integers. Each A_i should be a type (reducible to a term) starting with at least k_i products $\forall y_1 : B_1, \ldots \forall y_{k_i} : B_{k_i}, A'_i$ and B_{k_i} being an instance of an inductive definition.

Now in the definition t_i , if f_j occurs then it should be applied to at least k_j arguments and the k_j -th argument should be syntactically recognized as structurally smaller than y_{k_i}

The definition of being structurally smaller is a bit technical. One needs first to define the notion of recursive arguments of a constructor. For an inductive definition $\operatorname{Ind}(\Gamma)[r](\Gamma_I := \Gamma_C)$, the type of a constructor c has the form $\forall p_1 : P_1, \ldots \forall p_r : P_r, \forall x_1 : T_1, \ldots \forall x_r : T_r, (I_j \ p_1 \ldots p_r \ t_1 \ldots t_s)$ the recursive arguments will correspond to T_i in which one of the I_I occurs.

The main rules for being structurally smaller are the following: Given a variable y of type an inductive definition in a declaration $\operatorname{Ind}(\Gamma)[r](\Gamma_I := \Gamma_C)$ where Γ_I is $[I_1:A_1;\ldots;I_k:A_k]$, and Γ_C is $[c_1:C_1;\ldots;c_n:C_n]$. The terms structurally smaller than y are:

- $(t u), \lambda x : u. t$ when t is structurally smaller than y.
- case $(c, P, f_1 \dots f_n)$ when each f_i is structurally smaller than y. If c is y or is structurally smaller than y, its type is an inductive definition I_p part of the inductive declaration corresponding to y. Each f_i corresponds to a type of constructor $C_q \equiv \forall p_1: P_1, \dots, \forall p_r: P_r, \forall y_1: B_1, \dots \forall y_k: B_k, (I \ a_1 \dots a_k)$ and can consequently be written $\lambda y_1: B'_1 \dots \lambda y_k: B'_k$. g_i . $(B'_i$ is obtained from B_i by substituting parameters variables) the variables y_j occurring in g_i corresponding to recursive arguments B_i (the ones in which one of the I_l occurs) are structurally smaller than y.

The following definitions are correct, we enter them using the Fixpoint command as described in Section 1.3.4 and show the internal representation.

```
Cog < Fixpoint plus (n m:nat) {struct n} : nat :=</pre>
Cog < match n with
       | O => m
Coq <
       | S p => S (plus p m)
Coq <
Coq <
      end.
plus is recursively defined (decreasing on 1st argument)
Coq < Print plus.
plus =
fix plus (n m : nat) {struct n} : nat :=
 match n with
  | O => m
  | S p => S (plus p m)
 end
    : nat -> nat -> nat
Coq < Fixpoint lgth (A:Set) (1:list A) {struct 1} : nat :=</pre>
Coq < match 1 with
Coq <
       | nil => 0
       | cons a l' => S (lgth A l')
Coq <
lgth is recursively defined (decreasing on 2nd argument)
Coq < Print lgth.
lgth =
fix lgth (A : Set) (1 : list A) {struct l} : nat :=
 match 1 with
  / nil => O
  / cons _ 1' => S (lgth A 1')
     : forall A : Set, list A -> nat
```

```
Argument scopes are [type_scope _]
Coq < Fixpoint sizet (t:tree) : nat := let (f) := t in S (sizef f)
Coq < with sizef (f:forest) : nat :=</pre>
      match f with
Coq <
Coq <
       | emptyf => 0
      | consf t f => plus (sizet t) (sizef f)
Coq <
Coq <
      end.
sizet, sizef are recursively defined (decreasing respectively on 1st,
1st arguments)
Coq < Print sizet.
sizet =
fix sizet (t : tree) : nat :=
  let (f) := t in S (sizef f)
with sizef (f : forest) : nat :=
 match f with
  | emptyf => 0
  / consf t f0 => plus (sizet t) (sizef f0)
  end
for sizet
     : tree -> nat
```

Reduction rule

Let F be the set of declarations: $f_1/k_1: A_1:=t_1\dots f_n/k_n: A_n:=t_n$. The reduction for fixpoints is:

$$(\text{Fix } f_i \{ F \} \ a_1 \dots a_{k_i}) \triangleright_{\iota} t_i \{ (f_k / \text{Fix } f_k \{ F \})_{k=1 \dots n} \} \ a_1 \dots a_{k_i} \}$$

when a_{k_i} starts with a constructor. This last restriction is needed in order to keep strong normalization and corresponds to the reduction for primitive recursive operators.

We can illustrate this behavior on examples.

```
Coq < Goal forall n m:nat, plus (S n) m = S (plus n m).
1 subgoal
 ______
  forall n m : nat, plus (S n) m = S (plus n m)
Coq < reflexivity.
No more subgoals.
Cog < Abort.
Current goal aborted
Cog < Goal forall f:forest, sizet (node f) = S (sizef f).</pre>
1 subgoal
 forall f : forest, sizet (node f) = S (sizef f)
Coq < reflexivity.
No more subgoals.
Coq < Abort.
Current goal aborted
```

But assuming the definition of a son function from tree to forest:

```
Coq < Definition sont (t:tree) : forest
Coq <    := let (f) := t in f.
sont is defined</pre>
```

The following is not a conversion but can be proved after a case analysis.

```
Cog < Goal forall t:tree, sizet t = S (sizef (sont t)).</pre>
Coq < Coq < 1 subgoal
 ______
  forall t: tree, sizet t = S (sizef (sont t))
Coq < reflexivity. (** this one fails **)</pre>
Toplevel input, characters 0-11:
> reflexivity.
> ^^^^^^^^^
Error: Impossible to unify "S (sizef (sont t))" with "sizet t".
Coq < destruct t.
1 subgoal
 f : forest
 sizet (node f) = S (sizef (sont (node f)))
Coq < reflexivity.
No more subgoals.
```

Mutual induction

The principles of mutual induction can be automatically generated using the Scheme command described in Section 13.1.

4.6 Co-inductive types

The implementation contains also co-inductive definitions, which are types inhabited by infinite objects. More information on co-inductive definitions can be found in [66, 67, 68].

4.7 CIC: the Calculus of Inductive Construction with impredicative Set

CoQ can be used as a type-checker for CIC, the original Calculus of Inductive Constructions with an impredicative sort Set by using the compiler option -impredicative-set.

For example, using the ordinary coqtop command, the following is rejected.

while it will type-check, if one use instead the coqtop -impredicative-set command.

The major change in the theory concerns the rule for product formation in the sort Set, which is extended to a domain in any sort :

Prod

$$\frac{E[\Gamma] \vdash T: s \quad s \in \mathcal{S} \quad E[\Gamma :: (x:T)] \vdash U: \mathsf{Set}}{E[\Gamma] \vdash \forall \, x: T, U: \mathsf{Set}}$$

This extension has consequences on the inductive definitions which are allowed. In the impredicative system, one can build so-called *large inductive definitions* like the example of second-order existential quantifier (exSet).

There should be restrictions on the eliminations which can be performed on such definitions. The eliminations rules in the impredicative system for sort Set become :

Set

$$\frac{s \in \{\mathsf{Prop}, \mathsf{Set}\}}{[I : \mathsf{Set}|I \to s]} \quad \frac{I \text{ is a small inductive definition} \quad s \in \{\mathsf{Type}(i)\}}{[I : \mathsf{Set}|I \to s]}$$

Chapter 5

The Module System

The module system extends the Calculus of Inductive Constructions providing a convenient way to structure large developments as well as a mean of massive abstraction.

5.1 Modules and module types

Access path. It is denoted by p, it can be either a module variable X or, if p' is an access path and id an identifier, then p'.id is an access path.

Structure element. It is denoted by e and is either a definition of a constant, an assumption, a definition of an inductive, a definition of a module, an alias of module or a module type abbreviation.

Structure expression. It is denoted by S and can be:

- an access path p
- a plain structure Struct e; ...; e End
- a functor Functor (X : S) S', where X is a module variable, S and S' are structure expression
- an application Sp, where S is a structure expression and p an access path
- a refined structure S with p := p' or S with p := t : T where S is a structure expression, p and p' are access paths, t is a term and T is the type of t.

Module definition, is written Mod(X : S[:= S']) and consists of a module variable X, a module type S which can be any structure expression and optionally a module implementation S' which can be any structure expression except a refined structure.

Module alias, is written ModA(X == p) and consists of a module variable X and a module path p.

Module type abbreviation, is written $\mathsf{ModType}(Y := S)$, where Y is an identifier and S is any structure expression .

5.2 Typing Modules

In order to introduce the typing system we first slightly extend the syntactic class of terms and environments given in section 4.1. The environments, apart from definitions of constants and inductive types now also hold any other structure elements. Terms, apart from variables, constants and complex terms, include also access paths.

We also need additional typing judgments:

- $E[] \vdash WF(S)$, denoting that a structure S is well-formed,
- $E[] \vdash p : S$, denoting that the module pointed by p has type S in environment E.
- $E[] \vdash S \longrightarrow \overline{S}$, denoting that a structure S is evaluated to a structure \overline{S} in weak head normal form.
- $E[] \vdash S_1 \mathrel{<:} S_2$, denoting that a structure S_1 is a subtype of a structure S_2 .
- $E[] \vdash e_1 <: e_2$, denoting that a structure element e_1 is more precise that a structure element e_2 .

The rules for forming structures are the following:

WF-STR

$$\frac{\mathcal{WF}(E;E')[]}{E[] \vdash \mathcal{WF}(\mathsf{Struct}\; E' \; \mathsf{End})}$$

WF-FUN

$$\frac{E;\mathsf{Mod}(X:S)[] \vdash \mathcal{WF}(\overline{S'})}{E[] \vdash \mathcal{WF}(\mathsf{Functor}(X:S) \ S')}$$

Evaluation of structures to weak head normal form:

WEVAL-APP

$$\begin{array}{c} E[] \vdash S \longrightarrow \mathsf{Functor}(X:S_1) \ S_2 \quad E[] \vdash S_1 \longrightarrow \overline{S_1} \\ E[] \vdash p:S_3 \quad E[] \vdash S_3 <: \overline{S_1} \\ \hline E[] \vdash S \ p \longrightarrow S_2\{p/X, t_1/p_1.c_1, \dots, t_n/p_n.c_n\} \end{array}$$

In the last rule, $\{t_1/p_1.c_1,\ldots,t_n/p_n.c_n\}$ is the resulting substitution from the inlining mechanism. We substitute in S the inlined fields $p_i.c_i$ form $\mathsf{Mod}(X:S_1)$ by the corresponding delta-reduced term t_i in p.

WEVAL-WITH-MOD

$$E[] \vdash S \longrightarrow \mathsf{Struct}\ e_1; \dots; e_i; \mathsf{Mod}(X:S_1); e_{i+2}; \dots; e_n \ \mathsf{End} \quad \underbrace{E; e_1; \dots; e_i[] \vdash S_1 \longrightarrow \overline{S_1}}_{E[] \vdash P:S_2} \quad E: e_1; \dots; e_i[] \vdash S_2 <: \overline{S_1}$$

$$E[] \vdash S \ \mathsf{with}\ x := p \longrightarrow \\ \mathsf{Struct}\ e_1; \dots; e_i; \mathsf{ModA}(X == p); e_{i+2}\{p/X\}; \dots; e_n\{p/X\} \ \mathsf{End}$$

WEVAL-WITH-MOD-REC

$$\begin{split} E[] \vdash S &\longrightarrow \mathsf{Struct}\ e_1; \dots; e_i; \mathsf{Mod}(X_1:S_1); e_{i+2}; \dots; e_n\ \mathsf{End} \\ & E[] \vdash S \ \mathsf{with}\ p := p_1 \longrightarrow \overline{S_2} \\ \hline & E[] \vdash S \ \mathsf{with}\ X_1.p := p_1 \longrightarrow \\ \mathsf{Struct}\ e_1; \dots; e_i; \mathsf{Mod}(X:\overline{S_2}); e_{i+2}\{p_1/X_1.p\}; \dots; e_n\{p_1/X_1.p\}\ \mathsf{End} \end{split}$$

5.2 Typing Modules 137

WEVAL-WITH-DEF

$$\begin{split} E[] \vdash S &\longrightarrow \mathsf{Struct}\ e_1; \dots; e_i; \mathsf{Assum}()(c:T_1); e_{i+2}; \dots; e_n \ \mathsf{End} \\ E; e_1; \dots; e_i[] \vdash \mathsf{Def}()(c:=t:T) <: \mathsf{Assum}()(c:T_1) \\ &\qquad \qquad E[] \vdash S \ \mathsf{with}\ c:=t:T \longrightarrow \\ \mathsf{Struct}\ e_1; \dots; e_i; \mathsf{Def}()(c:=t:T); e_{i+2}; \dots; e_n \ \mathsf{End} \end{split}$$

WEVAL-WITH-DEF-REC

$$\begin{split} E[] \vdash S &\longrightarrow \mathsf{Struct}\ e_1; \ldots; e_i; \mathsf{Mod}(X_1:S_1); e_{i+\underline{2}}; \ldots; e_n \ \mathsf{End} \\ E; e_1; \ldots; e_i[] \vdash S_1 \ \mathsf{with}\ p := p_1 &\longrightarrow \overline{S_2} \\ \\ E[] \vdash S \ \mathsf{with}\ X_1.p := t : T &\longrightarrow \\ \mathsf{Struct}\ e_1; \ldots; e_i; \mathsf{Mod}(X:\overline{S_2}); e_{i+2}; \ldots; e_n \ \mathsf{End} \end{split}$$

WEVAL-PATH-MOD

$$E[] \vdash p \longrightarrow \mathsf{Struct}\ e_1; \dots; e_i; \mathsf{Mod}(X:S[:=S_1]); e_{i+2}; \dots; e_n \ \mathsf{End}$$

$$E[] \vdash p.X \longrightarrow \overline{S}$$

$$E[] \vdash p.X \longrightarrow \overline{S}$$

$$\mathcal{WF}(E)[] \quad \mathsf{Mod}(X:S[:=S_1]) \in E$$

$$E[] \vdash S \longrightarrow \overline{S}$$

$$E[] \vdash X \longrightarrow \overline{S}$$

WEVAL-PATH-ALIAS

$$E[] \vdash p \longrightarrow \mathsf{Struct}\ e_1; \dots; e_i; \mathsf{ModA}(X == p_1); e_{i+2}; \dots; e_n \ \mathsf{End}$$

$$E[] \vdash p.X \longrightarrow \overline{S}$$

$$E[] \vdash p.X \longrightarrow \overline{S}$$

$$\mathcal{WF}(E)[] \quad \mathsf{ModA}(X == p_1) \in E$$

$$E[] \vdash p_1 \longrightarrow \overline{S}$$

$$E[] \vdash X \longrightarrow \overline{S}$$

WEVAL-PATH-TYPE

$$E[] \vdash p \longrightarrow \mathsf{Struct}\ e_1; \dots; e_i; \mathsf{ModType}(Y := S); e_{i+2}; \dots; e_n \ \mathsf{End}$$

$$E[] \vdash p . Y \longrightarrow \overline{S}$$

WEVAL-PATH-TYPE

$$\begin{array}{c|c} \mathcal{WF}(E)[] & \mathsf{ModType}(Y := S) \in E \\ \hline E[] \vdash S \longrightarrow \overline{S} \\ \hline E[] \vdash Y \longrightarrow \overline{S} \\ \end{array}$$

Rules for typing module:

MT-EVAL

$$\frac{E[] \vdash p \longrightarrow \overline{S}}{E[] \vdash p : \overline{S}}$$

MT-STR

$$\frac{E[] \vdash p : S}{E[] \vdash p : S/p}$$

The last rule, called strengthening is used to make all module fields manifestly equal to themselves. The notation S/p has the following meaning:

- if $S \longrightarrow \mathsf{Struct}\ e_1; \ldots; e_n$ End then $S/p = \mathsf{Struct}\ e_1/p; \ldots; e_n/p$ End where e/p is defined as follows:
 - $Def()(c := t : T)/p^1 = Def()(c := t : T)$
 - $\operatorname{Assum}()(c:U)/p = \operatorname{Def}()(c:=p.c:U)$
 - Mod(X:S)/p = ModA(X == p.X)
 - $\operatorname{\mathsf{ModA}}(X == p')/p = \operatorname{\mathsf{ModA}}(X == p')$
 - $\operatorname{Ind}()[\Gamma_P](\Gamma_C := \Gamma_I)/p = \operatorname{Ind}_p()[\Gamma_P](\Gamma_C := \Gamma_I)$
 - $\operatorname{Ind}_{n'}()[\Gamma_P](\Gamma_C := \Gamma_I)/p = \operatorname{Ind}_{n'}()[\Gamma_P](\Gamma_C := \Gamma_I)$
- if $S \longrightarrow \operatorname{Functor}(X : S') S''$ then S/p = S

The notation $\operatorname{Ind}_p()[\Gamma_P](\Gamma_C := \Gamma_I)$ denotes an inductive definition that is definitionally equal to the inductive definition in the module denoted by the path p. All rules which have $\operatorname{Ind}()[\Gamma_P](\Gamma_C := \Gamma_I)$ as premises are also valid for $\operatorname{Ind}_p()[\Gamma_P](\Gamma_C := \Gamma_I)$. We give the formation rule for $\operatorname{Ind}_p()[\Gamma_P](\Gamma_C := \Gamma_I)$ below as well as the equality rules on inductive types and constructors.

The module subtyping rules:

MSUB-STR

$$\begin{split} E; e_1; \dots; e_n[] \vdash e_{\sigma(i)} <: e_i' \text{ for } i = 1..m \\ \sigma: \{1 \dots m\} \to \{1 \dots n\} \text{ injective} \\ \hline E[] \vdash \text{Struct } e_1; \dots; e_n \text{ End } <: \text{Struct } e_1'; \dots; e_m' \text{ End} \end{split}$$

MSUB-FUN

$$\frac{E[] \vdash \overline{S_1'} <: \overline{S_1} \qquad E; \mathsf{Mod}(X:S_1')[] \vdash \overline{S_2} <: \overline{S_2'}}{E[] \vdash \mathsf{Functor}(X:S_1) \ S_2 <: \mathsf{Functor}(X:S_1') \ S_2'}$$

Structure element subtyping rules:

ASSUM-ASSUM

$$\frac{E[] \vdash T_1 \leq_{\beta\delta\iota\zeta\eta} T_2}{E[] \vdash \mathsf{Assum}()(c:T_1) <: \mathsf{Assum}()(c:T_2)}$$

DEF-ASSUM

$$\frac{E[] \vdash T_1 \leq_{\beta \delta \iota \zeta \eta} T_2}{E[] \vdash \mathsf{Def}()(c := t : T_1) <: \mathsf{Assum}()(c : T_2)}$$

ASSUM-DEF

$$\frac{E[] \vdash T_1 \leq_{\beta\delta\iota\zeta\eta} T_2 \qquad E[] \vdash c =_{\beta\delta\iota\zeta\eta} t_2}{E[] \vdash \mathsf{Assum}()(c:T_1) <: \mathsf{Def}()(c:=t_2:T_2)}$$

¹Opaque definitions are processed as assumptions.

5.2 Typing Modules 139

DEF-DEF

$$\frac{E[] \vdash T_1 \leq_{\beta\delta\iota\zeta\eta} T_2 \qquad E[] \vdash t_1 =_{\beta\delta\iota\zeta\eta} t_2}{E[] \vdash \mathsf{Def}()(c := t_1 : T_1) <: \mathsf{Def}()(c := t_2 : T_2)}$$

IND-IND

$$\frac{E[] \vdash \Gamma_P =_{\beta\delta\iota\zeta\eta} \Gamma_P' \qquad E[\Gamma_P] \vdash \Gamma_C =_{\beta\delta\iota\zeta\eta} \Gamma_C' \qquad E[\Gamma_P; \Gamma_C] \vdash \Gamma_I =_{\beta\delta\iota\zeta\eta} \Gamma_I'}{E[] \vdash \operatorname{Ind}()[\Gamma_P](\Gamma_C := \Gamma_I) <: \operatorname{Ind}()[\Gamma_P'](\Gamma_C' := \Gamma_I')}$$

INDP-IND

$$\frac{E[] \vdash \Gamma_P =_{\beta \delta \iota \zeta \eta} \Gamma_P' \qquad E[\Gamma_P] \vdash \Gamma_C =_{\beta \delta \iota \zeta \eta} \Gamma_C' \qquad E[\Gamma_P; \Gamma_C] \vdash \Gamma_I =_{\beta \delta \iota \zeta \eta} \Gamma_I'}{E[] \vdash \mathsf{Ind}_{\scriptscriptstyle \mathcal{D}}()[\Gamma_P](\Gamma_C := \Gamma_I) \qquad <: \mathsf{Ind}()[\Gamma_P'](\Gamma_C' := \Gamma_I')}$$

INDP-INDP

$$\frac{E[] \vdash \Gamma_P =_{\beta \delta \iota \zeta \eta} \Gamma_P' \qquad E[\Gamma_P] \vdash \Gamma_C =_{\beta \delta \iota \zeta \eta} \Gamma_C' \qquad E[\Gamma_P; \Gamma_C] \vdash \Gamma_I =_{\beta \delta \iota \zeta \eta} \Gamma_I' \qquad E[] \vdash p =_{\beta \delta \iota \zeta \eta} p'}{E[] \vdash \mathsf{Ind}_p()[\Gamma_P](\Gamma_C := \Gamma_I)} \qquad <: \mathsf{Ind}_{p'}()[\Gamma_P'](\Gamma_C' := \Gamma_I')$$

MOD-MOD

$$\frac{E[] \vdash S_1 <: S_2}{E[] \vdash \mathsf{Mod}(X:S_1) <: \mathsf{Mod}(X:S_2)}$$

ALIAS-MOD

$$\frac{E[] \vdash p : S_1 \qquad E[] \vdash S_1 <: S_2}{E[] \vdash \mathsf{ModA}(X == p) <: \mathsf{Mod}(X : S_2)}$$

MOD-ALIAS

$$\frac{E[] \vdash p : S_2 \qquad E[] \vdash S_1 <: S_2 \qquad E[] \vdash X =_{\beta \delta \iota \zeta \eta} p}{E[] \vdash \mathsf{Mod}(X : S_1) <: \mathsf{ModA}(X == p)}$$

ALIAS-ALIAS

$$\frac{E[] \vdash p_1 =_{\beta \delta \iota \zeta \eta} p_2}{E[] \vdash \mathsf{ModA}(X == p_1) <: \mathsf{ModA}(X == p_2)}$$

MODTYPE-MODTYPE

$$\frac{E[] \vdash S_1 <: S_2 \qquad E[] \vdash S_2 <: S_1}{E[] \vdash \mathsf{ModType}(Y := S_1) <: \mathsf{ModType}(Y := S_2)}$$

New environment formation rules

WF-MOD

$$\frac{\mathcal{WF}(E)[] \qquad E[] \vdash \mathcal{WF}(S)}{\mathcal{WF}(E; \mathsf{Mod}(X:S))[]}$$

WF-MOD

$$\frac{E[] \vdash S_2 <: S_1}{\mathcal{WF}(E)[] \quad E[] \vdash \mathcal{WF}(S_1) \quad E[] \vdash \mathcal{WF}(S_2)}$$

$$\mathcal{WF}(E; \mathsf{Mod}(X : S_1 [:= S_2]))[]$$

WF-ALIAS

$$\frac{\mathcal{WF}(E)[] \qquad E[] \vdash p : S}{\mathcal{WF}(E, \mathsf{ModA}(X == p))[]}$$

WF-MODTYPE

$$\frac{\mathcal{WF}(E)[] \qquad E[] \vdash \mathcal{WF}(S)}{\mathcal{WF}(E,\mathsf{ModType}(Y:=S))[]}$$

WF-IND

$$\mathcal{WF}(E; \mathsf{Ind}()[\Gamma_P](\Gamma_C := \Gamma_I))[]$$

$$E[] \vdash p : \mathsf{Struct}\ e_1; \dots; e_n; \mathsf{Ind}()[\Gamma_P'](\Gamma_C' := \Gamma_I'); \dots \mathsf{End}:$$

$$E[] \vdash \mathsf{Ind}()[\Gamma_P'](\Gamma_C' := \Gamma_I') <: \mathsf{Ind}()[\Gamma_P](\Gamma_C := \Gamma_I)$$

$$\mathcal{WF}(E; \mathsf{Ind}_p()[\Gamma_P](\Gamma_C := \Gamma_I))[]$$

Component access rules

ACC-TYPE

$$\frac{E[\Gamma] \vdash p : \mathsf{Struct}\ e_1; \ldots; e_i; \mathsf{Assum}()(c:T); \ldots \ \mathsf{End}}{E[\Gamma] \vdash p.c:T}$$

$$\frac{E[\Gamma] \vdash p : \mathsf{Struct}\ e_1; \ldots; e_i; \mathsf{Def}()(c := t : T); \ldots \ \mathsf{End}}{E[\Gamma] \vdash p.c : T}$$

ACC-DELTA Notice that the following rule extends the delta rule defined in section 4.3

$$\frac{E[\Gamma] \vdash p : \mathsf{Struct}\ e_1; \dots; e_i; \mathsf{Def}()(c := t : U); \dots \ \mathsf{End}}{E[\Gamma] \vdash p.c \, \triangleright_{\delta} t}$$

In the rules below we assume Γ_P is $[p_1:P_1;\ldots;p_r:P_r]$, Γ_I is $[I_1:A_1;\ldots;I_k:A_k]$, and Γ_C is $[c_1:C_1;\ldots;c_n:C_n]$

ACC-IND

$$\frac{E[\Gamma] \vdash p : \mathsf{Struct}\ e_1; \ldots; e_i; \mathsf{Ind}()[\Gamma_P](\Gamma_C := \Gamma_I\,); \ldots \ \mathsf{End}}{E[\Gamma] \vdash p.I_j : (p_1 : P_1) \ldots (p_r : P_r) A_j}$$

$$\frac{E[\Gamma] \vdash p : \mathsf{Struct}\ e_1; \ldots; e_i; \mathsf{Ind}()[\Gamma_P](\Gamma_C := \Gamma_I); \ldots \mathsf{End}}{E[\Gamma] \vdash p.c_m : (p_1 : P_1) \ldots (p_r : P_r) C_m I_j (I_j\ p_1 \ldots p_r)_{j=1\ldots k}}$$

ACC-INDP

$$\frac{E[] \vdash p : \mathsf{Struct}\ e_1; \ldots; e_i; \mathsf{Ind}_{p'}()[\Gamma_P](\Gamma_C := \Gamma_I\)\ ; \ldots \ \mathsf{End}}{E[] \vdash p.I_i \rhd_\delta p'.I_i}$$

$$\frac{E[] \vdash p : \mathsf{Struct}\ e_1; \ldots; e_i; \mathsf{Ind}_{p'}()[\Gamma_P](\Gamma_C := \Gamma_I\)\ ; \ldots \ \mathsf{End}}{E[] \vdash p.c_i \, \triangleright_\delta \, p'.c_i}$$

Part II The proof engine

Chapter 6

Vernacular commands

6.1 Displaying

6.1.1 Print qualid.

This command displays on the screen informations about the declared or defined object referred by qualid.

Error messages:

1. qualid not a defined object

Variants:

- 1. Print Term qualid.

 This is a synonym to Print qualid when qualid denotes a global constant.
- 2. About qualid.

This displays various informations about the object denoted by *qualid*: its kind (module, constant, assumption, inductive, constructor, abbreviation...), long name, type, implicit arguments and argument scopes. It does not print the body of definitions or proofs.

6.1.2 Print All.

This command displays informations about the current state of the environment, including sections and modules.

Variants:

- 1. Inspect num.
 - This command displays the *num* last objects of the current environment, including sections and modules.
- 2. Print Section *ident*. should correspond to a currently open section, this command displays the objects defined since the beginning of this section.

144 **6 Vernacular commands**

6.2 Flags, Options and Tables

CoQ configurability is based on flags (e.g. Set Printing All in Section 2.9), options (e.g. Set Printing Width *integer* in Section 6.10.3), or tables (e.g. Add Printing Record *ident*, in Section 2.2.4). The names of flags, options and tables are made of non-empty sequences of identifiers (conventionally with capital initial letter). The general commands handling flags, options and tables are given below.

6.2.1 Set flag.

This command switches *flag* on. The original state of *flag* is restored when the current module ends.

Variants:

- 1. Local Set flag.
 - This command switches *flag* on. The original state of *flag* is restored when the current *section* ends.
- 2. Global Set flag.

This command switches *flag* on. The original state of *flag* is *not* restored at the end of the module. Additionally, if set in a file, *flag* is switched on when the file is Require-d.

6.2.2 Unset flag.

This command switches *flag* off. The original state of *flag* is restored when the current module ends.

Variants:

- 1. Local Unset flag.
 - This command switches *flag* off. The original state of *flag* is restored when the current *section* ends
- 2. Global Unset flag.

This command switches *flag* off. The original state of *flag* is *not* restored at the end of the module. Additionally, if set in a file, *flag* is switched on when the file is Require-d.

6.2.3 Test flag.

This command prints whether flag is on or off.

6.2.4 Set option value.

This command sets option to value. The original value of option is restored when the current module ends.

Variants:

- 1. Local Set option value. This command sets option to value. The original value of
- 2. Global Set *option value*. This command sets *option* to *value*. The original value of *option* is *not* restored at the end of the module. Additionally, if set in a file, *option* is set to *value* when the file is Require-d.

6.2.5 Unset option.

This command resets option to its default value.

Variants:

1. Local Unset option.

This command resets *option* to its default value. The original state of *option* is restored when the current *section* ends.

2. Global Unset option.

This command resets *option* to its default value. The original state of *option* is *not* restored at the end of the module. Additionally, if unset in a file, *option* is reset to its default value when the file is Require-d.

6.2.6 Test option.

This command prints the current value of option.

6.2.7 Tables

The general commands for tables are Add table value, Remove table value, Test table, Test table for value and Print Table table.

6.2.8 Print Options.

This command lists all available flags, options and tables.

Variants:

1. Print Tables.

This is a synonymous of Print Options.

6.3 Requests to the environment

6.3.1 Check term.

This command displays the type of *term*. When called in proof mode, the term is checked in the local context of the current subgoal.

6.3.2 Eval convtactic in term.

This command performs the specified reduction on *term*, and displays the resulting term with its type. The term to be reduced may depend on hypothesis introduced in the first subgoal (if a proof is in progress).

See also: Section 8.7.

6.3.3 Compute term.

This command performs a call-by-value evaluation of *term* by using the bytecode-based virtual machine. It is a shortcut for Eval vm_compute in *term*.

See also: Section 8.7.

6.3.4 Extraction term.

This command displays the extracted term from *term*. The extraction is processed according to the distinction between Set and Prop; that is to say, between logical and computational content (see Section 4.1.1). The extracted term is displayed in Objective Caml syntax, where global identifiers are still displayed as in CoQ terms.

Variants:

1. Recursive Extraction $qualid_1$... $qualid_n$. Recursively extracts all the material needed for the extraction of globals $qualid_1$... $qualid_n$.

See also: Chapter 22.

6.3.5 Print Assumptions qualid.

This commands display all the assumptions (axioms, parameters and variables) a theorem or definition depends on. Especially, it informs on the assumptions with respect to which the validity of a theorem relies.

Variants:

1. Print Opaque Dependencies *qualid*.

Displays the set of opaque constants *qualid* relies on in addition to the assumptions.

6.3.6 Search term.

This command displays the name and type of all theorems of the current context whose statement's conclusion has the form $(term \ t1 \ .. \ tn)$. This command is useful to remind the user of the name of library lemmas.

```
Coq < Search le. 

le\_S: forall n m: nat, n <= m -> n <= S m 

le\_n: forall n: nat, n <= n 

le\_pred: forall n m: nat, n <= m -> pred n <= pred m 

le\_S\_n: forall n m: nat, S n <= S m -> n <= m 

Coq < Search (@eq bool). 

andb\_true\_intro: 

forall b1 b2: bool, b1 = true /\ b2 = true -> (b1 && b2)%bool = true
```

Variants:

- 1. Search term inside $module_1 \dots module_n$.

 This restricts the search to constructions defined in modules $module_1 \dots module_n$.
- 2. Search term outside $module_1$... $module_n$.

 This restricts the search to constructions not defined in modules $module_1$... $module_n$.

Error messages:

(a) Module/section *module* not found No module *module* has been required (see Section 6.5.1).

6.3.7 SearchAbout qualid.

This command displays the name and type of all objects (theorems, axioms, etc) of the current context whose statement contains *qualid*. This command is useful to remind the user of the name of library lemmas.

Error messages:

1. The reference *qualid* was not found in the current environment There is no constant in the environment named *qualid*.

Variants:

1. SearchAbout string.

If string is a valid identifier, this command displays the name and type of all objects (theorems, axioms, etc) of the current context whose name contains string. If string is a notation's string denoting some reference qualid (referred to by its main symbol as in "+" or by its notation's string as in "_ + _" or "_ 'U' _", see Section 12.1), the command works like SearchAbout qualid.

2. SearchAbout string%key.

The string string must be a notation or the main symbol of a notation which is then interpreted in the scope bound to the delimiting key key (see Section 12.2.2).

3. SearchAbout term_pattern.

This searches for all statements or types of definition that contains a subterm that matches the pattern *term_pattern* (holes of the pattern are either denoted by "_" or by "?ident" when non linear patterns are expected).

4. SearchAbout [-]term_pattern-string ... [-]term_pattern-string.

where term_pattern-string is a term_pattern or a string, or a string followed by a scope delimiting key %key.

This generalization of SearchAbout searches for all objects whose statement or type contains a subterm matching term_pattern (or qualid if string is the notation for a reference qualid) and whose name contains all string of the request that correspond to valid identifiers. If a term_pattern or a string is prefixed by "-", the search excludes the objects that mention that term_pattern or that string.

5. SearchAbout $term_pattern$ -string ... $term_pattern$ -string inside $module_1$... $module_n$.

This restricts the search to constructions defined in modules $module_1 \dots module_n$.

6. SearchAbout $term_pattern_string$... $term_pattern_string$ outside $mod_ule_1...module_n$.

This restricts the search to constructions not defined in modules $module_1 \dots module_n$.

7. SearchAbout [...].

For compatibility with older versions, the list of objects to search may be enclosed by optional [delimiters.

Examples:

```
Coq < Require Import ZArith.
Cog < SearchAbout Z.mul Z.add "distr".
fast_Zmult_plus_distr_l:
  forall (n m p : Z) (P : Z \rightarrow Prop),
 P (n * p + m * p) %Z -> P ((n + m) * p) %Z
Z.mul_add_distr_r:
 forall n m p : Z, ((n + m) * p) %Z = (n * p + m * p) %Z
Z.mul_add_distr_l:
  forall n m p : Z, (n * (m + p)) %Z = (n * m + n * p) %Z
Cog < SearchAbout "+"%Z "*"%Z "distr" -positive -Prop.
Z.mul_add_distr_r:
  forall n m p : Z, ((n + m) * p) %Z = (n * p + m * p) %Z
Z.mul_add_distr_l:
 forall n m p : Z, (n * (m + p)) %Z = (n * m + n * p) %Z
Coq < SearchAbout (?x * _ + ?x * _)%Z outside OmegaLemmas.
Z.mul_add_distr_l:
  forall n m p : Z, (n * (m + p)) %Z = (n * m + n * p) %Z
```

6.3.8 SearchPattern term.

This command displays the name and type of all theorems of the current context whose statement's conclusion or last hypothesis and conclusion matches the expression *term* where holes in the latter are denoted by "_". It is a variant of SearchAbout *term_pattern* that does not look for subterms but searches for statements whose conclusion has exactly the expected form, or whose statement finishes by the given series of hypothesis/conclusion.

```
Coq < Require Import Arith.
Coq < SearchPattern (_ + _ = _ + _).
plus_permute_2_in_4:
  forall n m p q : nat, n + m + (p + q) = n + p + (m + q)
plus\_permute: forall n m p : nat, n + (m + p) = m + (n + p)
plus_comm: forall n m : nat, n + m = m + n
plus\_assoc\_reverse: forall n m p : nat, n + m + p = n + (m + p)
plus_assoc: forall n m p : nat, n + (m + p) = n + m + p
plus\_Snm\_nSm: forall n m : nat, S n + m = n + S m
Coq < SearchPattern (nat -> bool).
NPeano.testbit: nat -> nat -> bool
NPeano.odd: nat -> bool
NPeano.ltb: nat -> nat -> bool
NPeano.leb: nat -> nat -> bool
leb: nat -> nat -> bool
NPeano.even: nat -> bool
beq_nat: nat -> nat -> bool
Coq < SearchPattern (forall 1 : list _, _ 1 1).</pre>
List.lel_refl: forall (A : Type) (l : list A), List.lel l l
List.incl_refl: forall (A : Type) (1 : list A), List.incl 1 1
```

Patterns need not be linear: you can express that the same expression must occur in two places by using pattern variables '?ident'.

```
Coq < Require Import Arith.
Coq < SearchPattern (?X1 + _ = _ + ?X1).
plus_comm: forall n m : nat, n + m = m + n</pre>
```

Variants:

- 1. SearchPattern term inside $module_1$... $module_n$.

 This restricts the search to constructions defined in modules $module_1$... $module_n$.
- 2. SearchPattern term outside $module_1$... $module_n$.

 This restricts the search to constructions not defined in modules $module_1$... $module_n$.

6.3.9 SearchRewrite term.

This command displays the name and type of all theorems of the current context whose statement's conclusion is an equality of which one side matches the expression *term*. Holes in *term* are denoted by " "

```
Coq < Require Import Arith.

Coq < SearchRewrite (_ + _ + _ ).
plus_permute_2_in_4:
   forall n m p q : nat, n + m + (p + q) = n + p + (m + q)
plus_assoc_reverse: forall n m p : nat, n + m + p = n + (m + p)
plus_permute_2_in_4:
   forall n m p q : nat, n + m + (p + q) = n + p + (m + q)
plus_assoc: forall n m p : nat, n + (m + p) = n + m + p</pre>
```

Variants:

- 1. SearchRewrite term inside $module_1$... $module_n$.

 This restricts the search to constructions defined in modules $module_1$... $module_n$.
- 2. SearchRewrite term outside $module_1$... $module_n$.

 This restricts the search to constructions not defined in modules $module_1$... $module_n$.

Nota Bene:

For the Search, SearchAbout, SearchPattern and SearchRewrite queries, it is possible to globally filter the search results via the command Add Search Blacklist "substring1". A lemma whose fully-qualified name contains any of the declared substrings will be removed from the search results. The default blacklisted substrings are "_admitted" "_subproof" "Private_". The command Remove Search Blacklist ... allows to expunge this blacklist.

6.3.10 Locate qualid.

This command displays the full name of the qualified identifier *qualid* and consequently the CoQ module in which it is defined.

```
Coq < Locate nat.

Inductive Coq.Init.Datatypes.nat

Coq < Locate Datatypes.O.

Constructor Coq.Init.Datatypes.O

(shorter name to refer to it in current context is 0)

Coq < Locate Init.Datatypes.O.

Constructor Coq.Init.Datatypes.O

(shorter name to refer to it in current context is 0)

Coq < Locate Coq.Init.Datatypes.O.

Constructor Coq.Init.Datatypes.O.

(shorter name to refer to it in current context is 0)

Coq < Locate Coq.Init.Datatypes.O

(shorter name to refer to it in current context is 0)

Coq < Locate I.Dont.Exist.

No object of suffix I.Dont.Exist
```

See also: Section 12.1.10

6.3.11 The Whelp searching tool

WHELP is an experimental searching and browsing tool for the whole COQ library and the whole set of COQ user contributions. WHELP requires a browser to work. WHELP has been developed at the University of Bologna as part of the HELM¹ and MoWGLI² projects. It can be invoked directly from the COQ toplevel or from COQIDE, assuming a graphical environment is also running. The browser to use can be selected by setting the environment variable COQREMOTEBROWSER. If not explicitly set, it defaults to firefox -remote \"OpenURL(%s,new-tab)\" || firefox %s &" or C:\\PROGRA~1\\INTERN~1\\IEXPLORE %s, depending on the underlying operating system (in the command, the string %s serves as metavariable for the url to open). The Whelp tool relies on a dedicated Whelp server and on another server called Getter that retrieves formal documents. The default Whelp server name can be obtained using the command Test Whelp Server and the default Getter can be obtained using the command: Test Whelp Getter. The Whelp server name can be changed using the command:

```
Set Whelp Server string.
where string is a URL (e.g. http://mowgli.cs.unibo.it:58080).
The Getter can be changed using the command:
Set Whelp Getter string.
where string is a URL (e.g. http://mowgli.cs.unibo.it:58081).
```

The WHELP commands are:

¹Hypertextual Electronic Library of Mathematics

²Mathematics on the Web, Get it by Logics and Interfaces

6.4 Loading files

```
Whelp Locate "reg_expr".
```

This command opens a browser window and displays the result of seeking for all names that match the regular expression reg_expr in the CoQ library and user contributions. The regular expression can contain the special operators are * and ? that respectively stand for an arbitrary substring and for exactly one character.

```
Variant: Whelp Locate ident.

This is equivalent to Whelp Locate "ident".
```

```
Whelp Match pattern.
```

This command opens a browser window and displays the result of seeking for all statements that match the pattern. Holes in the pattern are represented by the wildcard character "_".

```
Whelp Instance pattern.
```

This command opens a browser window and displays the result of seeking for all statements that are instances of the pattern. The pattern is here assumed to be an universally quantified expression.

```
Whelp Elim qualid.
```

This command opens a browser window and displays the result of seeking for all statements that have the "form" of an elimination scheme over the type denoted by *qualid*.

```
Whelp Hint term.
```

This command opens a browser window and displays the result of seeking for all statements that can be instantiated so that to prove the statement *term*.

```
Variant: Whelp Hint.
```

This is equivalent to Whelp Hint goal where goal is the current goal to prove. Notice that CoQ does not send the local environment of definitions to the WHELP tool so that it only works on requests strictly based on, only, definitions of the standard library and user contributions.

6.4 Loading files

CoQ offers the possibility of loading different parts of a whole development stored in separate files. Their contents will be loaded as if they were entered from the keyboard. This means that the loaded files are ASCII files containing sequences of commands for CoQ's toplevel. This kind of file is called a *script* for CoQ. The standard (and default) extension of CoQ's script files is .v.

6.4.1 Load *ident*.

This command loads the file named *ident*. v, searching successively in each of the directories specified in the *loadpath*. (see Section 6.6)

Variants:

1. Load string.

Loads the file denoted by the string *string*, where *string* is any complete filename. Then the \sim and . . abbreviations are allowed as well as shell variables. If no extension is specified, CoQ will use the default extension . \lor

2. Load Verbose *ident*., Load Verbose *string*Display, while loading, the answers of CoQ to each command (including tactics) contained in the loaded file **See also:** Section 6.10.1

Error messages:

1. Can't find file ident on loadpath

6.5 Compiled files

This section describes the commands used to load compiled files (see Chapter 14 for documentation on how to compile a file). A compiled file is a particular case of module called *library file*.

6.5.1 Require qualid.

This command looks in the loadpath for a file containing module *qualid* and adds the corresponding module to the environment of CoQ. As library files have dependencies in other library files, the command Require *qualid* recursively requires all library files the module *qualid* depends on and adds the corresponding modules to the environment of CoQ too. CoQ assumes that the compiled files have been produced by a valid CoQ compiler and their contents are then not replayed nor rechecked.

To locate the file in the file system, *qualid* is decomposed under the form *dirpath*. *ident* and the file *ident*. vo is searched in the physical directory of the file system that is mapped in CoQ loadpath to the logical path *dirpath* (see Section 6.6). The mapping between physical directories and logical names at the time of requiring the file must be consistent with the mapping used to compile the file.

Variants:

1. Require Import qualid.

This loads and declares the module *qualid* and its dependencies then imports the contents of *qualid* as described in Section 2.5.8.

It does not import the modules on which *qualid* depends unless these modules were itself required in module *qualid* using Require Export, as described below, or recursively required through a sequence of Require Export.

If the module required has already been loaded, Require Import qualid simply imports it, as Import qualid would.

2. Require Export qualid.

This command acts as Require Import qualid, but if a further module, say A, contains a command Require Export B, then the command Require Import A also imports the module B.

6.5 Compiled files 153

3. Require [Import | Export] qualid₁ ...qualid_n.

This loads the modules $qualid_1, \ldots, qualid_n$ and their recursive dependencies. If Import or Export is given, it also imports $qualid_1, \ldots, qualid_n$ and all the recursive dependencies that were marked or transitively marked as Export.

4. Require [Import | Export] string.

This shortcuts the resolution of the qualified name into a library file name by directly requiring the module to be found in file *string*.vo.

Error messages:

- 1. Cannot load qualid: no physical path bound to dirpath
- 2. Cannot find library foo in loadpath

The command did not find the file foo.vo. Either foo.v exists but is not compiled or foo.vo is in a directory which is not in your LoadPath (see Section 6.6).

 Compiled library ident.vo makes inconsistent assumptions over library qualid

The command tried to load library file *ident*.vo that depends on some specific version of library *qualid* which is not the one already loaded in the current CoQ session. Probably *ident*.v was not properly recompiled with the last version of the file containing module *qualid*.

4. Bad magic number

The file *ident*. vo was found but either it is not a CoQ compiled module, or it was compiled with an older and incompatible version of CoQ.

5. The file *ident*.vo contains library *dirpath* and not library *dirpath'*The library file *dirpath'* is indirectly required by the Require command but it is bound in the current loadpath to the file *ident*.vo which was bound to a different library name *dirpath* at the time it was compiled.

See also: Chapter 14

6.5.2 Print Libraries.

This command displays the list of library files loaded in the current CoQ session. For each of these libraries, it also tells if it is imported.

6.5.3 Declare ML Module $string_1$.. $string_n$.

This commands loads the Objective Caml compiled files $string_1 \dots string_n$ (dynamic link). It is mainly used to load tactics dynamically. The files are searched into the current Objective Caml loadpath (see the command Add ML Path in the Section 6.6). Loading of Objective Caml files is only possible under the bytecode version of coqtop (i.e. coqtop called with options -byte, see chapter 14), or when Coq has been compiled with a version of Objective Caml that supports native Dynlink (≥ 3.11).

Variants:

1. Local Declare ML Module $string_1$.. $string_n$. This variant is not exported to the modules that import the module where they occur, even if outside a section.

Error messages:

- 1. File not found on loadpath: string
- 2. Loading of ML object file forbidden in a native Coq

6.5.4 Print ML Modules.

This print the name of all OBJECTIVE CAML modules loaded with Declare ML Module. To know from where these module were loaded, the user should use the command Locate File (see Section 6.6.10)

6.6 Loadpath

There are currently two loadpaths in CoQ. A loadpath where seeking CoQ files (extensions .vor .vo or .vi) and one where seeking Objective Caml files. The default loadpath contains the directory "." denoting the current directory and mapped to the empty logical path (see Section 2.6.2).

6.6.1 Pwd.

This command displays the current working directory.

6.6.2 Cd string.

This command changes the current directory according to *string* which can be any valid path.

Variants:

1. Cd. Is equivalent to Pwd.

6.6.3 Add LoadPath string as dirpath.

This command adds the physical directory *string* to the current CoQ loadpath and maps it to the logical directory *dirpath*, which means that every file *dirname/basename.v* physically lying in subdirectory *string/dirname* becomes accessible in CoQ through absolute logical name *dirpath*. *dirname*. *basename*.

Remark: Add LoadPath also adds string to the current ML loadpath.

Variants:

1. Add LoadPath *string*.

Performs as Add LoadPath *string* as *dirpath* but for the empty directory path.

6.6 Loadpath 155

6.6.4 Add Rec LoadPath string as dirpath.

This command adds the physical directory *string* and all its subdirectories to the current CoQ loadpath. The top directory *string* is mapped to the logical directory *dirpath* and any subdirectory *pdir* of it is mapped to logical name *dirpath*. *pdir* and recursively. Subdirectories corresponding to invalid CoQ identifiers are skipped, and, by convention, subdirectories named CVS or _darcs are skipped too.

Otherwise, said, Add Rec LoadPath string as dirpath behaves as Add LoadPath string as dirpath excepts that files lying in validly named subdirectories of string need not be qualified to be found.

In case of files with identical base name, files lying in most recently declared *dirpath* are found first and explicit qualification is required to refer to the other files of same base name.

If several files with identical base name are present in different subdirectories of a recursive loadpath declared via a single instance of Add Rec LoadPath, which of these files is found first is system-dependent and explicit qualification is recommended.

Remark: Add Rec LoadPath also recursively adds string to the current ML loadpath.

Variants:

1. Add Rec LoadPath *string*.

Works as Add Rec LoadPath *string* as *dirpath* but for the empty logical directory path.

6.6.5 Remove LoadPath string.

This command removes the path *string* from the current CoQ loadpath.

6.6.6 Print LoadPath.

This command displays the current CoQ loadpath.

Variants:

1. Print LoadPath *dirpath*.

Works as Print LoadPath but displays only the paths that extend the *dirpath* prefix.

6.6.7 Add ML Path string.

This command adds the path *string* to the current Objective Caml loadpath (see the command Declare ML Module in the Section 6.5).

Remark: This command is implied by Add LoadPath *string* as *dirpath*.

6.6.8 Add Rec ML Path string.

This command adds the directory *string* and all its subdirectories to the current Objective Caml loadpath (see the command Declare ML Module in the Section 6.5).

Remark: This command is implied by Add Rec LoadPath string as dirpath.

6.6.9 Print ML Path string.

This command displays the current Objective Caml loadpath. This command makes sense only under the bytecode version of coqtop, i.e. using option -byte (see the command Declare ML Module in the section 6.5).

6.6.10 Locate File string.

This command displays the location of file *string* in the current loadpath. Typically, *string* is a .cmo or .vo or .v file.

6.6.11 Locate Library dirpath.

This command gives the status of the CoQ module *dirpath*. It tells if the module is loaded and if not searches in the load path for a module of logical name *dirpath*.

6.7 Backtracking

The backtracking commands described in this section can only be used interactively, they cannot be part of a vernacular file loaded via Load or compiled by coqc.

6.7.1 Reset ident.

This command removes all the objects in the environment since *ident* was introduced, including *ident*. *ident* may be the name of a defined or declared object as well as the name of a section. One cannot reset over the name of a module or of an object inside a module.

Error messages:

1. ident: no such entry

Variants:

1. Reset Initial.

Goes back to the initial state, just after the start of the interactive session.

6.7.2 Back.

This commands undoes all the effects of the last vernacular command. Commands read from a vernacular file via a Load are considered as a single command. Proof managment commands are also handled by this command (see Chapter 7). For that, Back may have to undo more than one command in order to reach a state where the proof managment information is available. For instance, when the last command is a Qed, the managment information about the closed proof has been discarded. In this case, Back will then undo all the proof steps up to the statement of this proof.

Variants:

1. Back n

Undoes n vernacular commands. As for Back, some extra commands may be undone in order to reach an adequate state. For instance Back $\,$ n will not re-enter a closed proof, but rather go just before that proof.

Error messages:

1. Invalid backtrack

The user wants to undo more commands than available in the history.

6.8 State files

6.7.3 BackTo num.

This command brings back the system to the state labelled num, forgetting the effect of all commands executed after this state. The state label is an integer which grows after each successful command. It is displayed in the prompt when in -emacs mode. Just as Back (see above), the BackTo command now handles proof states. For that, it may have to undo some extra commands and end on a state $num' \le num$ if necessary.

Variants:

- 1. Backtrack num_1 num_2 num_3 .

 Backtrack is a *deprecated* form of BackTo which allows to explicitly manipulate the proof environment. The three numbers num_1 , num_2 and num_3 represent the following:
 - num₃: Number of Abort to perform, i.e. the number of currently opened nested proofs that must be canceled (see Chapter 7).
 - num₂: *Proof state number* to unbury once aborts have been done. Coq will compute the number of Undo to perform (see Chapter 7).
 - num_1 : State label to reach, as for BackTo.

Error messages:

1. Invalid backtrack

The destination state label is unknown.

6.8 State files

6.8.1 Write State string.

Writes the current state into a file *string* for use in a further session. This file can be given as the input state argument of the commands coqtop and coqc.

Variants:

1. Write State *ident*Equivalent to Write State "*ident*.coq". The state is saved in the current directory (see Section 6.6.1).

6.8.2 Restore State string.

Restores the state contained in the file string.

Variants:

Restore State ident
 Equivalent to Restore State "ident.coq".

6.9 Quitting and debugging

6.9.1 Quit.

This command permits to quit Coo.

6.9.2 Drop.

This is used mostly as a debug facility by CoQ's implementors and does not concern the casual user. This command permits to leave CoQ temporarily and enter the Objective Caml toplevel. The Objective Caml command:

```
#use "include";;
```

add the right loadpaths and loads some toplevel printers for all abstract types of CoQ- section_path, identifiers, terms, judgments, You can also use the file base_include instead, that loads only the pretty-printers for section_paths and identifiers. You can return back to CoQ with the command:

```
go();;
```

Warnings:

- 1. It only works with the bytecode version of CoQ (i.e. coqtop called with option -byte, see the contents of Section 14.1).
- 2. You must have compiled CoQ from the source package and set the environment variable COQTOP to the root of your copy of the sources (see Section 14.4).

6.9.3 Time command.

This command executes the vernacular command command and display the time needed to execute it.

6.9.4 Timeout int command.

This command executes the vernacular command *command*. If the command has not terminated after the time specified by the integer (time expressed in seconds), then it is interrupted and an error message is displayed.

6.9.5 Set Default Timeout int.

After using this command, all subsequent commands behave as if they were passed to a Timeout command. Commands already starting by a Timeout are unaffected.

6.9.6 Unset Default Timeout.

This command turns off the use of a default timeout.

6.9.7 Test Default Timeout.

This command displays whether some default timeout has be set or not.

6.10 Controlling display

6.10.1 Set Silent.

This command turns off the normal displaying.

6.10.2 Unset Silent.

This command turns the normal display on.

6.10.3 Set Printing Width integer.

This command sets which left-aligned part of the width of the screen is used for display.

6.10.4 Unset Printing Width.

This command resets the width of the screen used for display to its default value (which is 78 at the time of writing this documentation).

6.10.5 Test Printing Width.

This command displays the current screen width used for display.

6.10.6 Set Printing Depth integer.

This command sets the nesting depth of the formatter used for pretty-printing. Beyond this depth, display of subterms is replaced by dots.

6.10.7 Unset Printing Depth.

This command resets the nesting depth of the formatter used for pretty-printing to its default value (at the time of writing this documentation, the default value is 50).

6.10.8 Test Printing Depth.

This command displays the current nesting depth used for display.

6.11 Controlling the reduction strategies and the conversion algorithm

CoQ provides reduction strategies that the tactics can invoke and two different algorithms to check the convertibility of types. The first conversion algorithm lazily compares applicative terms while the other is a brute-force but efficient algorithm that first normalizes the terms before comparing them. The second algorithm is based on a bytecode representation of terms similar to the bytecode representation used in the ZINC virtual machine [92]. It is especially useful for intensive computation of algebraic values, such as numbers, and for reflexion-based tactics. The commands to fine-tune the reduction strategies and the lazy conversion algorithm are described first.

6.11.1 Opaque $qualid_1 \ldots qualid_n$.

This command has an effect on unfoldable constants, i.e. on constants defined by Definition or Let (with an explicit body), or by a command assimilated to a definition such as Fixpoint, Program Definition, etc, or by a proof ended by Defined. The command tells not to unfold the constants $qualid_1 \dots qualid_n$ in tactics using δ -conversion (unfolding a constant is replacing it by its definition).

Opaque has also on effect on the conversion algorithm of CoQ, telling it to delay the unfolding of a constant as mush as possible when CoQ has to check the conversion (see Section 4.3) of two distinct applied constants.

The scope of Opaque is limited to the current section, or current file, unless the variant Global Opaque $qualid_1 \ldots qualid_n$ is used.

See also: sections 8.7, 8.17, 7.1

Error messages:

1. The reference *qualid* was not found in the current environment There is no constant referred by *qualid* in the environment. Nevertheless, if you asked Opaque foo bar and if bar does not exist, foo is set opaque.

6.11.2 Transparent qualid₁ ... qualid_n.

This command is the converse of Opaque and it applies on unfoldable constants to restore their unfoldability after an Opaque command.

Note in particular that constants defined by a proof ended by <code>Qed</code> are not unfoldable and <code>Transparent</code> has no effect on them. This is to keep with the usual mathematical practice of *proof irrelevance*: what matters in a mathematical development is the sequence of lemma statements, not their actual proofs. This distinguishes lemmas from the usual defined constants, whose actual values are of course relevant in general.

The scope of Transparent is limited to the current section, or current file, unless the variant Global Transparent $qualid_1 \dots qualid_n$ is used.

Error messages:

1. The reference *qualid* was not found in the current environment. There is no constant referred by *qualid* in the environment.

See also: sections 8.7, 8.17, 7.1

```
6.11.3 Strategy level [ qualid_1 \ldots qualid_n ].
```

This command generalizes the behavior of Opaque and Transparent commands. It is used to fine-tune the strategy for unfolding constants, both at the tactic level and at the kernel level. This command associates a level to $qualid_1 \ldots qualid_n$. Whenever two expressions with two distinct head constants are compared (for instance, this comparison can be triggered by a type cast), the one with lower level is expanded first. In case of a tie, the second one (appearing in the cast type) is expanded.

Levels can be one of the following (higher to lower):

opaque: level of opaque constants. They cannot be expanded by tactics (behaves like $+\infty$, see next item).

num: levels indexed by an integer. Level 0 corresponds to the default behavior, which corresponds to transparent constants. This level can also be referred to as **transparent**. Negative levels correspond to constants to be expanded before normal transparent constants, while positive levels correspond to constants to be expanded after normal transparent constants.

expand: level of constants that should be expanded first (behaves like $-\infty$)

These directives survive section and module closure, unless the command is prefixed by Local. In the latter case, the behavior regarding sections and modules is the same as for the Transparent and Opaque commands.

6.11.4 Declare Reduction ident := convtactic.

This command allows to give a short name to a reduction expression, for instance lazy beta delta [foo bar]. This short name can then be used in Eval ident in ... or eval directives. This command accepts the Local modifier, for discarding this reduction name at the end of the file or module. For the moment the name cannot be qualified. In particular declaring the same name in several modules or in several functor applications will be refused if these declarations are not local. The name ident cannot be used directly as an Ltac tactic, but nothing prevent the user to also perform a Ltac ident := convtactic.

See also: sections 8.7

6.11.5 Set Virtual Machine

This activates the bytecode-based conversion algorithm.

6.11.6 Unset Virtual Machine

This deactivates the bytecode-based conversion algorithm.

6.11.7 Test Virtual Machine

This tells if the bytecode-based conversion algorithm is activated. The default behavior is to have the bytecode-based conversion algorithm deactivated.

See also: sections 8.7.1 and 14.4.1.

6.12 Controlling the locality of commands

6.12.1 Local, Global

Some commands support a Local or Global prefix modifier to control the scope of their effect. There are four kinds of commands:

• Commands whose default is to extend their effect both outside the section and the module or library file they occur in.

For these commands, the Local modifier limits the effect of the command to the current section or module it occurs in.

As an example, the Coercion (see Section 2.8) and Strategy (see Section 6.11.3) commands belong to this category.

• Commands whose default behavior is to stop their effect at the end of the section they occur in but to extent their effect outside the module or library file they occur in.

For these commands, the Local modifier limits the effect of the command to the current module if the command does not occur in a section and the Global modifier extends the effect outside the current sections and current module if the command occurs in a section.

As an example, the Implicit Arguments (see Section 2.7), Ltac (see Chapter 9) or Notation (see Section 12.1) commands belong to this category.

Notice that a subclass of these commands do not support extension of their scope outside sections at all and the Global is not applicable to them.

• Commands whose default behavior is to stop their effect at the end of the section or module they occur in.

For these commands, the Global modifier extends their effect outside the sections and modules they occurs in.

The Transparent and Opaque (see Section 6.11) commands belong to this category.

 Commands whose default behavior is to extend their effect outside sections but not outside modules when they occur in a section and to extend their effect outside the module or library file they occur in when no section contains them.

For these commands, the Local modifier limits the effect to the current section or module while the Global modifier extends the effect outside the module even when the command occurs in a section.

The Set and Unset commands belong to this category.

Chapter 7

Proof handling

In CoQ's proof editing mode all top-level commands documented in Chapter 6 remain available and the user has access to specialized commands dealing with proof development pragmas documented in this section. He can also use some other specialized commands called *tactics*. They are the very tools allowing the user to deal with logical reasoning. They are documented in Chapter 8.

When switching in editing proof mode, the prompt Coq < is changed into *ident* < where *ident* is the declared name of the theorem currently edited.

At each stage of a proof development, one has a list of goals to prove. Initially, the list consists only in the theorem itself. After having applied some tactics, the list of goals contains the subgoals generated by the tactics.

To each subgoal is associated a number of hypotheses called the *local_context* of the goal. Initially, the local context contains the local variables and hypotheses of the current section (see Section 1.3.1) and the local variables and hypotheses of the theorem statement. It is enriched by the use of certain tactics (see e.g. intro in Section 8.3.1).

When a proof is completed, the message Proof completed is displayed. One can then register this proof as a defined constant in the environment. Because there exists a correspondence between proofs and terms of λ -calculus, known as the *Curry-Howard isomorphism* [76, 6, 72, 79], CoQ stores proofs as terms of CIC. Those terms are called *proof terms*.

Error message: When one attempts to use a proof editing command out of the proof editing mode, CoQ raises the error message: No focused proof.

7.1 Switching on/off the proof editing mode

The proof editing mode is entered by asserting a statement, which typically is the assertion of a theorem:

```
Theorem ident [binders]: form.
```

The list of assertion commands is given in Section 1.3.5. The command Goal can also be used.

7.1.1 Goal form.

This is intended for quick assertion of statements, without knowing in advance which name to give to the assertion, typically for quick testing of the provability of a statement. If the proof of the statement is eventually completed and validated, the statement is then bound to the name Unnamed_thm (or a variant of this name not already used for another statement).

7 Proof handling

7.1.2 Oed.

This command is available in interactive editing proof mode when the proof is completed. Then Qed extracts a proof term from the proof script, switches back to CoQ top-level and attaches the extracted proof term to the declared name of the original goal. This name is added to the environment as an Opaque constant.

Error messages:

- 1. Attempt to save an incomplete proof
- 2. Sometimes an error occurs when building the proof term, because tactics do not enforce completely the term construction constraints.

The user should also be aware of the fact that since the proof term is completely rechecked at this point, one may have to wait a while when the proof is large. In some exceptional cases one may even incur a memory overflow.

Variants:

1. Defined.

Defines the proved term as a transparent constant.

2. Save.

This is a deprecated equivalent to Qed.

3. Save ident.

Forces the name of the original goal to be *ident*. This command (and the following ones) can only be used if the original goal has been opened using the Goal command.

```
4. Save Theorem ident.
```

Save Lemma ident.

Save Remark ident.

Save Fact ident. Save Corollary ident. Save Proposition ident.

Are equivalent to Save ident.

7.1.3 Admitted.

This command is available in interactive editing proof mode to give up the current proof and declare the initial goal as an axiom.

7.1.4 Proof *term*.

This command applies in proof editing mode. It is equivalent to exact *term*; Save. That is, you have to give the full proof in one gulp, as a proof term (see Section 8.2.1).

Variant: Proof.

Is a noop which is useful to delimit the sequence of tactic commands which start a proof, after a Theorem command. It is a good practice to use Proof. as an opening parenthesis, closed in the script with a closing Qed.

See also: Proof with tactic. in Section 8.9.6.

7.1.5 Proof using $ident_1 \dots ident_n$.

This command applies in proof editing mode. It declares the set of section variables (see 1.3.1) used by the proof. At Qed time, the system will assert that the set of section variables actually used in the proof is a subset of the declared one.

The set of declared variables is closed under type dependency. For example if T is variable and a is a variable of type T, the commands Proof using a and Proof using T a are actually equivalent.

Variant: Proof using $ident_1$... $ident_n$ with tactic in Section 8.9.6.

7.1.6 Abort.

This command cancels the current proof development, switching back to the previous proof development, or to the CoQ toplevel if no other proof was edited.

Error messages:

1. No focused proof (No proof-editing in progress)

Variants:

1. Abort ident.

Aborts the editing of the proof named *ident*.

2. Abort All.

Aborts all current goals, switching back to the CoQ toplevel.

7.1.7 Existential num := term.

This command allows to instantiate an existential variable. *num* is an index in the list of uninstantiated existential variables displayed by Show Existentials. (described in Section 7.3.1)

This command is intended to be used to instantiate existential variables when the proof is completed but some uninstantiated existential variables remain. To instantiate existential variables during proof edition, you should use the tactic instantiate.

See also: instantiate (num := term). in Section 8.4.4. See also: Grab Existential Variables, below.

7.1.8 Grab Existential Variables.

This command can be run when a proof has no more goal to be solved but has remaining uninstantiated existential variables. It takes every uninstantiated existential variable and turns it into a goal.

7.2 Navigation in the proof tree

7.2.1 Undo.

This command cancels the effect of the last tactic command. Thus, it backtracks one step.

Error messages:

166 **7 Proof handling**

1. No focused proof (No proof-editing in progress)

Variants:

1. Undo num.

Repeats Undo num times.

7.2.2 Restart.

This command restores the proof editing process to the original goal.

Error messages:

1. No focused proof to restart

7.2.3 Focus.

This focuses the attention on the first subgoal to prove and the printing of the other subgoals is suspended until the focused subgoal is solved or unfocused. This is useful when there are many current subgoals which clutter your screen.

Variant:

1. Focus num.

This focuses the attention on the num^{th} subgoal to prove.

7.2.4 Unfocus.

This command restores to focus the goal that were suspended by the last Focus command.

7.2.5 Unfocused.

Succeeds in the proof is fully unfocused, fails is there are some goals out of focus.

7.2.6 { and }

The command { (without a terminating period) focuses on the first goal, much like Focus. does, however, the subproof can only be unfocused when it has been fully solved (*i.e.* when there is no focused goal left). Unfocusing is then handled by } (again, without a terminating period). See also example in next section.

Error messages:

1. Error: This proof is focused, but cannot be unfocused this way You are trying to use a bullet that is already in use or a } but the current subproof has not been fully solved.

7.2.7 Bullets

Alternatively to $\{$ and $\}$, proofs can be structured with bullets. The use of a bullet b for the first time focuses on the first goal g, the same bullet cannot be used again until the proof of g is completed, then it is mandatory to focus the next goal with b. The consequence is that g and all goals present when g was focused are focused with the same bullet b. See the example below.

Different bullets can be used to nest levels. The scope of bullet does not go beyond enclosing $\{$ and $\}$, so bullets can be reused as further nesting levels provided they are delimited by these. Available bullets are -, + and * (without a terminating period).

The following example script illustrates all these features:

```
Cog < Goal (((True/\True)/\True)/\True)/\True.</pre>
Coq < Proof.
Coq <
        split.
Coq <
        - split.
Coq <
          + split.
Coq <
            * { split.
                 - trivial.
Coq <
                 - trivial.
Coq <
Coq <
               }
            * trivial.
Coq <
          + trivial.
Coq <
        - assert True.
Coq <
Coq <
           { trivial. }
Coq <
          assumption.
```

Remark: In ProofGeneral (emacs interface to coq), you must use bullets with this priority ordering to have a correct indentation: -, +, *. That is - must be the outer bullet and * the inner one, like in the example above.

Error messages:

- 1. Error: No such unproven subgoal there is no proof under focus (because it has just been solved), so the command you are trying to use cannot be applied. You need to first focus the next proof by using the bullet corresponding to the right level (using an incorrect bullet also generates this message).
- 2. Error: This proof is focused, but cannot be unfocused this way You are trying to use a bullet that is already in use or a } but the current subproof has not been fully solved.

7.3 Requesting information

7.3.1 Show.

This command displays the current goals.

Variants:

7 Proof handling

1. Show num.

Displays only the num-th subgoal.

Error messages:

- (a) No such goal
- (b) No focused proof
- 2. Show Implicits.

Displays the current goals, printing the implicit arguments of constants.

3. Show Implicits num.

Same as above, only displaying the num-th subgoal.

4. Show Script.

Displays the whole list of tactics applied from the beginning of the current proof. This tactics script may contain some holes (subgoals not yet proved). They are printed under the form <Your Tactic Text here>.

5. Show Tree.

This command is deactivated.

6. Show Proof.

It displays the proof term generated by the tactics that have been applied. If the proof is not completed, this term contain holes, which correspond to the sub-terms which are still to be constructed. These holes appear as a question mark indexed by an integer, and applied to the list of variables in the context, since it may depend on them. The types obtained by abstracting away the context from the type of each hole-placer are also printed.

7. Show Conjectures.

It prints the list of the names of all the theorems that are currently being proved. As it is possible to start proving a previous lemma during the proof of a theorem, this list may contain several names.

8. Show Intro.

If the current goal begins by at least one product, this command prints the name of the first product, as it would be generated by an anonymous Intro. The aim of this command is to ease the writing of more robust scripts. For example, with an appropriate Proof General macro, it is possible to transform any anonymous Intro into a qualified one such as Intro y13. In the case of a non-product goal, it prints nothing.

9. Show Intros.

This command is similar to the previous one, it simulates the naming process of an Intros.

10. Show Existentials

It displays the set of all uninstantiated existential variables in the current proof tree, along with the type and the context of each variable.

7.3.2 Guarded.

Some tactics (e.g. refine 8.2.3) allow to build proofs using fixpoint or co-fixpoint constructions. Due to the incremental nature of interactive proof construction, the check of the termination (or guardedness) of

the recursive calls in the fixpoint or cofixpoint constructions is postponed to the time of the completion of the proof.

The command Guarded allows to verify if the guard condition for fixpoint and cofixpoint is violated at some time of the construction of the proof without having to wait the completion of the proof."

7.4 Controlling the effect of proof editing commands

7.4.1 Set Hyps Limit num.

This command sets the maximum number of hypotheses displayed in goals after the application of a tactic. All the hypotheses remains usable in the proof development.

7.4.2 Unset Hyps Limit.

This command goes back to the default mode which is to print all available hypotheses.

7.4.3 Set Automatic Introduction.

The option Automatic Introduction controls the way binders are handled in assertion commands such as Theorem *ident [binders]*: form. When the option is set, which is the default, binders are automatically put in the local context of the goal to prove.

The option can be unset by issuing Unset Automatic Introduction. When the option is unset, *binders* are discharged on the statement to be proved and a tactic such as intro (see Section 8.3.1) has to be used to move the assumptions to the local context.

170 **7 Proof handling**

Chapter 8

Tactics

A deduction rule is a link between some (unique) formula, that we call the *conclusion* and (several) formulas that we call the *premises*. A deduction rule can be read in two ways. The first one says: "if I know this and this then I can deduce this". For instance, if I have a proof of A and a proof of B then I have a proof of $A \wedge B$. This is forward reasoning from premises to conclusion. The other way says: "to prove this I have to prove this and this". For instance, to prove $A \wedge B$, I have to prove A and I have to prove B. This is backward reasoning from conclusion to premises. We say that the conclusion is the goal to prove and premises are the subgoals. The tactics implement backward reasoning. When applied to a goal, a tactic replaces this goal with the subgoals it generates. We say that a tactic reduces a goal to its subgoal(s).

Each (sub)goal is denoted with a number. The current goal is numbered 1. By default, a tactic is applied to the current goal, but one can address a particular goal in the list by writing n:tactic which means "apply tactic tactic to goal number n". We can show the list of subgoals by typing Show (see Section 7.3.1).

Since not every rule applies to a given statement, every tactic cannot be used to reduce any goal. In other words, before applying a tactic to a given goal, the system checks that some *preconditions* are satisfied. If it is not the case, the tactic raises an error message.

Tactics are built from atomic tactics and tactic expressions (which extends the folklore notion of tactical) to combine those atomic tactics. This chapter is devoted to atomic tactics. The tactic language will be described in Chapter 9.

8.1 Invocation of tactics

A tactic is applied as an ordinary command. If the tactic is not meant to address the first subgoal, the command may be preceded by the wished subgoal number as shown below:

```
tactic_invocation ::= num : tactic . | tactic .
```

8.1.1 Bindings list

Tactics that take a term as argument may also support a bindings list, so as to instantiate some parameters of the term by name or position. The general form of a term equipped with a bindings list is term with bindings_list where bindings_list may be of two different forms:

• In a bindings list of the form $(ref_1 := term_1)$... $(ref_n := term_n)$, ref is either an ident

172 8 Tactics

or a *num*. The references are determined according to the type of *term*. If ref_i is an identifier, this identifier has to be bound in the type of *term* and the binding provides the tactic with an instance for the parameter of this name. If ref_i is some number n, this number denotes the n-th non dependent premise of the term, as determined by the type of term.

Error message: No such binder

• A bindings list can also be a simple list of terms $term_1 \dots term_n$. In that case the references to which these terms correspond are determined by the tactic. In case of induction, destruct, elim and case (see Section 11) the terms have to provide instances for all the dependent products in the type of term while in the case of apply, or of constructor and its variants, only instances for the dependent products that are not bound in the conclusion of the type are required.

Error message: Not the right number of missing arguments

8.1.2 Occurrences sets and occurrences clauses

An occurrences clause is a modifier to some tactics that obeys the following syntax:

The role of an occurrence clause is to select a set of occurrences of a term in a goal. In the first case, the $ident_i$ [at num_1^i ... $num_{n_i}^i$] parts indicate that occurrences have to be selected in the hypotheses named $ident_i$. If no numbers are given for hypothesis $ident_i$, then all the occurrences of term in the hypothesis are selected. If numbers are given, they refer to occurrences of term when the term is printed using option Set Printing All (see Section 2.9), counting from left to right. In particular, occurrences of term in implicit arguments (see Section 2.7) or coercions (see Section 2.8) are counted.

If a minus sign is given between at and the list of occurrences, it negates the condition so that the clause denotes all the occurrences except the ones explicitly mentioned after the minus sign.

As an exception to the left-to-right order, the occurrences in the return subexpression of a match are considered *before* the occurrences in the matched term.

In the second case, the \star on the left of |- means that all occurrences of *term* are selected in every hypothesis.

In the first and second case, if \star is mentioned on the right of |-|, the occurrences of the conclusion of the goal have to be selected. If some numbers are given, then only the occurrences denoted by these numbers are selected. In no numbers are given, all occurrences of *term* in the goal are selected.

Finally, the last notation is an abbreviation for $* \mid - *$. Note also that $\mid -$ is optional in the first case when no * is given.

Here are some tactics that understand occurrences clauses: set, remember, induction, destruct.

See also: Sections 8.3.7, 8.5.2, 2.9.

8.2 Applying theorems

8.2.1 exact *term*

This tactic applies to any goal. It gives directly the exact proof term of the goal. Let T be our goal, let p be a term of type U then exact p succeeds iff T and U are convertible (see Section 4.3).

Error messages:

```
1. Not an exact proof
```

Variants:

1. eexact term

This tactic behaves like exact but is able to handle terms and goals with meta-variables.

8.2.2 assumption

This tactic looks in the local context for an hypothesis which type is equal to the goal. If it is the case, the subgoal is proved. Otherwise, it fails.

Error messages:

1. No such assumption

Variants:

1. eassumption

This tactic behaves like assumption but is able to handle goals with meta-variables.

8.2.3 refine term

This tactic applies to any goal. It behaves like exact with a big difference: the user can leave some holes (denoted by _ or (_:type)) in the term. refine will generate as many subgoals as there are holes in the term. The type of holes must be either synthesized by the system or declared by an explicit cast like (_:nat->Prop). This low-level tactic can be useful to advanced users.

Example:

174 8 Tactics

Error messages:

- 1. invalid argument: the tactic refine does not know what to do with the term you gave.
- Refine passed ill-formed term: the term you gave is not a valid proof (not easy to debug in general). This message may also occur in higher-level tactics that call refine internally.
- 3. Cannot infer a term for this placeholder: there is a hole in the term you gave which type cannot be inferred. Put a cast around it.

8.2.4 apply term

This tactic applies to any goal. The argument *term* is a term well-formed in the local context. The tactic apply tries to match the current goal against the conclusion of the type of *term*. If it succeeds, then the tactic returns as many subgoals as the number of non-dependent premises of the type of *term*. If the conclusion of the type of *term* does not match the goal *and* the conclusion is an inductive type isomorphic to a tuple type, then each component of the tuple is recursively matched to the goal in the left-to-right order.

The tactic apply relies on first-order unification with dependent types unless the conclusion of the type of term is of the form $(P \ t_1 \ \dots \ t_n)$ with P to be instantiated. In the latter case, the behavior depends on the form of the goal. If the goal is of the form $(\text{fun } x => Q) \ u_1 \ \dots \ u_n$ and the t_i and u_i unifies, then P is taken to be (fun x => Q). Otherwise, apply tries to define P by abstracting over $t_1 \dots t_n$ in the goal. See pattern in Section 8.7.7 to transform the goal so that it gets the form $(\text{fun } x => Q) \ u_1 \ \dots \ u_n$.

Error messages:

1. Impossible to unify ... with ...

The apply tactic failed to match the conclusion of *term* and the current goal. You can help the apply tactic by transforming your goal with the change or pattern tactics (see sections 8.7.7, 8.6.9).

2. Unable to find an instance for the variables ident ... ident

This occurs when some instantiations of the premises of *term* are not deducible from the unification. This is the case, for instance, when you want to apply a transitivity property. In this case, you have to use one of the variants below:

Variants:

1. apply term with $term_1$... $term_n$

Provides apply with explicit instantiations for all dependent premises of the type of *term* which do not occur in the conclusion and consequently cannot be found by unification. Notice that $term_1$... $term_n$ must be given according to the order of these dependent premises of the type of term.

Error message: Not the right number of missing arguments

```
2. apply term with (ref_1 := term_1) ... (ref_n := term_n)
```

This also provides apply with values for instantiating premises. Here, variables are referred by names and non-dependent products by increasing numbers (see syntax in Section 8.1.1).

3. apply $term_1$, ..., $term_n$

This is a shortcut for apply $term_1$; [.. | ...; [.. | apply $term_n$] ...], i.e. for the successive applications of $term_{i+1}$ on the last subgoal generated by apply $term_i$, starting from the application of $term_1$.

4. eapply term

The tactic eapply behaves like apply but it does not fail when no instantiations are deducible for some variables in the premises. Rather, it turns these variables into so-called existential variables which are variables still to instantiate. An existential variable is identified by a name of the form ?n where n is a number. The instantiation is intended to be found later in the proof.

5. simple apply term

This behaves like apply but it reasons modulo conversion only on subterms that contain no variables to instantiate. For instance, the following example does not succeed because it would require the conversion of id ?1234 and O.

Because it reasons modulo a limited amount of conversion, simple apply fails quicker than apply and it is then well-suited for uses in used-defined tactics that backtrack often. Moreover, it does not traverse tuples as apply does.

- 6. [simple] apply $term_1$ [with $bindings_list_1$], ..., $term_n$ [with $bindings_list_n$] [simple] eapply $term_1$ [with $bindings_list_1$], ..., $term_n$ [with $bindings_list_n$] This summarizes the different syntaxes for apply and eapply.
- 7. lapply term

176 8 Tactics

This tactic applies to any goal, say G. The argument *term* has to be well-formed in the current context, its type being reducible to a non-dependent product A -> B with B possibly containing products. Then it generates two subgoals B->G and A. Applying lapply H (where H has type A->B and B does not start with a product) does the same as giving the sequence cut B. 2:apply H. where cut is described below.

Warning: When *term* contains more than one non dependent product the tactic lapply only takes into account the first product.

Example: Assume we have a transitive relation R on nat:

```
Coq < Variable R : nat -> nat -> Prop.
Coq < Hypothesis Rtrans : forall x y z:nat, R x y -> R y z -> R x z.
Coq < Variables n m p : nat.
Coq < Hypothesis Rnm : R n m.
Coq < Hypothesis Rmp : R m p.</pre>
Consider the goal (R n p) provable using the transitivity of R:
```

The direct application of Rtrans with apply fails because no value for y in Rtrans is found by apply:

A solution is to apply (Rtrans n m p) or (Rtrans n m).

```
Coq < apply (Rtrans n m p).

2 subgoals

R n m

subgoal 2 is:

R m p
```

Coq < Goal R n p.

Note that n can be inferred from the goal, so the following would work too.

```
Coq < apply (Rtrans <math>\_m).
```

More elegantly, apply Rtrans with (y:=m) allows to only mention the unknown m:

```
Coq < apply Rtrans with (y := m).
```

Another solution is to mention the proof of $(R \times y)$ in Rtrans...

On the opposite, one can use eapply which postpone the problem of finding m. Then one can apply the hypotheses Rnm and Rmp. This instantiates the existential variable and completes the proof.

```
Coq < eapply Rtrans.

2 subgoals

R n ?15

subgoal 2 is:
R ?15 p

Coq < apply Rnm.

1 subgoal

R m p

Coq < apply Rmp.

No more subgoals.
```

8.2.5 apply term in ident

This tactic applies to any goal. The argument *term* is a term well-formed in the local context and the argument *ident* is an hypothesis of the context. The tactic apply *term* in *ident* tries to match the conclusion of the type of *ident* against a non-dependent premise of the type of *term*, trying them from right to left. If it succeeds, the statement of hypothesis *ident* is replaced by the conclusion of the type of *term*. The tactic also returns as many subgoals as the number of other non-dependent premises in the type of *term* and of the non-dependent premises of the type of *ident*. If the conclusion of the type of *term* does not match the goal *and* the conclusion is an inductive type isomorphic to a tuple type, then the tuple is (recursively) decomposed and the first component of the tuple of which a non-dependent premise matches the conclusion of the type of *ident*. Tuples are decomposed in a width-first left-to-right order (for instance if the type of H1 is a A <-> B statement, and the type of H2 is A then apply H1 in H2 transforms the type of H2 into B). The tactic apply relies on first-order pattern-matching with dependent types.

Error messages:

1. Statement without assumptions

This happens if the type of term has no non dependent premise.

178 **8 Tactics**

2. Unable to apply

This happens if the conclusion of *ident* does not match any of the non dependent premises of the type of *term*.

Variants:

- 1. apply term , ... , term in ident

 This applies each of term in sequence in ident.
- 2. apply term with bindings_list, ..., term with bindings_list in ident

 This does the same but uses the bindings in each bindings_list to instantiate the parameters of the corresponding type of term (see syntax of bindings in Section 8.1.1).
- 3. eapply term with bindings_list , ... , term with bindings_list in ident

 This works as apply term with bindings_list , ... , term with bindings_list in ident but turns unresolved bindings into existential variables, if any, instead of failing.
- 4. apply term, with bindings_list, ..., term, with bindings_list in ident as disj_conj_intro_pattern
 - This works as apply term, with bindings_list, ..., term, with bindings_list in ident then destructs the hypothesis ident along disj_conj_intro_pattern as destruct ident as disj_conj_intro_pattern would.
- 5. eapply term, with bindings_list, ..., term, with bindings_list in ident as disj_conj_intro_pattern
 - This works as apply term, with bindings_list, ..., term, with bindings_list in ident as disj_conj_intro_pattern but using eapply.
- 6. simple apply term in ident
 - This behaves like apply term in ident but it reasons modulo conversion only on subterms that contain no variables to instantiate. For instance, if id := fun x:nat => x and H : forall y, id y = y -> True and H0 : O = O then simple apply H in H0 does not succeed because it would require the conversion of id ?1234 and O where ?1234 is a variable to instantiate. Tactic simple apply term in ident does not either traverse tuples as apply term in ident does.
- 7. [simple] apply term [with bindings_list], ..., term [with bindings_list] in ident [as disj_conj_intro_pattern] [simple] eapply term [with bindings_list], ..., term [with bindings_list] in ident [as disj_conj_intro_pattern]

This summarizes the different syntactic variants of apply term in ident and eapply term in ident.

8.2.6 constructor num

This tactic applies to a goal such that its conclusion is an inductive type (say I). The argument *num* must be less or equal to the numbers of constructor(s) of I. Let ci be the i-th constructor of I, then constructor i is equivalent to intros; apply ci.

Error messages:

- 1. Not an inductive product
- 2. Not enough constructors

Variants:

1. constructor

This tries constructor 1 then constructor 2, ..., then constructor n where n is the number of constructors of the head of the goal.

2. constructor num with bindings_list

Let ci be the i-th constructor of I, then constructor i with bindings_list is equivalent to intros; apply ci with bindings_list.

Warning: the terms in the *bindings_list* are checked in the context where constructor is executed and not in the context where apply is executed (the introductions are not taken into account).

3. split

This applies only if I has a single constructor. It is then equivalent to constructor 1. It is typically used in the case of a conjunction $A \wedge B$.

Error message: Not an inductive goal with 1 constructor

4. exists bindings_list

This applies only if I has a single constructor. It is then equivalent to intros; constructor 1 with *bindings_list*. It is typically used in the case of an existential quantification $\exists x, P(x)$.

Error message: Not an inductive goal with 1 constructor

5. exists $bindings_list$, ... , $bindings_list$

This iteratively applies exists bindings_list.

6. left right

These tactics apply only if I has two constructors, for instance in the case of a disjunction $A \vee B$. Then, they are respectively equivalent to constructor 1 and constructor 2.

Error message: Not an inductive goal with 2 constructors

180 8 Tactics

```
7. left with bindings_list
right with bindings_list
split with bindings_list
```

As soon as the inductive type has the right number of constructors, these expressions are equivalent to calling constructor i with $bindings_list$ for the appropriate i.

8. econstructor
 eexists
 esplit
 eleft
 eright

These tactics and their variants behave like constructor, exists, split, left, right and their variants but they introduce existential variables instead of failing when the instantiation of a variable cannot be found (cf eapply and Section 8.2.4).

8.3 Managing the local context

8.3.1 intro

This tactic applies to a goal that is either a product or starts with a let binder. If the goal is a product, the tactic implements the "Lam" rule given in Section 4.2¹. If the goal starts with a let binder, then the tactic implements a mix of the "Let" and "Conv".

If the current goal is a dependent product $\forall x:T,\ U$ (resp let x:=t in U) then intro puts x:T (resp x:=t) in the local context. The new subgoal is U.

If the goal is a non-dependent product $T \to U$, then it puts in the local context either $\operatorname{H} n: T$ (if T is of type Set or Prop) or $\operatorname{X} n: T$ (if the type of T is Type). The optional index n is such that $\operatorname{H} n$ or $\operatorname{X} n$ is a fresh identifier. In both cases, the new subgoal is U.

If the goal is neither a product nor starting with a let definition, the tactic intro applies the tactic red until the tactic intro can be applied or the goal is not reducible.

Error messages:

- 1. No product even after head-reduction
- 2. ident is already used

Variants:

1. intros

This repeats intro until it meets the head-constant. It never reduces head-constants and it never fails.

2. intro ident

This applies intro but forces *ident* to be the name of the introduced hypothesis.

Error message: name ident is already used

Remark: If a name used by intro hides the base name of a global constant then the latter can still be referred to by a qualified name (see 2.6.2).

¹Actually, only the second subgoal will be generated since the other one can be automatically checked.

3. intros $ident_1$... $ident_n$

This is equivalent to the composed tactic intro $ident_1$; . . . ; intro $ident_n$.

More generally, the intros tactic takes a pattern as argument in order to introduce names for components of an inductive definition or to clear introduced hypotheses. This is explained in 8.3.2.

4. intros until ident

This repeats intro until it meets a premise of the goal having form (*ident* : *term*) and discharges the variable named *ident* of the current goal.

Error message: No such hypothesis in current goal

5. intros until num

This repeats intro until the *num*-th non-dependent product. For instance, on the subgoal forall x y:nat, $x=y \rightarrow y=x$ the tactic intros until 1 is equivalent to intros x y H, as $x=y \rightarrow y=x$ is the first non-dependent product. And on the subgoal forall x y z:nat, $x=y \rightarrow y=x$ the tactic intros until 1 is equivalent to intros x y z as the product on z can be rewritten as a non-dependent product: forall x y:nat, nat $\rightarrow x=y \rightarrow y=x$

Error message: No such hypothesis in current goal

This happens when *num* is 0 or is greater than the number of non-dependent products of the goal.

6. intro after ident intro before ident intro at top intro at bottom

These tactics apply intro and move the freshly introduced hypothesis respectively after the hypothesis *ident*, before the hypothesis *ident*, at the top of the local context, or at the bottom of the local context. All hypotheses on which the new hypothesis depends are moved too so as to respect the order of dependencies between hypotheses. Note that intro at bottom is a synonym for intro with no argument.

Error message: No such hypothesis: ident

7. intro ident₁ after ident₂ intro ident₁ before ident₂ intro ident₁ at top intro ident₁ at bottom

These tactics behave as previously but naming the introduced hypothesis $ident_1$. It is equivalent to intro $ident_1$ followed by the appropriate call to move (see Section 8.3.5).

8.3.2 intros intro_pattern ... intro_pattern

This extension of the tactic intros combines introduction of variables or hypotheses and case analysis. An *introduction pattern* is either:

• a naming introduction pattern, i.e. either one of:

- the pattern?
- the pattern ?ident
- an identifier
- a disjunctive/conjunctive introduction pattern, i.e. either one of:
 - a disjunction of lists of patterns: $[p_{11} \ldots p_{1m_1} \mid \ldots \mid p_{11} \ldots p_{nm_n}]$
 - a conjunction of patterns: (p_1, \dots, p_n)
 - a list of patterns $(p_1 \& \ldots \& p_n)$ for sequence of right-associative binary constructs
- the wildcard: _
- the rewriting orientations: -> or <-

Assuming a goal of type $Q \to P$ (non-dependent product), or of type $\forall x : T, P$ (dependent product), the behavior of intros p is defined inductively over the structure of the introduction pattern p:

- introduction on? performs the introduction, and lets CoQ choose a fresh name for the variable;
- introduction on ?ident performs the introduction, and lets CoQ choose a fresh name for the variable based on ident;
- introduction on *ident* behaves as described in Section 8.3.1;
- introduction over a disjunction of list of patterns $[p_{11} \ldots p_{1m_1} | \ldots | p_{11} \ldots p_{nm_n}]$ expects the product to be over an inductive type whose number of constructors is n (or more generally over a type of conclusion an inductive type built from n constructors, e.g. $C \rightarrow A \setminus B$ if n=2): it destructs the introduced hypothesis as destruct (see Section 8.5.1) would and applies on each generated subgoal the corresponding tactic; intros $p_{i1} \ldots p_{im_i}$; if the disjunctive pattern is part of a sequence of patterns and is not the last pattern of the sequence, then COQ completes the pattern so that all the argument of the constructors of the inductive type are introduced (for instance, the list of patterns $[\ |\]$ H applied on goal forall x:nat, x=0 -> 0=x behaves the same as the list of patterns $[\ |\]$ H);
- introduction over a conjunction of patterns (p_1, \ldots, p_n) expects the goal to be a product over an inductive type I with a single constructor that itself has at least n arguments: it performs a case analysis over the hypothesis, as destruct would, and applies the patterns $p_1 \ldots p_n$ to the arguments of the constructor of I (observe that (p_1, \ldots, p_n) is an alternative notation for $[p_1, \ldots, p_n]$);
- introduction via $(p_1 \& \ldots \& p_n)$ is a shortcut for introduction via $(p_1, (\ldots, (\ldots, p_n) \ldots))$; it expects the hypothesis to be a sequence of right-associative binary inductive constructors such as conj or ex_intro; for instance, an hypothesis with type A/\exists x, B/\C/\D can be introduced via pattern (a & x & b & c & d);
- introduction on the wildcard depends on whether the product is dependent or not: in the nondependent case, it erases the corresponding hypothesis (i.e. it behaves as an intro followed by a clear, cf Section 8.3.3) while in the dependent case, it succeeds and erases the variable only if the wildcard is part of a more complex list of introduction patterns that also erases the hypotheses depending on this variable;

• introduction over -> (respectively <-) expects the hypothesis to be an equality and the right-hand-side (respectively the left-hand-side) is replaced by the left-hand-side (respectively the right-hand-side) in both the conclusion and the context of the goal; if moreover the term to substitute is a variable, the hypothesis is removed.

Example:

```
Coq < Goal forall A B C:Prop, A \/ B \/ C -> (A -> C) -> C.
1 subgoal
  forall A B C : Prop, A \backslash / B / \backslash C \rightarrow (A \rightarrow C) \rightarrow C
Coq < intros A B C [a| [\_c]] f.
2 subgoals
 A : Prop
 B : Prop
 C : Prop
 a : A
 f : A -> C
  _____
  C
subgoal 2 is:
Coq < apply (f a).
1 subgoal
 A : Prop
 B : Prop
 C : Prop
 c : C
 f : A -> C
  _____
   C
Coq < exact c.
No more subgoals.
Coq < Qed.
intros A B C [a|(\underline{\ },c)] f.
apply (f a).
exact c.
Unnamed_thm is defined
```

Remark: intros p_1 ... p_n is not equivalent to intros p_1 ; ...; intros p_n for the following reasons:

- A wildcard pattern never succeeds when applied isolated on a dependent product, while it succeeds as part of a list of introduction patterns if the hypotheses that depends on it are erased too.
- A disjunctive or conjunctive pattern followed by an introduction pattern forces the introduction in the context of all arguments of the constructors before applying the next pattern while a terminal disjunctive or conjunctive pattern does not. Here is an example

```
Coq < Goal forall n:nat, n = 0 \rightarrow n = 0.
1 subgoal
 _____
  forall n : nat, n = 0 \rightarrow n = 0
Coq < intros [ | ] H.
2 subgoals
 H : 0 = 0
 _____
subgoal 2 is:
S n = 0
Coq < Show 2.
subgoal 2 is:
 n : nat
 H : S n = 0
 _____
  S n = 0
Coq < Undo.
1 subgoal
 _____
  forall n: nat, n = 0 \rightarrow n = 0
Coq < intros [ | ]; intros H.
2 subgoals
 H : 0 = 0
 _____
  0 = 0
subgoal 2 is:
S H = O \rightarrow S H = O
Coq < Show 2.
subgoal 2 is:
 H : nat
 _____
  S H = 0 -> S H = 0
```

8.3.3 clear ident

This tactic erases the hypothesis named *ident* in the local context of the current goal. As a consequence, *ident* is no more displayed and no more usable in the proof development.

Error messages:

- 1. No such hypothesis
- 2. ident is used in the conclusion
- 3. ident is used in the hypothesis ident'

Variants:

- 1. clear $ident_1$... $ident_n$ This is equivalent to clear $ident_1$ clear $ident_n$.
- 2. clearbody ident

This tactic expects *ident* to be a local definition then clears its body. Otherwise said, this tactic turns a definition into an assumption.

Error message: ident is not a local definition

3. clear - $ident_1$... $ident_n$

This tactic clears all the hypotheses except the ones depending in the hypotheses named $ident_1 \dots ident_n$ and in the goal.

4. clear

This tactic clears all the hypotheses except the ones the goal depends on.

5. clear dependent ident

This clears the hypothesis ident and all the hypotheses that depend on it.

8.3.4 revert $ident_1$... $ident_n$

This applies to any goal with variables $ident_1 \dots ident_n$. It moves the hypotheses (possibly defined) to the goal, if this respects dependencies. This tactic is the inverse of intro.

Error messages:

- 1. No such hypothesis
- 2. ident is used in the hypothesis ident'

Variants:

1. revert dependent ident

This moves to the goal the hypothesis ident and all hypotheses which depend on it.

8.3.5 move $ident_1$ after $ident_2$

This moves the hypothesis named $ident_1$ in the local context after the hypothesis named $ident_2$. The proof term is not changed.

If $ident_1$ comes before $ident_2$ in the order of dependences, then all hypotheses between $ident_1$ and $ident_2$ that (possibly indirectly) depend on $ident_1$ are moved also.

If $ident_1$ comes after $ident_2$ in the order of dependences, then all hypotheses between $ident_1$ and $ident_2$ that (possibly indirectly) occur in $ident_1$ are moved also.

Variants:

1. move $ident_1$ before $ident_2$

This moves $ident_1$ towards and just before the hypothesis named $ident_2$.

2. move *ident* at top

This moves *ident* at the top of the local context (at the beginning of the context).

3. move *ident* at bottom

This moves *ident* at the bottom of the local context (at the end of the context).

Error messages:

```
1. No such hypothesis
```

```
2. Cannot move ident_1 after ident_2: it occurs in ident_2
```

3. Cannot move $ident_1$ after $ident_2$: it depends on $ident_2$

8.3.6 rename $ident_1$ into $ident_2$

This renames hypothesis $ident_1$ into $ident_2$ in the current context. The name of the hypothesis in the proof-term, however, is left unchanged.

Variants:

1. rename $ident_1$ into $ident_2$, ..., $ident_{2k-1}$ into $ident_{2k}$ This is equivalent to the sequence of the corresponding atomic rename.

Error messages:

- 1. No such hypothesis
- 2. $ident_2$ is already used

```
8.3.7 set ( ident := term )
```

This replaces *term* by *ident* in the conclusion of the current goal and adds the new definition *ident* := *term* to the local context.

If term has holes (i.e. subexpressions of the form "_"), the tactic first checks that all subterms matching the pattern are compatible before doing the replacement using the leftmost subterm matching the pattern.

Error messages:

1. The variable ident is already defined

Variants:

```
1. set ( ident := term ) in goal_occurrences
```

This notation allows to specify which occurrences of *term* have to be substituted in the context. The in *goal_occurrences* clause is an occurrence clause whose syntax and behavior are described in Section 8.1.2.

```
2. set ( ident binder ... binder := term )

This is equivalent to set ( ident := fun binder ... binder => term ).
```

3. set term

This behaves as set (*ident* := *term*) but *ident* is generated by CoQ. This variant also supports an occurrence clause.

4. set ($ident_0$ binder ... binder := term) in goal_occurrences set term in goal_occurrences

These are the general forms which combine the previous possibilities.

5. remember term as ident

This behaves as set (ident := term) in * and using a logical (Leibniz's) equality instead of a local definition.

6. remember term as ident eqn:ident

This behaves as remember term as ident, except that the name of the generated equality is also given.

7. remember term as ident in goal_occurrences

This is a more general form of remember that remembers the occurrences of *term* specified by an occurrences set.

8. pose (ident := term)

This adds the local definition ident := term to the current context without performing any replacement in the goal or in the hypotheses. It is equivalent to set (ident := term) in |-.

9. pose (ident binder ... binder := term)

This is equivalent to pose (ident := fun binder ... binder => term).

10. pose term

This behaves as pose (ident := term) but ident is generated by CoQ.

8.3.8 decompose [$qualid_1$... $qualid_n$] term

This tactic allows to recursively decompose a complex proposition in order to obtain atomic ones.

Example:

```
Coq < Goal forall A B C:Prop, A /\ B /\ C \/ B /\ C \/ A -> C. 1 subgoal
```

```
forall A B C : Prop, A /\setminus B /\setminus C \setminus/ B /\setminus C \setminus/ A -> C
```

Coq < intros A B C H; decompose [and or] H; assumption.
No more subgoals.</pre>

Coq < Qed.

decompose does not work on right-hand sides of implications or products.

Variants:

1. decompose sum term

This decomposes sum types (like or).

2. decompose record term

This decomposes record types (inductive types with one constructor, like and and exists and those defined with the Record macro, see Section 2.1).

8.4 Controlling the proof flow

```
8.4.1 assert ( ident : form )
```

This tactic applies to any goal. assert (H: U) adds a new hypothesis of name H asserting U to the current goal and opens a new subgoal U². The subgoal U comes first in the list of subgoals remaining to prove.

Error messages:

1. Not a proposition or a type

Arises when the argument form is neither of type Prop, Set nor Type.

Variants:

1. assert form

This behaves as assert (ident : form) but ident is generated by CoQ.

2. assert (ident := term)

This behaves as assert (*ident*: *type*); [exact *term*|idtac] where *type* is the type of *term*.

Error message: Variable ident is already declared

3. cut form

This tactic applies to any goal. It implements the non-dependent case of the "App" rule given in Section 4.2. (This is Modus Ponens inference rule.) cut U transforms the current goal T into the two following subgoals: U \rightarrow T and U. The subgoal U \rightarrow T comes first in the list of remaining subgoal to prove.

4. assert form by tactic

This tactic behaves like assert but applies tactic to solve the subgoals generated by assert.

Error message: Proof is not complete

assert form as intro_pattern

If *intro_pattern* is a naming introduction pattern (see Section 8.3.2), the hypothesis is named after this introduction pattern (in particular, if *intro_pattern* is *ident*, the tactic behaves like assert (*ident* : *form*)).

If *intro_pattern* is a disjunctive/conjunctive introduction pattern, the tactic behaves like assert *form* then destructing the resulting hypothesis using the given introduction pattern.

²This corresponds to the cut rule of sequent calculus.

- 6. assert form as intro_pattern by tactic
 - This combines the two previous variants of assert.
- 7. pose proof term as intro_pattern

This tactic behaves like assert T as $intro_pattern$ by exact term where T is the type of term.

In particular, pose proof term as ident behaves as assert (ident := term) and pose proof term as disj_conj_intro_pattern behaves like destruct term as disj_conj_intro_pattern.

```
8. specialize (ident term<sub>1</sub> ... term<sub>n</sub>) specialize ident with bindings_list
```

The tactic specialize works on local hypothesis *ident*. The premises of this hypothesis (either universal quantifications or non-dependent implications) are instantiated by concrete terms coming either from arguments $term_1 \dots term_n$ or from a bindings list (see Section 8.1.1 for more about bindings lists). In the second form, all instantiation elements must be given, whereas in the first form the application to $term_1 \dots term_n$ can be partial. The first form is equivalent to assert ($ident' := ident term_1 \dots term_n$); clear ident; rename ident' into ident.

The name *ident* can also refer to a global lemma or hypothesis. In this case, for compatibility reasons, the behavior of specialize is close to that of generalize: the instantiated statement becomes an additional premise of the goal.

Error messages:

- (a) ident is used in hypothesis ident'
- (b) ident is used in conclusion

8.4.2 generalize *term*

This tactic applies to any goal. It generalizes the conclusion with respect to one of its subterms.

Example:

If the goal is G and t is a subterm of type T in the goal, then generalize t replaces the goal by forall (x:T), G' where G' is obtained from G by replacing all occurrences of t by x. The name of the variable (here n) is chosen based on T.

Variants:

- 1. generalize $term_1$, ..., $term_n$
 - This is equivalent to generalize $term_n$; ...; generalize $term_1$. Note that the sequence of $term_i$'s are processed from n to 1.
- 2. generalize term at num_1 ... num_i

This is equivalent to generalize term but it generalizes only over the specified occurrences of term (counting from left to right on the expression printed using option Set Printing All).

3. generalize term as ident

This is equivalent to generalize term but it uses ident to name the generalized hypothesis.

4. generalize $term_1$ at num_{11} ... num_{1i_1} as $ident_1$, ... , $term_n$ at num_{n1} ... num_{ni_n} as $ident_2$

This is the most general form of generalize that combines the previous behaviors.

5. generalize dependent term

This generalizes *term* but also *all* hypotheses that depend on *term*. It clears the generalized hypotheses.

```
8.4.3 evar ( ident : term )
```

The evar tactic creates a new local definition named *ident* with type *term* in the context. The body of this binding is a fresh existential variable.

```
8.4.4 instantiate ( num := term )
```

The instantiate tactic allows to refine (see Section 8.2.3) an existential variable with the term *term*. The *num* argument is the position of the existential variable from right to left in the conclusion. This cannot be the number of the existential variable since this number is different in every session.

Variants:

- 1. instantiate (num := term) in ident
- 2. instantiate (num := term) in (Value of ident)
- 3. instantiate (num := term) in (Type of ident)

These allow to refer respectively to existential variables occurring in a hypothesis or in the body or the type of a local definition.

4. instantiate

Without argument, the instantiate tactic tries to solve as many existential variables as possible, using information gathered from other tactics in the same tactical. This is automatically done after each complete tactic (i.e. after a dot in proof mode), but not, for example, between each tactic when they are sequenced by semicolons.

8.4.5 admit

The admit tactic "solves" the current subgoal by an axiom. This typically allows to temporarily skip a subgoal so as to progress further in the rest of the proof. To know if some proof still relies on unproved subgoals, one can use the command Print Assumptions (see Section 6.3.5). Admitted subgoals have names of the form *ident_admitted* possibly followed by a number.

8.4.6 absurd *term*

This tactic applies to any goal. The argument *term* is any proposition P of type Prop. This tactic applies False elimination, that is it deduces the current goal from False, and generates as subgoals \sim P and P. It is very useful in proofs by cases, where some cases are impossible. In most cases, P or \sim P is one of the hypotheses of the local context.

8.4.7 contradiction

This tactic applies to any goal. The contradiction tactic attempts to find in the current context (after all intros) one hypothesis that is equivalent to False. It permits to prune irrelevant cases. This tactic is a macro for the tactics sequence intros; elimtype False; assumption.

Error messages:

1. No such assumption

Variants:

1. contradiction ident

The proof of False is searched in the hypothesis named ident.

8.4.8 contradict ident

This tactic allows to manipulate negated hypothesis and goals. The name *ident* should correspond to a hypothesis. With contradict H, the current goal and context is transformed in the following way:

```
    H:¬A ⊢ B becomes ⊢ A
    H:¬A ⊢ ¬B becomes H: B ⊢ A
    H: A ⊢ B becomes ⊢ ¬A
    H: A ⊢ ¬B becomes H: B ⊢ ¬A
```

8.4.9 exfalso

This tactic implements the "ex falso quodlibet" logical principle: an elimination of False is performed on the current goal, and the user is then required to prove that False is indeed provable in the current context. This tactic is a macro for elimtype False.

8.5 Case analysis and induction

The tactics presented in this section implement induction or case analysis on inductive or co-inductive objects (see Section 4.5).

8.5.1 destruct term

This tactic applies to any goal. The argument *term* must be of inductive or co-inductive type and the tactic generates subgoals, one for each possible form of *term*, i.e. one for each constructor of the inductive or co-inductive type. Unlike induction, no induction hypothesis is generated by destruct.

If the argument is dependent in either the conclusion or some hypotheses of the goal, the argument is replaced by the appropriate constructor form in each of the resulting subgoals, thus performing case analysis. If non-dependent, the tactic simply exposes the inductive or co-inductive structure of the argument.

There are special cases:

- If term is an identifier ident denoting a quantified variable of the conclusion of the goal, then destruct ident behaves as intros until ident; destruct ident.
- If term is a num, then destruct num behaves as intros until num followed by destruct applied to the last introduced hypothesis. Remark: For destruction of a numeral, use syntax destruct (num) (not very interesting anyway).
- The argument *term* can also be a pattern of which holes are denoted by "_". In this case, the tactic checks that all subterms matching the pattern in the conclusion and the hypotheses are compatible and performs case analysis using this subterm.

Variants:

- 1. destruct $term_1$, ..., $term_n$ This is a shortcut for destruct $term_1$; ...; destruct $term_n$.
- 2. destruct term as disj_conj_intro_pattern

This behaves as destruct term but uses the names in $intro_pattern$ to name the variables introduced in the context. The $intro_pattern$ must have the form $[p_{11} \dots p_{1n_1} | \dots | p_{m1} \dots p_{mn_m}]$ with m being the number of constructors of the type of term. Each variable introduced by destruct in the context of the i^{th} goal gets its name from the list $p_{i1} \dots p_{in_i}$ in order. If there are not enough names, destruct invents names for the remaining variables to introduce. More generally, the p_{ij} can be any disjunctive/conjunctive introduction pattern (see Section 8.3.2). This provides a concise notation for nested destruction.

3. destruct term eqn:naming_intro_pattern

This behaves as destruct *term* but adds an equation between *term* and the value that *term* takes in each of the possible cases. The name of the equation is specified by *naming_intro_pattern* (see Section 8.3.2), in particular? can be used to let Coq generate a fresh name.

4. destruct term with bindings list

This behaves like destruct *term* providing explicit instances for the dependent premises of the type of *term* (see syntax of bindings in Section 8.1.1).

5. edest.ruct. term

This tactic behaves like destruct *term* except that it does not fail if the instance of a dependent premises of the type of *term* is not inferable. Instead, the unresolved instances are left as existential variables to be inferred later, in the same way as eapply does (see Section 8.2.4).

6. destruct term₁ using term₂ destruct term₁ using term₂ with bindings_list

These are synonyms of induction $term_1$ using $term_2$ and induction $term_1$ using $term_2$ with $bindings_list$.

7. destruct term in goal_occurrences

This syntax is used for selecting which occurrences of *term* the case analysis has to be done on. The in *goal_occurrences* clause is an occurrence clause whose syntax and behavior is described in Section 8.1.2.

8. destruct $term_1$ with $bindings_list_1$ as $disj_conj_intro_pattern$ eqn: $naming_intro_pattern$ using $term_2$ with $bindings_list_2$ in $goal_occurrences$ edestruct $term_1$ with $bindings_list_1$ as $disj_conj_intro_pattern$ eqn: $naming_intro_pattern$ using $term_2$ with $bindings_list_2$ in $goal_occurrences$

These are the general forms of destruct and edestruct. They combine the effects of the with, as, eqn:, using, and in clauses.

9. case term

The tactic case is a more basic tactic to perform case analysis without recursion. It behaves as elim *term* but using a case-analysis elimination principle and not a recursive one.

10. case term with bindings_list

Analogous to elim term with bindings_list above.

11. ecase term ecase term with bindings_list

In case the type of *term* has dependent premises, or dependent premises whose values are not inferable from the with *bindings_list* clause, ecase turns them into existential variables to be resolved later on.

12. simple destruct ident

This tactic behaves as intros until *ident*; case *ident* when *ident* is a quantified variable of the goal.

13. simple destruct num

This tactic behaves as intros until *num*; case *ident* where *ident* is the name given by intros until *num* to the *num*-th non-dependent premise of the goal.

14. case_eq term

The tactic case_eq is a variant of the case tactic that allow to perform case analysis on a term without completely forgetting its original form. This is done by generating equalities between the original form of the term and the outcomes of the case analysis.

8.5.2 induction *term*

This tactic applies to any goal. The argument *term* must be of inductive type and the tactic induction generates subgoals, one for each possible form of *term*, i.e. one for each constructor of the inductive type.

If the argument is dependent in either the conclusion or some hypotheses of the goal, the argument is replaced by the appropriate constructor form in each of the resulting subgoals and induction hypotheses are added to the local context using names whose prefix is IH.

There are particular cases:

- If term is an identifier ident denoting a quantified variable of the conclusion of the goal, then induction ident behaves as intros until ident; induction ident.
- If term is a num, then induction num behaves as intros until num followed by induction applied to the last introduced hypothesis. Remark: For simple induction on a numeral, use syntax induction (num) (not very interesting anyway).
- The argument *term* can also be a pattern of which holes are denoted by "_". In this case, the tactic checks that all subterms matching the pattern in the conclusion and the hypotheses are compatible and performs induction using this subterm.

Example:

```
Cog < Lemma induction\_test : forall n:nat, n = n -> n <= n.
1 subgoal
 ______
  forall n : nat, n = n \rightarrow n <= n
Coq < intros n H.
1 subgoal
 n : nat
 H : n = n
 ______
  n \le n
Coq < induction n.
2 subgoals
 H : 0 = 0
  0 <= 0
subgoal 2 is:
S n <= S n
```

Error messages:

- 1. Not an inductive product
- 2. Unable to find an instance for the variables *ident* ... *ident* Use in this case the variant elim ... with ... below.

Variants:

1. induction term as disj_conj_intro_pattern

This behaves as induction term but uses the names in $disj_conj_intro_pattern$ to name the variables introduced in the context. The $disj_conj_intro_pattern$ must typically be of the form [$p_{11} \dots p_{1n_1} \mid \dots \mid p_{m1} \dots p_{mn_m}$] with m being the number of constructors of the type of term. Each variable introduced by induction in the context of the i^{th} goal gets its name from the list $p_{i1} \dots p_{in_i}$ in order. If there are not enough names, induction invents names for the remaining variables to introduce. More generally, the p_{ij} can be any disjunctive/conjunctive introduction pattern (see Section 8.3.2). For instance, for an inductive type with one constructor, the pattern notation (p_1, \dots, p_n) can be used instead of $[p_1 \dots p_n]$.

2. induction term eqn:naming_intro_pattern

This behaves as induction term but adds an equation between term and the value that term takes in each of the induction case. The name of the equation is built according to naming_intro_pattern which can be an identifier, a "?", etc, as indicated in Section 8.3.2.

- 3. induction *term* as *disj_conj_intro_pattern* eqn: naming_intro_pattern
 This combines the two previous forms.
- 4. induction term with bindings_list

This behaves like induction *term* providing explicit instances for the premises of the type of *term* (see the syntax of bindings in Section 8.1.1).

5. einduction term

This tactic behaves like induction term excepts that it does not fail if some dependent premise of the type of term is not inferable. Instead, the unresolved premises are posed as existential variables to be inferred later, in the same way as eapply does (see Section 8.2.4).

6. induction $term_1$ using $term_2$

This behaves as induction $term_1$ but using $term_2$ as induction scheme. It does not expect the conclusion of the type of $term_1$ to be inductive.

7. induction $term_1$ using $term_2$ with $bindings_list$

This behaves as induction $term_1$ using $term_2$ but also providing instances for the premises of the type of $term_2$.

8. induction $term_1$, ..., $term_n$ using qualid

This syntax is used for the case *qualid* denotes an induction principle with complex predicates as the induction principles generated by Function or Functional Scheme may be.

9. induction term in goal_occurrences

This syntax is used for selecting which occurrences of *term* the induction has to be carried on. The in *goal_occurrences* clause is an occurrence clause whose syntax and behavior is described in Section 8.1.2.

10. induction term₁ with bindings_list₁ as disj_conj_intro_pattern eqn:naming_intro_pattern using term₂ with bindings_list₂ in goal_occurrences einduction term₁ with bindings_list₁ as disj_conj_intro_pattern eqn:naming_intro_pattern using term₂ with bindings_list₂ in goal_occurrences

These are the most general forms of induction and einduction. It combines the effects of the with, as, eqn:, using, and in clauses.

11. elim term

This is a more basic induction tactic. Again, the type of the argument term must be an inductive type. Then, according to the type of the goal, the tactic <code>elim</code> chooses the appropriate destructor and applies it as the tactic <code>apply</code> would do. For instance, if the proof context contains <code>n:nat</code> and the current goal is <code>T</code> of type <code>Prop</code>, then <code>elim</code> <code>n</code> is equivalent to <code>apply</code> <code>nat_ind</code> with (n:=n). The tactic <code>elim</code> does not modify the context of the goal, neither introduces the induction loading into the context of hypotheses.

More generally, elim term also works when the type of term is a statement with premises and whose conclusion is inductive. In that case the tactic performs induction on the conclusion of the type of term and leaves the non-dependent premises of the type as subgoals. In the case of dependent products, the tactic tries to find an instance for which the elimination lemma applies and fails otherwise.

12. elim term with bindings_list

Allows to give explicit instances to the premises of the type of *term* (see Section 8.1.1).

13. eelim term

In case the type of *term* has dependent premises, this turns them into existential variables to be resolved later on.

14. elim $term_1$ using $term_2$ elim $term_1$ using $term_2$ with $bindings_list$

Allows the user to give explicitly an elimination predicate $term_2$ which is not the standard one for the underlying inductive type of $term_1$. The $bindings_list$ clause allows to instantiate premises of the type of $term_2$.

15. elim $term_1$ with $bindings_list_1$ using $term_2$ with $bindings_list_2$ eelim $term_1$ with $bindings_list_1$ using $term_2$ with $bindings_list_2$

These are the most general forms of elim and eelim. It combines the effects of the using clause and of the two uses of the with clause.

16. elimtype form

The argument form must be inductively defined. elimtype I is equivalent to cut I. intro Hn; elim Hn; clear Hn. Therefore the hypothesis Hn will not appear in the context(s) of the subgoal(s). Conversely, if t is a term of (inductive) type I and which does not occur in the goal then elim t is equivalent to elimtype I; 2: exact t.

17. simple induction ident

This tactic behaves as intros until *ident*; elim *ident* when *ident* is a quantified variable of the goal.

18. simple induction num

This tactic behaves as intros until *num*; elim *ident* where *ident* is the name given by intros until *num* to the *num*-th non-dependent premise of the goal.

8.5.3 double induction $ident_1$ $ident_2$

This tactic is deprecated and should be replaced by induction $ident_1$; induction $ident_2$ (or induction $ident_1$; destruct $ident_2$ depending on the exact needs).

Variant:

1. double induction num_1 num_2

This tactic is deprecated and should be replaced by induction num_1 ; induction num_3 where num_3 is the result of num_2 - num_1 .

8.5.4 dependent induction ident

The experimental tactic dependent induction performs induction-inversion on an instantiated inductive predicate. One needs to first require the Coq.Program.Equality module to use this tactic. The tactic is based on the BasicElim tactic by Conor McBride [99] and the work of Cristina Cornes around inversion [35]. From an instantiated inductive predicate and a goal, it generates an equivalent goal where the hypothesis has been generalized over its indexes which are then constrained by equalities to be the right instances. This permits to state lemmas without resorting to manually adding these equalities and still get enough information in the proofs.

Example:

Here we did not get any information on the indexes to help fulfill this proof. The problem is that, when we use the induction tactic, we lose information on the hypothesis instance, notably that the second argument is 1 here. Dependent induction solves this problem by adding the corresponding equality to the context.

```
Coq < Require Import Coq.Program.Equality.
Coq < Lemma le_minus : forall n:nat, n < 1 -> n = 0.
1 subgoal
```

The subgoal is cleaned up as the tactic tries to automatically simplify the subgoals with respect to the generated equalities. In this enriched context, it becomes possible to solve this subgoal.

Now we are in a contradictory context and the proof can be solved.

```
Coq < inversion H.
No more subgoals.</pre>
```

This technique works with any inductive predicate. In fact, the dependent induction tactic is just a wrapper around the induction tactic. One can make its own variant by just writing a new tactic based on the definition found in Coq.Program.Equality.

Variants:

1. dependent induction ident generalizing $ident_1 \dots ident_n$

This performs dependent induction on the hypothesis *ident* but first generalizes the goal by the given variables so that they are universally quantified in the goal. This is generally what one wants to do with the variables that are inside some constructors in the induction hypothesis. The other ones need not be further generalized.

2. dependent destruction ident

This performs the generalization of the instance *ident* but uses destruct instead of induction on the generalized hypothesis. This gives results equivalent to inversion or dependent inversion if the hypothesis is dependent.

See also: 10.1 for a larger example of dependent induction and an explanation of the underlying technique.

```
8.5.5 functional induction (qualid term<sub>1</sub> ... term<sub>n</sub>)
```

The tactic functional induction performs case analysis and induction following the definition of a function. It makes use of a principle generated by Function (see Section 2.3) or Functional Scheme (see Section 13.2).

```
Coq < Functional Scheme minus_ind := Induction for minus Sort Prop.</pre>
minus_equation is defined
minus_ind is defined
Coq < Check minus_ind.
minus ind
     : forall P : nat -> nat -> nat -> Prop,
        (forall n m : nat, n = 0 \rightarrow P 0 m n) \rightarrow
        (forall\ n\ m\ k\ :\ nat,\ n\ =\ S\ k\ ->\ m\ =\ 0\ ->\ P\ (S\ k)\ 0\ n)\ ->
        (forall n m k : nat,
        n = S k \rightarrow
         forall 1 : nat, m = S \ 1 \rightarrow P \ k \ 1 \ (k - 1) \rightarrow P \ (S \ k) \ (S \ 1) \ (k - 1)) \rightarrow
        forall n m : nat, P n m (n - m)
Coq < Lemma le_minus (n m:nat) : n - m <= n.
1 subgoal
  n : nat
  m : nat
  _____
   n - m \le n
Coq < functional induction (minus n m); simpl; auto.</pre>
No more subgoals.
Coq < Qed.
```

Remark: (qualid $term_1$... $term_n$) must be a correct full application of qualid. In particular, the rules for implicit arguments are the same as usual. For example use @qualid if you want to write implicit arguments explicitly.

Remark: Parentheses over *qualid*... $term_n$ are mandatory.

Remark: functional induction (f x1 x2 x3) is actually a wrapper for induction x1 x2 x3 (f x1 x2 x3) using *qualid* followed by a cleaning phase, where *qualid* is the induction principle registered for f (by the Function (see Section 2.3) or Functional Scheme (see Section 13.2) command) corresponding to the sort of the goal. Therefore functional induction may fail if the induction scheme *qualid* is not defined. See also Section 2.3 for the function terms accepted by Function.

Remark: There is a difference between obtaining an induction scheme for a function by using Function (see Section 2.3) and by using Functional Scheme after a normal definition using Fixpoint or Definition. See 2.3 for details.

See also: 2.3,13.2,13.2, 8.15.1

Error messages:

- 1. Cannot find induction information on qualid
- 2. Not the right number of induction arguments

Variants:

1. functional induction (qualid $term_1$... $term_n$) as $disj_conj_intro_pattern$ using $term_{m+1}$ with $bindings_list$

Similarly to Induction and elim (see Section 8.5.2), this allows to give explicitly the name of the introduced variables, the induction principle, and the values of dependent premises of the elimination scheme, including *predicates* for mutual induction when *qualid* is part of a mutually recursive definition.

8.5.6 discriminate term

This tactic proves any goal from an assumption stating that two structurally different terms of an inductive set are equal. For example, from (S (S O)) = (S O) we can derive by absurdity any proposition.

The argument term is assumed to be a proof of a statement of conclusion $term_1 = term_2$ with $term_1$ and $term_2$ being elements of an inductive set. To build the proof, the tactic traverses the normal forms³ of $term_1$ and $term_2$ looking for a couple of subterms u and w (u subterm of the normal form of $term_1$ and w subterm of the normal form of $term_2$), placed at the same positions and whose head symbols are two different constructors. If such a couple of subterms exists, then the proof of the current goal is completed, otherwise the tactic fails.

Remark: The syntax discriminate *ident* can be used to refer to a hypothesis quantified in the goal. In this case, the quantified hypothesis whose name is *ident* is first introduced in the local context using intros until *ident*.

Error messages:

- 1. No primitive equality found
- 2. Not a discriminable equality

Variants:

1. discriminate num

This does the same thing as intros until *num* followed by discriminate *ident* where *ident* is the identifier for the last introduced hypothesis.

2. discriminate term with bindings_list

This does the same thing as discriminate term but using the given bindings to instantiate parameters or hypotheses of term.

 ediscriminate num ediscriminate term [with bindings_list]

This works the same as discriminate but if the type of term, or the type of the hypothesis referred to by *num*, has uninstantiated parameters, these parameters are left as existential variables.

4. discriminate

This behaves like discriminate *ident* if *ident* is the name of an hypothesis to which discriminate is applicable; if the current goal is of the form $term_1 <> term_2$, this behaves as intro *ident*; discriminate *ident*.

Error message: No discriminable equalities

³Reminder: opaque constants will not be expanded by δ reductions.

8.5.7 injection *term*

The injection tactic is based on the fact that constructors of inductive sets are injections. That means that if c is a constructor of an inductive set, and if $(c \ \vec{t_1})$ and $(c \ \vec{t_2})$ are two terms that are equal then $\vec{t_1}$ and $\vec{t_2}$ are equal too.

If term is a proof of a statement of conclusion $term_1 = term_2$, then injection applies injectivity as deep as possible to derive the equality of all the subterms of $term_1$ and $term_2$ placed in the same positions. For example, from (S(Sn)) = (S(Sm)) we may derive n = (Sm). To use this tactic $term_1$ and $term_2$ should be elements of an inductive set and they should be neither explicitly equal, nor structurally different. We mean by this that, if n_1 and n_2 are their respective normal forms, then:

- n₁ and n₂ should not be syntactically equal,
- there must not exist any pair of subterms u and w, u subterm of n₁ and w subterm of n₂, placed in the same positions and having different constructors as head symbols.

If these conditions are satisfied, then, the tactic derives the equality of all the subterms of $term_1$ and $term_2$ placed in the same positions and puts them as antecedents of the current goal.

Example: Consider the following goal:

```
Coq < Inductive list : Set :=</pre>
Coq < | nil : list
Coq < | cons : nat -> list -> list.
Coq < Variable P : list -> Prop.
Coq < Show.
1 subgoal
 1 : list
 n : nat
 H : P nil
 H0 : cons n l = cons 0 nil
 P 1
Coq < injection H0.
1 subgoal
 1 : list
 n : nat
 H : P nil
 H0 : cons n l = cons 0 nil
 1 = nil -> n = 0 -> P 1
```

Beware that injection yields always an equality in a sigma type whenever the injected object has a dependent type.

Remark: There is a special case for dependent pairs. If we have a decidable equality over the type of the first argument, then it is safe to do the projection on the second one, and so injection will work fine. To define such an equality, you have to use the Scheme command (see 13.1).

Remark: If some quantified hypothesis of the goal is named *ident*, then injection *ident* first introduces the hypothesis in the local context using intros until *ident*.

Error messages:

- 1. Not a projectable equality but a discriminable one
- 2. Nothing to do, it is an equality between convertible terms
- 3. Not a primitive equality

Variants:

1. injection num

This does the same thing as intros until *num* followed by injection *ident* where *ident* is the identifier for the last introduced hypothesis.

2. injection term with bindings_list

This does the same as injection term but using the given bindings to instantiate parameters or hypotheses of term.

3. einjection num
 einjection term [with bindings_list]

This works the same as injection but if the type of *term*, or the type of the hypothesis referred to by *num*, has uninstantiated parameters, these parameters are left as existential variables.

4. injection

If the current goal is of the form $term_1 \iff term_2$, this behaves as intro ident; injection ident.

Error message: goal does not satisfy the expected preconditions

5. injection term [with bindings_list] as intro_pattern ... intro_pattern injection num as intro_pattern ... intro_pattern injection as intro_pattern ... intro_pattern einjection term [with bindings_list] as intro_pattern ... intro_pattern einjection num as intro_pattern ... intro_pattern einjection as intro_pattern ... intro_pattern

These variants apply intros *intro_pattern* ... *intro_pattern* after the call to injection or einjection.

8.5.8 inversion *ident*

Let the type of *ident* in the local context be $(I \ \vec{t})$, where I is a (co)inductive predicate. Then, inversion applied to *ident* derives for each possible constructor c_i of $(I \ \vec{t})$, all the necessary conditions that should hold for the instance $(I \ \vec{t})$ to be proved by c_i .

Remark: If *ident* does not denote a hypothesis in the local context but refers to a hypothesis quantified in the goal, then the latter is first introduced in the local context using intros until *ident*.

Remark: As inversion proofs may be large in size, we recommend the user to stock the lemmas whenever the same instance needs to be inverted several times. See Section 13.3.

Variants:

1. inversion num

This does the same thing as intros until *num* then inversion *ident* where *ident* is the identifier for the last introduced hypothesis.

2. inversion_clear ident

This behaves as inversion and then erases ident from the context.

3. inversion ident as intro pattern

This behaves as inversion but using names in *intro_pattern* for naming hypotheses. The *intro_pattern* must have the form $[p_{11} \dots p_{1n_1} | \dots | p_{m1} \dots p_{mn_m}]$ with m being the number of constructors of the type of *ident*. Be careful that the list must be of length m even if inversion discards some cases (which is precisely one of its roles): for the discarded cases, just use an empty list (i.e. $n_i = 0$).

The arguments of the i^{th} constructor and the equalities that inversion introduces in the context of the goal corresponding to the i^{th} constructor, if it exists, get their names from the list p_{i1} ... p_{in_i} in order. If there are not enough names, induction invents names for the remaining variables to introduce. In case an equation splits into several equations (because inversion applies injection on the equalities it generates), the corresponding name p_{ij} in the list must be replaced by a sublist of the form $[p_{ij1} \ldots p_{ijq}]$ (or, equivalently, $(p_{ij1}, \ldots, p_{ijq})$) where q is the number of subequalities obtained from splitting the original equation. Here is an example.

```
Cog < Inductive contains0 : list nat -> Prop :=
Coq < | in_hd : forall l, contains0 (0 :: 1)</pre>
Coq <  | in_tl : forall l b, contains0 l -> contains0 (b :: l).
contains0 is defined
contains0_ind is defined
Coq < Goal forall 1:list nat, contains0 (1 :: 1) -> contains0 1.
1 subgoal
  _____
  forall 1 : Datatypes.list nat, contains0 (1 :: 1) -> contains0 1
Coq < intros 1 H; inversion H as [ | 1' p Hl' [Heqp Heql'] ].
1 subgoal
 1 : Datatypes.list nat
 H : contains0 (1 :: 1)
 l' : Datatypes.list nat
 p: nat
 Hl' : contains0 l
 Heqp: p = 1
 Hegl': 1' = 1
  _____
  contains0 1
```

4. inversion num as intro_pattern

This allows to name the hypotheses introduced by inversion *num* in the context.

5. inversion_clear ident as intro_pattern

This allows to name the hypotheses introduced by inversion_clear in the context.

6. inversion ident in ident₁ ... ident_n

Let $ident_1 \dots ident_n$, be identifiers in the local context. This tactic behaves as generalizing $ident_1 \dots ident_n$, and then performing inversion.

7. inversion ident as intro_pattern in ident₁ ... ident_n

This allows to name the hypotheses introduced in the context by inversion ident in $ident_1$. . . $ident_n$.

8. inversion_clear ident in $ident_1$... $ident_n$

Let $ident_1 \dots ident_n$, be identifiers in the local context. This tactic behaves as generalizing $ident_1 \dots ident_n$, and then performing inversion_clear.

9. inversion_clear ident as intro_pattern in ident₁ ... ident_n

This allows to name the hypotheses introduced in the context by inversion_clear ident in $ident_1 \dots ident_n$.

10. dependent inversion ident

That must be used when *ident* appears in the current goal. It acts like inversion and then substitutes *ident* for the corresponding term in the goal.

11. dependent inversion ident as intro_pattern

This allows to name the hypotheses introduced in the context by dependent inversion ident.

12. dependent inversion clear ident

Like dependent inversion, except that ident is cleared from the local context.

13. dependent inversion_clear ident as intro_pattern

This allows to name the hypotheses introduced in the context by dependent inversion_clear *ident*.

14. dependent inversion ident with term

This variant allows you to specify the generalization of the goal. It is useful when the system fails to generalize the goal automatically. If *ident* has type $(I\ \vec{t})$ and I has type $\forall (\vec{x}:\vec{T}), s$, then term must be of type $I: \forall (\vec{x}:\vec{T}), I\ \vec{x} \to s'$ where s' is the type of the goal.

15. dependent inversion ident as intro_pattern with term

This allows to name the hypotheses introduced in the context by dependent inversion ident with term.

16. dependent inversion_clear ident with term

Like dependent inversion ... with but clears ident from the local context.

17. dependent inversion_clear ident as intro_pattern with term

This allows to name the hypotheses introduced in the context by dependent inversion_clear *ident* with *term*.

18. simple inversion ident

It is a very primitive inversion tactic that derives all the necessary equalities but it does not simplify the constraints as inversion does.

19. simple inversion ident as intro_pattern

This allows to name the hypotheses introduced in the context by simple inversion.

20. inversion ident using ident'

Let *ident* have type $(I \ \bar{t})$ $(I \ \text{an inductive predicate})$ in the local context, and *ident'* be a (dependent) inversion lemma. Then, this tactic refines the current goal with the specified lemma.

21. inversion ident using ident' in $ident_1...$ $ident_n$

This tactic behaves as generalizing $ident_1...ident_n$, then doing inversion ident using ident'.

Example 1: Non-dependent inversion

Let us consider the relation Le over natural numbers and the following variables:

Let us consider the following goal:

To prove the goal, we may need to reason by cases on H and to derive that m is necessarily of the form $(S \ m_0)$ for certain m_0 and that $(Le \ n \ m_0)$. Deriving these conditions corresponds to prove that the only possible constructor of (Le (S n) m) is LeS and that we can invert the -> in the type of LeS. This inversion is possible because Le is the smallest set closed by the constructors LeO and LeS.

```
Coq < inversion_clear H.
1 subgoal
   n : nat
   m : nat</pre>
```

Note that m has been substituted in the goal for (S m0) and that the hypothesis (Le n m0) has been added to the context.

Sometimes it is interesting to have the equality m = (S m0) in the context to use it after. In that case we can use inversion that does not clear the equalities:

Example 2: Dependent inversion

Let us consider the following goal:

As H occurs in the goal, we may want to reason by cases on its structure and so, we would like inversion tactics to substitute H by the corresponding term in constructor form. Neither Inversion nor Inversion_clear make such a substitution. To have such a behavior we use the dependent inversion tactics:

Note that H has been substituted by (LeS n m0 1) and m by (S m0).

8.5.9 fix ident num

This tactic is a primitive tactic to start a proof by induction. In general, it is easier to rely on higher-level induction tactics such as the ones described in Section 8.5.2.

In the syntax of the tactic, the identifier *ident* is the name given to the induction hypothesis. The natural number *num* tells on which premise of the current goal the induction acts, starting from 1 and counting both dependent and non dependent products. Especially, the current lemma must be composed of at least *num* products.

Like in a fix expression, the induction hypotheses have to be used on structurally smaller arguments. The verification that inductive proof arguments are correct is done only at the time of registering the lemma in the environment. To know if the use of induction hypotheses is correct at some time of the interactive development of a proof, use the command Guarded (see Section 7.3.2).

Variants:

```
1. fix ident_1 num with ( ident_2 binder_2 ... binder_2 [{ struct ident'_2 }] : type_2 ) ... ( ident_n binder_n ... binder_n [{ struct ident'_n }] : type_n )
```

This starts a proof by mutual induction. The statements to be simultaneously proved are respectively forall $binder_2$... $binder_2$, $type_2$, ..., forall $binder_n$... $binder_n$, $type_n$. The identifiers $ident_1$... $ident_n$ are the names of the induction hypotheses. The identifiers $ident_2'$... $ident_n'$ are the respective names of the premises on which the induction is performed in the statements to be simultaneously proved (if not given, the system tries to guess itself what they are).

8.5.10 cofix ident

This tactic starts a proof by coinduction. The identifier *ident* is the name given to the coinduction hypothesis. Like in a cofix expression, the use of induction hypotheses have to guarded by a constructor. The verification that the use of co-inductive hypotheses is correct is done only at the time of registering the lemma in the environment. To know if the use of coinduction hypotheses is correct at some time of the interactive development of a proof, use the command Guarded (see Section 7.3.2).

Variants:

```
1. cofix ident_1 with ( ident_2 binder_2 ... binder_2 : type_2 ) ... ( ident_n binder_n ... binder_n : type_n )
```

This starts a proof by mutual coinduction. The statements to be simultaneously proved are respectively forall $binder_2$... $binder_2$, $type_2$, ..., forall $binder_n$... $binder_n$, $type_n$. The identifiers $ident_1$... $ident_n$ are the names of the coinduction hypotheses.

8.6 Rewriting expressions

These tactics use the equality eq:forall A:Type, A->A->Prop defined in file Logic.v (see Section 3.1.2). The notation for eq T t u is simply t=u dropping the implicit type of t and u.

8.6.1 rewrite term

This tactic applies to any goal. The type of term must have the form

```
forall (x_1:A_1) ... (x_n:A_n) = q term_1 term_2.
```

where eq is the Leibniz equality or a registered setoid equality.

Then rewrite term finds the first subterm matching $term_1$ in the goal, resulting in instances $term'_1$ and $term'_2$ and then replaces every occurrence of $term'_1$ by $term'_2$. Hence, some of the variables x_i are solved by unification, and some of the types A_1, \ldots, A_n become new subgoals.

Error messages:

- 1. The term provided does not end with an equation
- 2. Tactic generated a subgoal identical to the original goal This happens if *term*₁ does not occur in the goal.

Variants:

- 1. rewrite -> term
 Is equivalent to rewrite term
- 2. rewrite <- *term*Uses the equality $term_1 = term_2$ from right to left
- 3. rewrite term in clause

Analogous to rewrite *term* but rewriting is done following *clause* (similarly to 8.7). For instance:

- rewrite H in H1 will rewrite H in the hypothesis H1 instead of the current goal.
- rewrite H in H1 at 1, H2 at $-2 \mid -*$ means rewrite H; rewrite H in H1 at 1; rewrite H in H2 at -2. In particular a failure will happen if any of these three simpler tactics fails.
- rewrite H in \star |- will do rewrite H in H_i for all hypothesis H_i <> H. A success will happen as soon as at least one of these simpler tactics succeeds.
- rewrite H in * is a combination of rewrite H and rewrite H in * |- that succeeds if at least one of these two tactics succeeds.

Orientation -> or <- can be inserted before the term to rewrite.

4. rewrite term at occurrences

Rewrite only the given occurrences of $term'_1$. Occurrences are specified from left to right as for pattern (§8.7.7). The rewrite is always performed using setoid rewriting, even for Leibniz's equality, so one has to Import Setoid to use this variant.

5. rewrite term by tactic

Use tactic to completely solve the side-conditions arising from the rewrite.

6. rewrite $term_1$, ..., $term_n$

Is equivalent to the n successive tactics rewrite $term_1$ up to rewrite $term_n$, each one working on the first subgoal generated by the previous one. Orientation -> or <- can be inserted before each term to rewrite. One unique clause can be added at the end after the keyword in; it will then affect all rewrite operations.

- 7. In all forms of rewrite described above, a term to rewrite can be immediately prefixed by one of the following modifiers:
 - ? : the tactic rewrite ?term performs the rewrite of term as many times as possible (perhaps zero time). This form never fails.
 - n?: works similarly, except that it will do at most n rewrites.
 - ! : works as ?, except that at least one rewrite should succeed, otherwise the tactic fails.
 - n! (or simply n): precisely n rewrites of term will be done, leading to failure if these n rewrites are not possible.
- 8. erewrite term

This tactic works as rewrite term but turning unresolved bindings into existential variables, if any, instead of failing. It has the same variants as rewrite has.

```
8.6.2 cutrewrite \rightarrow term<sub>1</sub> = term<sub>2</sub>
```

This tactic acts like replace $term_1$ with $term_2$ (see below).

8.6.3 replace $term_1$ with $term_2$

This tactic applies to any goal. It replaces all free occurrences of $term_1$ in the current goal with $term_2$ and generates the equality $term_2 = term_1$ as a subgoal. This equality is automatically solved if it occurs amongst the assumption, or if its symmetric form occurs. It is equivalent to cut $term_2 = term_1$; [intro Hn; rewrite <- Hn; clear Hn| assumption | | symmetry; try assumption].

Error messages:

1. terms do not have convertible types

Variants:

- 1. replace $term_1$ with $term_2$ by tacticThis acts as replace $term_1$ with $term_2$ but applies tactic to solve the generated subgoal $term_2 = term_1$.
- 2. replace term

Replace term with term' using the first assumption whose type has the form term=term' or term'=term

3. replace -> term

Replace term with term' using the first assumption whose type has the form term=term'

4. replace <- term

Replace term with term' using the first assumption whose type has the form term' = term

```
5. replace term<sub>1</sub> with term<sub>2</sub> clause replace term<sub>1</sub> with term<sub>2</sub> clause by tactic replace term clause replace -> term clause
```

```
replace <- term clause
```

Act as before but the replacements take place in *clause* (see Section 8.7) and not only in the conclusion of the goal.

The *clause* argument must not contain any type of nor value of.

8.6.4 reflexivity

This tactic applies to a goal which has the form t=u. It checks that t and u are convertible and then solves the goal. It is equivalent to apply refl_equal.

Error messages:

- 1. The conclusion is not a substitutive equation
- 2. Impossible to unify ... with

8.6.5 symmetry

This tactic applies to a goal which has the form t=u and changes it into u=t.

```
Variant: symmetry in ident
```

If the statement of the hypothesis *ident* has the form t=u, the tactic changes it to u=t.

8.6.6 transitivity term

This tactic applies to a goal which has the form t=u and transforms it into the two subgoals t=term and term=u.

8.6.7 subst *ident*

This tactic applies to a goal which has *ident* in its context and (at least) one hypothesis, say H, of type ident=t or t=ident. Then it replaces ident by t everywhere in the goal (in the hypotheses and in the conclusion) and clears ident and H from the context.

Remark: When several hypotheses have the form *ident*=t or t=*ident*, the first one is used.

Variants:

```
1. subst ident_1 \dots ident_n
Is equivalent to subst ident_1; \dots; subst ident_n.
```

2. subst

Applies subst repeatedly to all identifiers from the context for which an equality exists.

8.6.8 stepl *term*

This tactic is for chaining rewriting steps. It assumes a goal of the form "R $term_1$ $term_2$ " where R is a binary relation and relies on a database of lemmas of the form forall x y z, R x y -> eq x z -> R z y where eq is typically a setoid equality. The application of step1 term then replaces the goal by "R term $term_2$ " and adds a new goal stating "eq term $term_1$ ".

Lemmas are added to the database using the command

```
Declare Left Step term.
```

The tactic is especially useful for parametric setoids which are not accepted as regular setoids for rewrite and setoid_replace (see Chapter 26).

Variants:

- 1. step1 *term* by *tactic*This applies step1 *term* then applies *tactic* to the second goal.
- 2. stepr *term* stepr *term* by *tactic*

This behaves as step1 but on the right-hand-side of the binary relation. Lemmas are expected to be of the form "forall x y z, R x y \rightarrow eq y z \rightarrow R x z" and are registered using the command

Declare Right Step term.

8.6.9 change term

This tactic applies to any goal. It implements the rule "Conv" given in Section 4.3. change U replaces the current goal T with U providing that U is well-formed and that T and U are convertible.

Error messages:

1. Not convertible

Variants:

1. change $term_1$ with $term_2$

This replaces the occurrences of $term_1$ by $term_2$ in the current goal. The terms $term_1$ and $term_2$ must be convertible.

2. change $term_1$ at num_1 ... num_i with $term_2$

This replaces the occurrences numbered $num_1 \dots num_i$ of $term_1$ by $term_2$ in the current goal. The terms $term_1$ and $term_2$ must be convertible.

Error message: Too few occurrences

- 3. change term in ident
- 4. change $term_1$ with $term_2$ in ident
- 5. change $term_1$ at num_1 ... num_i with $term_2$ in ident

This applies the change tactic not to the goal but to the hypothesis ident.

See also: 8.7

8.7 Performing computations

This set of tactics implements different specialized usages of the tactic change.

All conversion tactics (including change) can be parameterized by the parts of the goal where the conversion can occur. This is done using *goal clauses* which consists in a list of hypotheses and, optionally, of a reference to the conclusion of the goal. For defined hypothesis it is possible to specify if the conversion should occur on the type part, the body part or both (default).

Goal clauses are written after a conversion tactic (tactics set 8.3.7, rewrite 8.6.1, replace 8.6.3 and autorewrite 8.8.4 also use goal clauses) and are introduced by the keyword in. If no goal clause is provided, the default is to perform the conversion only in the conclusion.

The syntax and description of the various goal clauses is the following:

```
in ident_1 ... ident_n |- only in hypotheses ident_1 ... ident_n in ident_1 ... ident_n |- * in hypotheses ident_1 ... ident_n and in the conclusion in * |- in every hypothesis in * (equivalent to in * |- *) everywhere in (type of ident_1) (value of ident_2) ... |- in type part of ident_1, in the value part of ident_2, etc.
```

For backward compatibility, the notation $in ident_1...ident_n$ performs the conversion in hypotheses $ident_1...ident_n$.

```
8.7.1 cbv flag_1 ... flag_n, lazy flag_1 ... flag_n and compute
```

These parameterized reduction tactics apply to any goal and perform the normalization of the goal according to the specified flags. In correspondence with the kinds of reduction considered in CoQ namely β (reduction of functional application), δ (unfolding of transparent constants, see 6.11.2), ι (reduction of pattern-matching over a constructed term, and unfolding of fix and cofix expressions) and ζ (contraction of local definitions), the flag are either beta, delta, iota or zeta. The delta flag itself can be refined into delta $[qualid_1...qualid_k]$ or delta $-[qualid_1...qualid_k]$, restricting in the first case the constants to unfold to the constants listed, and restricting in the second case the constant to unfold to all but the ones explicitly mentioned. Notice that the delta flag does not apply to variables bound by a let-in construction inside the term itself (use here the zeta flag). In any cases, opaque constants are not unfolded (see Section 6.11.1).

The goal may be normalized with two strategies: lazy (lazy tactic), or call-by-value (cbv tactic). The lazy strategy is a call-by-need strategy, with sharing of reductions: the arguments of a function call are partially evaluated only when necessary, and if an argument is used several times then it is computed only once. This reduction is efficient for reducing expressions with dead code. For instance, the proofs of a proposition exists x. P(x) reduce to a pair of a witness t, and a proof that t satisfies the predicate P. Most of the time, t may be computed without computing the proof of P(t), thanks to the lazy strategy.

The call-by-value strategy is the one used in ML languages: the arguments of a function call are evaluated first, using a weak reduction (no reduction under the λ -abstractions). Despite the lazy strategy always performs fewer reductions than the call-by-value strategy, the latter is generally more efficient for evaluating purely computational expressions (i.e. with few dead code).

Variants:

1. compute cbv

These are synonyms for cbv beta delta iota zeta.

2. lazy

This is a synonym for lazy beta delta iota zeta.

3. compute $[qualid_1...qualid_k]$ cbv $[qualid_1...qualid_k]$

These are synonyms of cbv beta delta $[qualid_1...qualid_k]$ iota zeta.

4. compute $-[qualid_1...qualid_k]$ cbv $-[qualid_1...qualid_k]$

These are synonyms of cbv beta delta $-[qualid_1...qualid_k]$ iota zeta.

5. lazy $[qualid_1...qualid_k]$ lazy $-[qualid_1...qualid_k]$

These are respectively synonyms of lazy beta delta $[qualid_1...qualid_k]$ iota zeta and lazy beta delta $-[qualid_1...qualid_k]$ iota zeta.

6. vm_compute

This tactic evaluates the goal using the optimized call-by-value evaluation bytecode-based virtual machine. This algorithm is dramatically more efficient than the algorithm used for the cbv tactic, but it cannot be fine-tuned. It is specially interesting for full evaluation of algebraic objects. This includes the case of reflexion-based tactics.

8.7.2 red

This tactic applies to a goal which has the form forall (x:T1)...(xk:Tk), c t1 ... tn where c is a constant. If c is transparent then it replaces c with its definition (say t) and then reduces (t t1 ... tn) according to $\beta\iota\zeta$ -reduction rules.

Error messages:

1. Not reducible

8.7.3 hnf

This tactic applies to any goal. It replaces the current goal with its head normal form according to the $\beta\delta\iota\zeta$ -reduction rules, i.e. it reduces the head of the goal until it becomes a product or an irreducible term.

Example: The term forall n:nat, (plus (S n) (S n)) is not reduced by hnf.

Remark: The δ rule only applies to transparent constants (see Section 6.11.1 on transparency and opacity).

8.7.4 simpl

This tactic applies to any goal. The tactic simpl first applies $\beta\iota$ -reduction rule. Then it expands transparent constants and tries to reduce T' according, once more, to $\beta\iota$ rules. But when the ι rule is not applicable then possible δ -reductions are not applied. For instance trying to use simpl on (plus n 0) =n changes nothing. Notice that only transparent constants whose name can be reused as such in the recursive calls are possibly unfolded. For instance a constant defined by plus' := plus is possibly unfolded and reused in the recursive calls, but a constant such as succ := plus (S 0) is never unfolded.

The behavior of simpl can be tuned using the Arguments vernacular command as follows:

• A constant can be marked to be never unfolded by simpl:

```
Coq < Arguments minus x y : simpl never
```

After that command an expression like (minus $(S \times Y)$ y) is left untouched by the simpl tactic.

• A constant can be marked to be unfolded only if applied to enough arguments. The number of arguments required can be specified using the / symbol in the arguments list of the Arguments vernacular command.

```
Coq < Definition fcomp A B C f (g : A \rightarrow B) (x : A) : C := f (g x). Coq < Notation "f \o g" := (fcomp f g) (at level 50). Coq < Arguments fcomp {A B C} f g x /.
```

After that command the expression $(f \setminus g)$ is left untouched by simpl while $((f \setminus g))$ is reduced to (f (g t)). The same mechanism can be used to make a constant volatile, i.e. always unfolded by simpl.

```
Coq < Definition volatile := fun x : nat => x.
Coq < Arguments volatile / x.
```

• A constant can be marked to be unfolded only if an entire set of arguments evaluates to a constructor. The ! symbol can be used to mark such arguments.

```
Coq < Arguments minus !x !y.
```

After that command, the expression (minus (S x) y) is left untouched by simpl, while (minus (S x) (S y)) is reduced to (minus x y).

• A special heuristic to determine if a constant has to be unfolded can be activated with the following command:

```
Coq < Arguments minus x y : simpl nomatch</pre>
```

The heuristic avoids to perform a simplification step that would expose a match construct in head position. For example the expression (minus (S (S x)) (S y)) is simplified to (minus (S x) y) even if an extra simplification is possible.

Variants:

1. simpl term

This applies simpl only to the occurrences of term in the current goal.

2. simpl term at num_1 ... num_i

This applies simpl only to the num_1, \ldots, num_i occurrences of term in the current goal.

Error message: Too few occurrences

3. simpl ident

This applies simpl only to the applicative subterms whose head occurrence is *ident*.

4. simpl *ident* at num_1 ... num_i

This applies $simpl only to the <math>num_1, ..., num_i$ applicative subterms whose head occurrence is *ident*.

8.7.5 unfold qualid

This tactic applies to any goal. The argument *qualid* must denote a defined transparent constant or local definition (see Sections 1.3.2 and 6.11.2). The tactic unfold applies the δ rule to each occurrence of the constant to which *qualid* refers in the current goal and then replaces it with its $\beta \iota$ -normal form.

Error messages:

1. qualid does not denote an evaluable constant

Variants:

1. unfold $qualid_1$, ..., $qualid_n$

Replaces *simultaneously qualid*₁, ..., *qualid*_n with their definitions and replaces the current goal with its $\beta\iota$ normal form.

2. unfold $qualid_1$ at num_1^1 , ..., num_i^1 , ..., $qualid_n$ at num_1^n ... num_j^n The lists num_1^1 , ..., num_i^1 and num_1^n , ..., num_j^n specify the occurrences of $qualid_1$, ..., $qualid_n$ to be unfolded. Occurrences are located from left to right.

Error message: bad occurrence number of $qualid_i$

Error message: $qualid_i$ does not occur

3. unfold string

If *string* denotes the discriminating symbol of a notation (e.g. "+") or an expression defining a notation (e.g. "_ + _"), and this notation refers to an unfoldable constant, then the tactic unfolds it.

4. unfold *string*%*key*

This is variant of unfold string where string gets its interpretation from the scope bound to the delimiting key key instead of its default interpretation (see Section 12.2.2).

5. unfold $qualid_or_string_1$ at num_1^1 , ..., num_i^1 , ..., $qualid_or_string_n$ at num_1^n ... num_i^n

This is the most general form, where *qualid_or_string* is either a *qualid* or a *string* referring to a notation.

8.7.6 fold **term**

This tactic applies to any goal. The term term is reduced using the red tactic. Every occurrence of the resulting term in the goal is then replaced by term.

Variants:

```
1. fold term_1 \dots term_n
Equivalent to fold term_1; \dots; fold term_n.
```

8.7.7 pattern term

This command applies to any goal. The argument *term* must be a free subterm of the current goal. The command pattern performs β -expansion (the inverse of β -reduction) of the current goal (say T) by

- 1. replacing all occurrences of term in T with a fresh variable
- 2. abstracting this variable
- 3. applying the abstracted goal to term

For instance, if the current goal T is expressible has $\phi(t)$ where the notation captures all the instances of t in $\phi(t)$, then pattern t transforms it into (fun $x:A => \phi(x)$) t. This command can be used, for instance, when the tactic apply fails on matching.

Variants:

- 1. pattern term at num_1 ... num_n Only the occurrences num_1 ... num_n of term are considered for β -expansion. Occurrences are located from left to right.
- pattern term at num₁ ... num_n
 All occurrences except the occurrences of indexes num₁ ... num_n of term are considered for β-expansion. Occurrences are located from left to right.
- 3. pattern $term_1$, ..., $term_m$ Starting from a goal $\phi(t_1 \ldots t_m)$, the tactic pattern t_1 , ..., t_m generates the equivalent goal (fun $(\mathbf{x}_1 : A_1)$... $(\mathbf{x}_m : A_m) => \phi(\mathbf{x}_1 \ldots \mathbf{x}_m)$) $t_1 \ldots t_m$. If t_i occurs in one of the generated types A_j these occurrences will also be considered and possibly abstracted.
- 4. pattern $term_1$ at num_1^1 ... $num_{n_1}^1$, ..., $term_m$ at num_1^m ... $num_{n_m}^m$ This behaves as above but processing only the occurrences num_1^1 , ..., num_i^1 of $term_1$, ..., num_1^m , ..., num_i^m of $term_m$ starting from $term_m$.
- 5. pattern $term_1$ [at [-] num_1^1 ... $num_{n_1}^1$], ..., $term_m$ [at [-] num_1^m ... $num_{n_m}^m$] This is the most general syntax that combines the different variants.

8.8 Automation 217

8.7.8 Conversion tactics applied to hypotheses

```
conv\_tactic in ident_1 \dots ident_n
```

Applies the conversion tactic $conv_tactic$ to the hypotheses $ident_1, \ldots, ident_n$. The tactic $conv_tactic$ is any of the conversion tactics listed in this section.

If $ident_i$ is a local definition, then $ident_i$ can be replaced by (Type of $ident_i$) to address not the body but the type of the local definition. Example: unfold not in (Type of H1) (Type of H3).

Error messages:

1. No such hypothesis: ident.

8.8 Automation

8.8.1 auto

This tactic implements a Prolog-like resolution procedure to solve the current goal. It first tries to solve the goal using the assumption tactic, then it reduces the goal to an atomic one using intros and introducing the newly generated hypotheses as hints. Then it looks at the list of tactics associated to the head symbol of the goal and tries to apply one of them (starting from the tactics with lower cost). This process is recursively applied to the generated subgoals.

By default, auto only uses the hypotheses of the current goal and the hints of the database named core.

Variants:

1. auto num

Forces the search depth to be num. The maximal search depth is 5 by default.

2. auto with $ident_1 \ldots ident_n$

Uses the hint databases $ident_1 \dots ident_n$ in addition to the database core. See Section 8.9.1 for the list of pre-defined databases and the way to create or extend a database. This option can be combined with the previous one.

3. auto with *

Uses all existing hint databases, minus the special database v62. See Section 8.9.1

4. auto using $lemma_1$, ..., $lemma_n$

Uses $lemma_1, \ldots, lemma_n$ in addition to hints (can be combined with the with *ident* option). If $lemma_i$ is an inductive type, it is the collection of its constructors which is added as hints.

5. auto using $lemma_1$, ..., $lemma_n$ with $ident_1$... $ident_n$

This combines the effects of the using and with options.

6. trivial

This tactic is a restriction of auto that is not recursive and tries only hints which cost 0. Typically it solves trivial equalities like X=X.

7. trivial with $ident_1$... $ident_n$

```
8. trivial with *
```

Remark: auto either solves completely the goal or else leaves it intact. auto and trivial never fail.

See also: Section 8.9.1

8.8.2 eauto

This tactic generalizes auto. In contrast with the latter, eauto uses unification of the goal against the hints rather than pattern-matching (in other words, it uses eapply instead of apply). As a consequence, eauto can solve such a goal:

Note that ex_intro should be declared as an hint.

See also: Section 8.9.1

8.8.3 autounfold with $ident_1 \dots ident_n$

This tactic unfolds constants that were declared through a Hint Unfold in the given databases.

Variants:

- 1. autounfold with $ident_1$... $ident_n$ in clause Perform the unfolding in the given clause.
- 2. autounfold with *

Uses the unfold hints declared in all the hint databases.

8.8.4 autorewrite with $ident_1 \dots ident_n$.

This tactic 4 carries out rewritings according the rewriting rule bases $ident_1 \dots ident_n$.

Each rewriting rule of a base $ident_i$ is applied to the main subgoal until it fails. Once all the rules have been processed, if the main subgoal has progressed (e.g., if it is distinct from the initial main goal)

⁴The behavior of this tactic has much changed compared to the versions available in the previous distributions (V6). This may cause significant changes in your theories to obtain the same result. As a drawback of the re-engineering of the code, this tactic has also been completely revised to get a very compact and readable version.

then the rules of this base are processed again. If the main subgoal has not progressed then the next base is processed. For the bases, the behavior is exactly similar to the processing of the rewriting rules.

The rewriting rule bases are built with the Hint Rewrite vernacular command.

Warning: This tactic may loop if you build non terminating rewriting systems.

Variant:

- 1. autorewrite with $ident_1 \dots ident_n$ using tactic Performs, in the same way, all the rewritings of the bases $ident_1 \dots ident_n$ applying tactic to the main subgoal after each rewriting step.
- 2. autorewrite with $ident_1 \dots ident_n$ in qualid Performs all the rewritings in hypothesis qualid.
- 3. autorewrite with $ident_1$... $ident_n$ in qualid using tacticPerforms all the rewritings in hypothesis qualid applying tactic to the main subgoal after each rewriting step.
- 4. autorewrite with $ident_1$... $ident_n$ in clause Performs all the rewritings in the clause clause.

The *clause* argument must not contain any type of nor value of.

See also: Section 8.9.4 for feeding the database of lemmas used by autorewrite.

See also: Section 10.2 for examples showing the use of this tactic.

8.9 Controlling automation

8.9.1 The hints databases for auto and eauto

The hints for auto and eauto are stored in databases. Each database maps head symbols to a list of hints. One can use the command Print Hint ident to display the hints associated to the head symbol ident (see 8.9.3). Each hint has a cost that is an nonnegative integer, and an optional pattern. The hints with lower cost are tried first. A hint is tried by auto when the conclusion of the current goal matches its pattern or when it has no pattern.

Creating Hint databases

One can optionally declare a hint database using the command Create HintDb. If a hint is added to an unknown database, it will be automatically created.

```
Create HintDb ident [discriminated]
```

This command creates a new database named *ident*. The database is implemented by a Discrimination Tree (DT) that serves as an index of all the lemmas. The DT can use transparency information to decide if a constant should be indexed or not (c.f. 8.9.1), making the retrieval more efficient. The legacy implementation (the default one for new databases) uses the DT only on goals without existentials (i.e., auto goals), for non-Immediate hints and do not make use of transparency hints, putting more work on the unification that is run after retrieval (it keeps a list of the lemmas in case the DT is not used). The new implementation enabled by the discriminated option makes use of DTs in all cases and takes

transparency information into account. However, the order in which hints are retrieved from the DT may differ from the order in which they were inserted, making this implementation observationally different from the legacy one.

Variants:

1. Local Hint $hint_definition : ident_1 ... ident_n$

This is used to declare a hint database that must not be exported to the other modules that require and import the current module. Inside a section, the option Local is useless since hints do not survive anyway to the closure of sections.

The general command to add a hint to some database $ident_1, \ldots, ident_n$ is:

```
Hint hint_definition : ident_1 ... ident_n
```

where hint_definition is one of the following expressions:

• Resolve term

This command adds <code>apply term</code> to the hint list with the head symbol of the type of term. The cost of that hint is the number of subgoals generated by <code>apply term</code>.

In case the inferred type of *term* does not start with a product the tactic added in the hint list is exact *term*. In case this type can be reduced to a type starting with a product, the tactic apply *term* is also stored in the hints list.

If the inferred type of *term* contains a dependent quantification on a predicate, it is added to the hint list of eapply instead of the hint list of apply. In this case, a warning is printed since the hint is only used by the tactic eauto (see 8.8.2). A typical example of a hint that is used only by eauto is a transitivity lemma.

Error messages:

1. Bound head variable

The head symbol of the type of *term* is a bound variable such that this tactic cannot be associated to a constant.

2. term cannot be used as a hint

The type of *term* contains products over variables which do not appear in the conclusion. A typical example is a transitivity axiom. In that case the apply tactic fails, and thus is useless.

Variants:

1. Resolve $term_1 \dots term_m$ Adds each Resolve $term_i$.

• Immediate term

This command adds apply *term*; trivial to the hint list associated with the head symbol of the type of *ident* in the given database. This tactic will fail if all the subgoals generated by apply *term* are not solved immediately by the trivial tactic (which only tries tactics with cost 0).

This command is useful for theorems such as the symmetry of equality or $n+1=m+1 \rightarrow n=m$ that we may like to introduce with a limited use in order to avoid useless proof-search.

The cost of this tactic (which never generates subgoals) is always 1, so that it is not used by trivial itself.

Error messages:

- 1. Bound head variable
- 2. term cannot be used as a hint

Variants:

- 1. Immediate $term_1 \dots term_m$ Adds each Immediate $term_i$.
- Constructors ident

If *ident* is an inductive type, this command adds all its constructors as hints of type Resolve. Then, when the conclusion of current goal has the form (*ident* ...), auto will try to apply each constructor.

Error messages:

- 1. ident is not an inductive type
- 2. ident not declared

Variants:

- 1. Constructors $ident_1 \dots ident_m$ Adds each Constructors $ident_i$.
- Unfold qualid

This adds the tactic unfold qualid to the hint list that will only be used when the head constant of the goal is ident. Its cost is 4.

Variants:

- Unfold ident₁ ... ident_m
 Adds each Unfold ident_i.
- Transparent, Opaque qualid

This adds a transparency hint to the database, making *qualid* a transparent or opaque constant during resolution. This information is used during unification of the goal with any lemma in the database and inside the discrimination network to relax or constrain it in the case of discriminated databases.

Variants:

1. Transparent, Opaque $ident_1 \dots ident_m$ Declares each $ident_i$ as a transparent or opaque constant.

• Extern num [pattern] => tactic

This hint type is to extend auto with tactics other than apply and unfold. For that, we must specify a cost, an optional pattern and a tactic to execute. Here is an example:

```
Hint Extern 4 (\sim(_ = _)) => discriminate.
```

Now, when the head of the goal is a disequality, auto will try discriminate if it does not manage to solve the goal with hints with a cost less than 4.

One can even use some sub-patterns of the pattern in the tactic script. A sub-pattern is a question mark followed by an ident, like ?X1 or ?X2. Here is an example:

```
Coq < Require Import List.
Cog < Hint Extern 5 ({?X1 = ?X2} + {?X1 <> ?X2}) =>
Coq < generalize X1, X2; decide equality : eqdec.
Coq < Goal
Coq < forall a b:list (nat * nat), \{a = b\} + \{a \iff b\}.
1 subgoal
 _____
  forall a b : list (nat * nat), {a = b} + {a <> b}
Coq < info_auto with eqdec.
(* info auto : *)
intro.
intro.
 (*external*) generalize X1, X2; decide equality.
  (*external*) generalize X1, X2; decide equality.
   (*external*) generalize X1, X2; decide equality.
   (*external*) generalize X1, X2; decide equality.
No more subgoals.
```

Remark: One can use an Extern hint with no pattern to do pattern-matching on hypotheses using match goal with inside the tactic.

Variants:

Hint hint_definition

No database name is given: the hint is registered in the core database.

2. Hint Local $hint_definition : ident_1 ... ident_n$

This is used to declare hints that must not be exported to the other modules that require and import the current module. Inside a section, the option Local is useless since hints do not survive anyway to the closure of sections.

3. Hint Local hint_definition

Idem for the core database.

8.9.2 Hint databases defined in the CoQ standard library

Several hint databases are defined in the COQ standard library. The actual content of a database is the collection of the hints declared to belong to this database in each of the various modules currently loaded. Especially, requiring new modules potentially extend a database. At COQ startup, only the core and v62 databases are non empty and can be used.

- core This special database is automatically used by auto, except when pseudo-database nocore is given to auto. The core database contains only basic lemmas about negation, conjunction, and so on from. Most of the hints in this database come from the Init and Logic directories.
- arith This database contains all lemmas about Peano's arithmetic proved in the directories Init and Arith
- zarith contains lemmas about binary signed integers from the directories theories/ZArith. When required, the module Omega also extends the database zarith with a high-cost hint that calls omega on equations and inequalities in nat or Z.

bool contains lemmas about booleans, mostly from directory theories/Bool.

datatypes is for lemmas about lists, streams and so on that are mainly proved in the Lists subdirectory.

sets contains lemmas about sets and relations from the directories Sets and Relations.

typeclass_instances contains all the type class instances declared in the environment, including those used for setoid_rewrite, from the Classes directory.

There is also a special database called v62. It collects all hints that were declared in the versions of CoQ prior to version 6.2.4 when the databases core, arith, and so on were introduced. The purpose of the database v62 is to ensure compatibility with further versions of CoQ for developments done in versions prior to 6.2.4 (auto being replaced by auto with v62). The database v62 is intended not to be extended (!). It is not included in the hint databases list used in the auto with * tactic.

Furthermore, you are advised not to put your own hints in the core database, but use one or several databases specific to your development.

8.9.3 Print Hint

This command displays all hints that apply to the current goal. It fails if no proof is being edited, while the two variants can be used at every moment.

Variants:

1. Print Hint ident

This command displays only tactics associated with *ident* in the hints list. This is independent of the goal being edited, so this command will not fail if no goal is being edited.

2. Print Hint *

This command displays all declared hints.

3. Print HintDb ident

This command displays all hints from database ident.

8.9.4 Hint Rewrite $term_1 \dots term_n$: ident

This vernacular command adds the terms $term_1 \dots term_n$ (their types must be equalities) in the rewriting base *ident* with the default orientation (left to right). Notice that the rewriting bases are distinct from the auto hint bases and that auto does not take them into account.

This command is synchronous with the section mechanism (see 2.4): when closing a section, all aliases created by Hint Rewrite in that section are lost. Conversely, when loading a module, all Hint Rewrite declarations at the global level of that module are loaded.

Variants:

- 1. Hint Rewrite \rightarrow term₁ ...term_n : ident This is strictly equivalent to the command above (we only make explicit the orientation which otherwise defaults to \rightarrow).
- 2. Hint Rewrite $\leftarrow term_1 \dots term_n : ident$ Adds the rewriting rules $term_1 \dots term_n$ with a right-to-left orientation in the base ident.
- 3. Hint Rewrite $term_1 \dots term_n$ using tactic: identWhen the rewriting rules $term_1 \dots term_n$ in ident will be used, the tactic tactic will be applied to the generated subgoals, the main subgoal excluded.
- 4. Print Rewrite HintDb ident

This command displays all rewrite hints contained in *ident*.

8.9.5 Hints and sections

Hints provided by the Hint commands are erased when closing a section. Conversely, all hints of a module A that are not defined inside a section (and not defined with option Local) become available when the module A is imported (using e.g. Require Import A.).

8.9.6 Setting implicit automation tactics

Proof with tactic.

This command may be used to start a proof. It defines a default tactic to be used each time a tactic command $tactic_1$ is ended by "...". In this case the tactic command typed by the user is equivalent to $tactic_1$; tactic.

See also: Proof. in Section 7.1.4.

Variants:

- 1. Proof with tactic using $ident_1$... $ident_n$ Combines in a single line Proof with and Proof using, see 7.1.5
- 2. Proof using $ident_1$... $ident_n$ with tactic Combines in a single line Proof with and Proof using, see 7.1.5

Declare Implicit Tactic tactic.

This command declares a tactic to be used to solve implicit arguments that COQ does not know how to solve by unification. It is used every time the term argument of a tactic has one of its holes not fully resolved.

Here is an example:

```
Coq < Parameter quo : nat -> forall n:nat, n<>0 -> nat.
quo is assumed
Coq < Notation "x // y" := (quo x y \_) (at level 40).
Coa <
Coq < Declare Implicit Tactic assumption.
Coq < Goal forall n m, m<>0 \rightarrow { q:nat & { r | q * m + r = n } }.
1 subgoal
 ______
  forall n m : nat, m <> 0 -> \{q : nat \& \{r : nat | q * m + r = n\}\}
Coq < intros.
1 subgoal
 n : nat
 m : nat
 H : m <> 0
 {q : nat \& {r : nat | q * m + r = n}}
Coq < exists (n // m).
1 subgoal
 n : nat
 m : nat
 H : m <> 0
 {r : nat | n // m * m + r = n}
```

The tactic exists (n // m) did not fail. The hole was solved by assumption so that it behaved as exists (quo n m H).

8.10 Decision procedures

8.10.1 tauto

This tactic implements a decision procedure for intuitionistic propositional calculus based on the contraction-free sequent calculi LJT* of Roy Dyckhoff [54]. Note that tauto succeeds on any instance of an intuitionistic tautological proposition. tauto unfolds negations and logical equivalence but does not unfold any other definition.

The following goal can be proved by tauto whereas auto would fail:

```
Coq < Goal forall (x:nat) (P:nat \rightarrow Prop), x = 0 \/ P x \rightarrow x <> 0 \rightarrow P x. 1 subgoal
```

Moreover, if it has nothing else to do, tauto performs introductions. Therefore, the use of intros in the previous proof is unnecessary. tauto can for instance prove the following:

Remark: In contrast, tauto cannot solve the following goal

```
Coq < Goal forall (A:Prop) (P:nat \rightarrow Prop),
Coq < A \/ (forall x:nat, \sim A \rightarrow P x) \rightarrow forall x:nat, \sim (A \/ P x).
```

because (forall x:nat, \sim A -> P x) cannot be treated as atomic and an instantiation of x is necessary.

8.10.2 intuition tactic

The tactic intuition takes advantage of the search-tree built by the decision procedure involved in the tactic tauto. It uses this information to generate a set of subgoals equivalent to the original one (but simpler than it) and applies the tactic tactic to them [105]. If this tactic fails on some goals then intuition fails. In fact, tauto is simply intuition fail.

For instance, the tactic intuition auto applied to the goal

```
(forall (x:nat), P x)/B \rightarrow (forall (y:nat), P y)/P O \/B/\ P O
```

internally replaces it by the equivalent one:

```
(forall (x:nat), P \times), B \mid -P \cap
```

and then uses auto which completes the proof.

Originally due to César Muñoz, these tactics (tauto and intuition) have been completely reengineered by David Delahaye using mainly the tactic language (see Chapter 9). The code is now much shorter and a significant increase in performance has been noticed. The general behavior with respect to dependent types, unfolding and introductions has slightly changed to get clearer semantics. This may lead to some incompatibilities.

Variants:

1. intuition
 Is equivalent to intuition auto with *.

8.10.3 rtauto

The rtauto tactic solves propositional tautologies similarly to what tauto does. The main difference is that the proof term is built using a reflection scheme applied to a sequent calculus proof of the goal. The search procedure is also implemented using a different technique.

Users should be aware that this difference may result in faster proof-search but slower proof-checking, and rtauto might not solve goals that tauto would be able to solve (e.g. goals involving universal quantifiers).

8.10.4 firstorder

The tactic firstorder is an *experimental* extension of tauto to first-order reasoning, written by Pierre Corbineau. It is not restricted to usual logical connectives but instead may reason about any first-order class inductive definition.

Variants:

1. firstorder tactic

Tries to solve the goal with *tactic* when no logical rule may apply.

2. firstorder with $ident_1$... $ident_n$

Adds lemmas $ident_1 \dots ident_n$ to the proof-search environment.

3. firstorder using $qualid_1$, ... , $qualid_n$

Adds lemmas in auto hints bases $qualid_1 \dots qualid_n$ to the proof-search environment. If $qualid_i$ refers to an inductive type, it is the collection of its constructors which is added as hints.

4. firstorder using $qualid_1$, ... , $qualid_n$ with $ident_1$... $ident_n$

This combines the effects of the using and with options.

Proof-search is bounded by a depth parameter which can be set by typing the Set Firstorder Depth n vernacular command.

8.10.5 congruence

The tactic congruence, by Pierre Corbineau, implements the standard Nelson and Oppen congruence closure algorithm, which is a decision procedure for ground equalities with uninterpreted symbols. It also include the constructor theory (see 8.5.7 and 8.5.6). If the goal is a non-quantified equality, congruence tries to prove it with non-quantified equalities in the context. Otherwise it tries to infer a discriminable equality from those in the context. Alternatively, congruence tries to prove that a hypothesis is equal to the goal or to the negation of another hypothesis.

congruence is also able to take advantage of hypotheses stating quantified equalities, you have to provide a bound for the number of extra equalities generated that way. Please note that one of the members of the equality must contain all the quantified variables in order for congruence to match against it.

```
Coq < Theorem T:
Coq < a=(f a) -> (g b (f a))=(f (f a)) -> (g a b)=(f (g b a)) -> (g a b)=a.
1 subgoal
  _____
  a = f \ a \rightarrow g \ b \ (f \ a) = f \ (f \ a) \rightarrow g \ a \ b = f \ (g \ b \ a) \rightarrow g \ a \ b = a
Coq < intros.
1 subgoal
 H : a = f a
 H0 : g b (f a) = f (f a)
 H1: gab = f(gba)
  qab = a
Coq < congruence.
No more subgoals.
Coq < Theorem inj : f = pair a -> Some (f c) = Some (f d) -> c=d.
1 subgoal
  ______
  f = pair \ a \rightarrow Some \ (f \ c) = Some \ (f \ d) \rightarrow c = d
Coq < intros.
1 subgoal
 H : f = pair a
 H0: Some (f c) = Some (f d)
  c = d
Coq < congruence.
No more subgoals.
```

Variants:

1. congruence n

Tries to add at most n instances of hypotheses stating quantified equalities to the problem in order to solve it. A bigger value of n does not make success slower, only failure. You might consider adding some lemmas as hypotheses using assert in order for congruence to use them.

Variants:

1. congruence with $term_1$... $term_n$ Adds $term_1$... $term_n$ to the pool of terms used by congruence. This helps in case you have partially applied constructors in your goal.

Error messages:

- 1. I don't know how to handle dependent equality

 The decision procedure managed to find a proof of the goal or of a discriminable equality but this

 proof couldn't be built in CoQ because of dependently-typed functions.
- 2. I couldn't solve goal

 The decision procedure didn't find any way to solve the goal.
- 3. Goal is solvable by congruence but some arguments are missing. Try "congruence with ...", replacing metavariables by arbitrary terms.

The decision procedure could solve the goal with the provision that additional arguments are supplied for some partially applied constructors. Any term of an appropriate type will allow the tactic to successfully solve the goal. Those additional arguments can be given to congruence by filling in the holes in the terms given in the error message, using the with variant described above.

8.11 Things that do not fit other sections

8.12 Everything after this point has yet to be sorted

8.12.1 constr_eq $term_1$ $term_2$

This tactic applies to any goal. It checks whether its arguments are equal modulo alpha conversion and casts.

Error message: Not equal

8.12.2 unify $term_1$ $term_2$

This tactic applies to any goal. It checks whether its arguments are unifiable, potentially instantiating existential variables.

Error message: Not unifiable

Variants:

1. unify $term_1$ $term_2$ with ident

Unification takes the transparency information defined in the hint database *ident* into account (see Section 8.9.1).

8.12.3 is_evar *term*

This tactic applies to any goal. It checks whether its argument is an existential variable. Existential variables are uninstantiated variables generated by e.g. eapply (see Section 8.2.4).

Error message: Not an evar

8.12.4 has_evar term

This tactic applies to any goal. It checks whether its argument has an existential variable as a subterm. Unlike context patterns combined with is_evar, this tactic scans all subterms, including those under binders.

Error message: No evars

8.12.5 is_var *term*

This tactic applies to any goal. It checks whether its argument is a variable or hypothesis in the current goal context or in the opened sections.

Error message: Not a variable or hypothesis

8.13 Equality

8.13.1 f_equal

This tactic applies to a goal of the form f a_1 ... $a_n = f'$ a'_1 ... a'_n . Using f_equal on such a goal leads to subgoals f = f' and $a_1 = a'_1$ and so on up to $a_n = a'_n$. Amongst these subgoals, the simple ones (e.g. provable by reflexivity or congruence) are automatically solved by f_equal.

8.14 Equality and inductive sets

We describe in this section some special purpose tactics dealing with equality and inductive sets or types. These tactics use the equality eq:forall (A:Type), A->A->Prop, simply written with the infix symbol =.

8.14.1 decide equality

This tactic solves a goal of the form forall x y:R, $\{x=y\}+\{\sim x=y\}$, where R is an inductive type such that its constructors do not take proofs or functions as arguments, nor objects in dependent types. It solves goals of the form $\{x=y\}+\{\sim x=y\}$ as well.

8.14.2 compare $term_1$ $term_2$

This tactic compares two given objects $term_1$ and $term_2$ of an inductive datatype. If G is the current goal, it leaves the sub-goals $term_1 = term_2 -> G$ and $\sim term_1 = term_2 -> G$. The type of $term_1$ and $term_2$ must satisfy the same restrictions as in the tactic decide equality.

8.15 Inversion 231

8.14.3 simplify_eq *term*

Let term be the proof of a statement of conclusion $term_1 = term_2$. If $term_1$ and $term_2$ are structurally different (in the sense described for the tactic discriminate), then the tactic simplify_eq behaves as discriminate term, otherwise it behaves as injection term.

Remark: If some quantified hypothesis of the goal is named *ident*, then simplify_eq *ident* first introduces the hypothesis in the local context using intros until *ident*.

Variants:

1. simplify_eq num

This does the same thing as intros until *num* then simplify_eq *ident* where *ident* is the identifier for the last introduced hypothesis.

2. simplify_eq term with bindings_list

This does the same as simplify_eq term but using the given bindings to instantiate parameters or hypotheses of term.

3. esimplify_eq num
 esimplify_eq term [with bindings_list]

This works the same as simplify_eq but if the type of term, or the type of the hypothesis referred to by *num*, has uninstantiated parameters, these parameters are left as existential variables.

4. simplify_eq

If the current goal has form $t_1 <> t_2$, it behaves as intro ident; simplify_eq ident.

8.14.4 dependent rewrite -> *ident*

This tactic applies to any goal. If *ident* has type (existT B a b) = (existT B a' b') in the local context (i.e. each term of the equality has a sigma type $\{a:A \& (B a)\}$) this tactic rewrites a into a' and b into b' in the current goal. This tactic works even if B is also a sigma type. This kind of equalities between dependent pairs may be derived by the injection and inversion tactics.

Variants:

dependent rewrite <- ident
 Analogous to dependent rewrite -> but uses the equality from right to left.

8.15 Inversion

8.15.1 functional inversion *ident*

functional inversion is a tactic which performs inversion on hypothesis *ident* of the form *qualid* $term_1 \dots term_n = term$ or $term = qualid \ term_1 \dots term_n$ where *qualid* must have been defined using Function (see Section 2.3).

Error messages:

1. Hypothesis ident must contain at least one Function

2. Cannot find inversion information for hypothesis *ident* This error may be raised when some inversion lemma failed to be generated by Function.

Variants:

1. functional inversion num

This does the same thing as intros until *num* then functional inversion *ident* where *ident* is the identifier for the last introduced hypothesis.

functional inversion ident qualid functional inversion num qualid

In case the hypothesis *ident* (or *num*) has a type of the form $qualid_1$ $term_1 \dots term_n = qualid_2$ $term_{n+1} \dots term_{n+m}$ where $qualid_1$ and $qualid_2$ are valid candidates to functional inversion, this variant allows to choose which must be inverted.

8.15.2 quote *ident*

This kind of inversion has nothing to do with the tactic inversion above. This tactic does change (*ident* t), where t is a term built in order to ensure the convertibility. In other words, it does inversion of the function *ident*. This function must be a fixpoint on a simple recursive datatype: see 10.3 for the full details.

Error messages:

1. quote: not a simple fixpoint Happens when quote is not able to perform inversion properly.

Variants:

1. quote ident [$ident_1$... $ident_n$] All terms that are built only with $ident_1$... $ident_n$ will be considered by quote as constants rather than variables.

8.16 Classical tactics

In order to ease the proving process, when the Classical module is loaded. A few more tactics are available. Make sure to load the module using the Require Import command.

8.16.1 classical_left, classical_right

The tactics classical_left and classical_right are the analog of the left and right but using classical logic. They can only be used for disjunctions. Use classical_left to prove the left part of the disjunction with the assumption that the negation of right part holds. Use classical_right to prove the right part of the disjunction with the assumption that the negation of left part holds.

8.17 Automatizing 233

8.17 Automatizing

8.17.1 omega

The tactic omega, due to Pierre Crégut, is an automatic decision procedure for Presburger arithmetic. It solves quantifier-free formulas built with \sim , \setminus /, \rightarrow on top of equalities, inequalities and disequalities on both the type nat of natural numbers and Z of binary integers. This tactic must be loaded by the command Require Import Omega. See the additional documentation about omega (see Chapter 20).

```
8.17.2 ring and ring_simplify term_1 ... term_n
```

The ring tactic solves equations upon polynomial expressions of a ring (or semi-ring) structure. It proceeds by normalizing both hand sides of the equation (w.r.t. associativity, commutativity and distributivity, constant propagation) and comparing syntactically the results.

ring_simplify applies the normalization procedure described above to the terms given. The tactic then replaces all occurrences of the terms given in the conclusion of the goal by their normal forms. If no term is given, then the conclusion should be an equation and both hand sides are normalized.

See Chapter 24 for more information on the tactic and how to declare new ring structures.

```
8.17.3 field, field_simplify term_1... term_n and field_simplify_eq
```

The field tactic is built on the same ideas as ring: this is a reflexive tactic that solves or simplifies equations in a field structure. The main idea is to reduce a field expression (which is an extension of ring expressions with the inverse and division operations) to a fraction made of two polynomial expressions.

Tactic field is used to solve subgoals, whereas field_simplify $term_1...term_n$ replaces the provided terms by their reduced fraction. field_simplify_eq applies when the conclusion is an equation: it simplifies both hand sides and multiplies so as to cancel denominators. So it produces an equation without division nor inverse.

All of these 3 tactics may generate a subgoal in order to prove that denominators are different from zero.

See Chapter 24 for more information on the tactic and how to declare new field structures.

Example:

See also: file plugins/setoid_ring/RealField.v for an example of instantiation, theory theories/Reals for many examples of use of field.

8.17.4 fourier

This tactic written by Loïc Pottier solves linear inequalities on real numbers using Fourier's method [63]. This tactic must be loaded by Require Import Fourier.

Example:

```
Coq < Require Import Reals.

Coq < Require Import Fourier.

Coq < Goal forall x y:R, (x < y)%R -> (y + 1 >= x - 1)%R.

Coq < intros; fourier.

No more subgoals.
```

8.18 Simple tactic macros

A simple example has more value than a long explanation:

```
Coq < Ltac Solve := simpl; intros; auto.
Solve is defined

Coq < Ltac ElimBoolRewrite b H1 H2 :=
Coq < elim b; [ intros; rewrite H1; eauto | intros; rewrite H2; eauto ].
ElimBoolRewrite is defined</pre>
```

The tactics macros are synchronous with the CoQ section mechanism: a tactic definition is deleted from the current environment when you close the section (see also 2.4) where it was defined. If you want that a tactic macro defined in a module is usable in the modules that require it, you should put it outside of any section.

Chapter 9 gives examples of more complex user-defined tactics.

Chapter 9

The tactic language

This chapter gives a compact documentation of Ltac, the tactic language available in CoQ. We start by giving the syntax, and next, we present the informal semantics. If you want to know more regarding this language and especially about its foundations, you can refer to [41]. Chapter 10 is devoted to giving examples of use of this language on small but also with non-trivial problems.

9.1 Syntax

The syntax of the tactic language is given Figures 9.1 and 9.2. See Chapter 1 for a description of the BNF metasyntax used in these grammar rules. Various already defined entries will be used in this chapter: entries natural, integer, ident, qualid, term, cpattern and $atomic_tactic$ represent respectively the natural and integer numbers, the authorized identificators and qualified names, COQ's terms and patterns and all the atomic tactics described in Chapter 8. The syntax of cpattern is the same as that of terms, but it is extended with pattern matching metavariables. In cpattern, a pattern-matching metavariable is represented with the syntax ?id where id is an ident. The notation $_$ can also be used to denote metavariable whose instance is irrelevant. In the notation ?id, the identifier allows us to keep instantiations and to make constraints whereas $_$ shows that we are not interested in what will be matched. On the right hand side of pattern-matching clauses, the named metavariable are used without the question mark prefix. There is also a special notation for second-order pattern-matching problems: in an applicative pattern of the form @?id id_1 ...id_n, the variable id matches any complex expression with (possible) dependencies in the variables id_1 ...id_n and returns a functional term of the form fun id_1 ...id_n => term.

The main entry of the grammar is *expr*. This language is used in proof mode but it can also be used in toplevel definitions as shown in Figure 9.3.

Remarks:

- 1. The infix tacticals "... | | ... " and "...; ... " are associative.
- 2. In *tacarg*, there is an overlap between *qualid* as a direct tactic argument and *qualid* as a particular case of *term*. The resolution is done by first looking for a reference of the tactic language and if it fails, for a reference to a term. To force the resolution as a reference of the tactic language, use the form ltac: *qualid*. To force the resolution as a reference to a term, use the syntax (*qualid*).
- 3. As shown by the figure, tactical || binds more than the prefix tacticals try, repeat, do and abstract which themselves bind more than the postfix tactical "...; [...]" which binds more than "...; ...".

For instance

```
try repeat tactic_1 \mid \mid tactic_2; tactic_3; [tactic_{31} \mid \ldots \mid tactic_{3n}]; tactic_4. is understood as (\texttt{try (repeat (} tactic_1 \mid \mid tactic_2))); \\ ((tactic_3; [tactic_{31} \mid \ldots \mid tactic_{3n}]); tactic_4).
```

9.2 Semantics

Tactic expressions can only be applied in the context of a goal. The evaluation yields either a term, an integer or a tactic. Intermediary results can be terms or integers but the final result must be a tactic which is then applied to the current goal.

There is a special case for match goal expressions of which the clauses evaluate to tactics. Such expressions can only be used as end result of a tactic expression (never as argument of a non recursive local definition or of an application).

The rest of this section explains the semantics of every construction of Ltac.

Sequence

A sequence is an expression of the following form:

```
expr_1; expr_2
```

The expressions $expr_1$ and $expr_2$ are evaluated to v_1 and v_2 which have to be tactic values. The tactic v_1 is then applied and v_2 is applied to every subgoal generated by the application of v_1 . Sequence is left-associative.

General sequence

A general sequence has the following form:

```
expr_0; [ expr_1 \mid ... \mid expr_n ]
```

The expressions $expr_i$ are evaluated to v_i , for i=0,...,n and all have to be tactics. The tactic v_0 is applied and v_i is applied to the *i*-th generated subgoal by the application of v_0 , for i=1,...,n. It fails if the application of v_0 does not generate exactly i=0,...,n subgoals.

Variants:

- 1. If no tactic is given for the *i*-th generated subgoal, it behaves as if the tactic idtac were given. For instance, split; [| auto] is a shortcut for split; [idtac | auto].
- 2. $expr_0$; [$expr_1 | ... | expr_i | ... | expr_{i+1+j} | ... | expr_n$]

In this variant, idtac is used for the subgoals numbered from i+1 to i+j (assuming n is the number of subgoals).

Note that . . is part of the syntax, while ... is the meta-symbol used to describe a list of *expr* of arbitrary length.

3. $expr_0$; [$expr_1 \mid ... \mid expr_i \mid expr ... \mid expr_{i+1+j} \mid ... \mid expr_n$] In this variant, expr is used instead of idtac for the subgoals numbered from i+1 to i+j.

9.2 Semantics 237

```
expr
              ::= expr ; expr
                   expr; [ expr | ... | expr ]
               Ι
                   tacexpr<sub>3</sub>
              ::= do (natural | ident) tacexpr<sub>3</sub>
tacexpr<sub>3</sub>
               progress tacexpr3
               Τ
                   repeat tacexpr<sub>3</sub>
               try tacexpr3
               Τ
                   timeout (natural | ident) tacexpr3
                   tacexpr_2
              ::= tacexpr_1 \mid tacexpr_3
tacexpr<sub>2</sub>
               tacexpr<sub>1</sub>
              ::= fun name ... name => atom
tacexpr<sub>1</sub>
               1
                   let [rec] let_clause with ... with let_clause in atom
               Τ
                   match goal with context_rule | ... | context_rule end
               Τ
                   match reverse goal with context_rule | ... | context_rule end
                   match expr with match rule | ... | match rule end
                   lazymatch goal with context_rule | ... | context_rule end
                   lazymatch reverse goal with context_rule | ... | context_rule end
                   lazymatch expr with match_rule | ... | match_rule end
                   abstract atom
                   abstract atom using ident
                   first [expr \mid ... \mid expr]
                   solve [expr \mid ... \mid expr]
                   idtac[message_token ... message_token]
                   fail [natural] [message_token ... message_token]
                   fresh | fresh string
                   context ident [ term ]
                   eval redexpr in term
                   type of term
                   external string string tacarg ... tacarg
                   constr : term
                   atomic_tactic
                   qualid tacarg ... tacarg
                   atom
atom
              ::= qualid
               Ι
                   ()
               Τ
                   integer
                    (expr)
message token::=
                   string | ident | integer
```

Figure 9.1: Syntax of the tactic language

```
tacarg
              ::=
                   qualid
                   ()
                   ltac : atom
                   term
let_clause
                   ident [name ... name] := expr
              ::=
context_rule
             ::=
                   context_hyp , ... , context_hyp |-cpattern => expr
                   | - cpattern => expr
                   _ => expr
context_hyp
             ::=
                   name: cpattern
                   name := cpattern [: cpattern]
match_rule
              ::= cpattern => expr
                   context [ident] [ cpattern ] => expr
                   appcontext [ident] [ cpattern ] => expr
                   _{-} => expr
```

Figure 9.2: Syntax of the tactic language (continued)

Figure 9.3: Tactic toplevel definitions

For loop

There is a for loop that repeats a tactic *num* times:

```
\text{do } \textit{num } \textit{expr}
```

expr is evaluated to v. v must be a tactic value. v is applied num times. Supposing num > 1, after the first application of v, v is applied, at least once, to the generated subgoals and so on. It fails if the application of v fails before the num applications have been completed.

Repeat loop

We have a repeat loop with:

```
repeat expr
```

expr is evaluated to v. If v denotes a tactic, this tactic is applied to the goal. If the application succeeds, the tactic is applied recursively to all the generated subgoals until it eventually fails. The recursion stops in a subgoal when the tactic has failed. The tactic repeat expr itself never fails.

9.2 Semantics 239

Error catching

We can catch the tactic errors with:

```
try expr
```

expr is evaluated to v. v must be a tactic value. v is applied. If the application of v fails, it catches the error and leaves the goal unchanged. If the level of the exception is positive, then the exception is re-raised with its level decremented.

Detecting progress

We can check if a tactic made progress with:

```
progress expr
```

expr is evaluated to v. v must be a tactic value. v is applied. If the application of v produced one subgoal equal to the initial goal (up to syntactical equality), then an error of level 0 is raised.

Error message: Failed to progress

Branching

We can easily branch with the following structure:

```
expr_1 \mid | expr_2
```

 $expr_1$ and $expr_2$ are evaluated to v_1 and v_2 . v_1 and v_2 must be tactic values. v_1 is applied and if it fails to progress then v_2 is applied. Branching is left-associative.

First tactic to work

We may consider the first tactic to work (i.e. which does not fail) among a panel of tactics:

```
first [expr_1 \mid ... \mid expr_n]
```

 $expr_i$ are evaluated to v_i and v_i must be tactic values, for i = 1, ..., n. Supposing n > 1, it applies v_1 , if it works, it stops else it tries to apply v_2 and so on. It fails when there is no applicable tactic.

Error message: No applicable tactic

Solving

We may consider the first to solve (i.e. which generates no subgoal) among a panel of tactics:

```
solve [expr_1 \mid ... \mid expr_n]
```

 $expr_i$ are evaluated to v_i and v_i must be tactic values, for i = 1, ..., n. Supposing n > 1, it applies v_1 , if it solves, it stops else it tries to apply v_2 and so on. It fails if there is no solving tactic.

Error message: Cannot solve the goal

Identity

The constant idtac is the identity tactic: it leaves any goal unchanged but it appears in the proof script.

```
Variant: idtac message_token ... message_token
```

This prints the given tokens. Strings and integers are printed literally. If a (term) variable is given, its contents are printed.

Failing

The tactic fail is the always-failing tactic: it does not solve any goal. It is useful for defining other tacticals since it can be catched by try or match goal.

Variants:

1. fail n

The number n is the failure level. If no level is specified, it defaults to 0. The level is used by try and match goal. If 0, it makes match goal considering the next clause (backtracking). If non zero, the current match goal block or try command is aborted and the level is decremented.

- 2. fail message_token ... message_token

 The given tokens are used for printing the failure message.
- 3. fail *n* message_token ... message_token This is a combination of the previous variants.

Error message: Tactic Failure message (level n).

Timeout

We can force a tactic to stop if it has not finished after a certain amount of time:

```
timeout num expr
```

expr is evaluated to v. v must be a tactic value. v is normally applied, except that it is interrupted after num seconds if it is still running. In this case the outcome is a failure.

Warning: For the moment, timeout is based on elapsed time in seconds, which is very machine-dependent: a script that works on a quick machine may fail on a slow one. The converse is even possible if you combine a timeout with some other tacticals. This tactical is hence proposed only for convenience during debug or other development phases, we strongly advise you to not leave any timeout in final scripts. Note also that this tactical isn't available on the native Windows port of Coq.

Local definitions

Local definitions can be done as follows:

```
let ident_1 := expr_1
with ident_2 := expr_2
...
with ident_n := expr_n in expr
```

9.2 Semantics 241

each $expr_i$ is evaluated to v_i , then, expr is evaluated by substituting v_i to each occurrence of $ident_i$, for i = 1, ..., n. There is no dependencies between the $expr_i$ and the $ident_i$.

Local definitions can be recursive by using let rec instead of let. In this latter case, the definitions are evaluated lazily so that the rec keyword can be used also in non recursive cases so as to avoid the eager evaluation of local definitions.

Application

An application is an expression of the following form:

```
qualid tacarg<sub>1</sub> ... tacarg<sub>n</sub>
```

The reference *qualid* must be bound to some defined tactic definition expecting at least n arguments. The expressions $expr_i$ are evaluated to v_i , for i = 1, ..., n.

Function construction

A parameterized tactic can be built anonymously (without resorting to local definitions) with:

```
fun ident_1 ... ident_n => expr
```

Indeed, local definitions of functions are a syntactic sugar for binding a fun tactic to an identifier.

Pattern matching on terms

We can carry out pattern matching on terms with:

```
\begin{array}{l} \operatorname{match} \; expr \; \operatorname{with} \\ cpattern_1 => expr_1 \\ \mid \; cpattern_2 => expr_2 \\ \dots \\ \mid \; cpattern_n => expr_n \\ \mid \; \_ => expr_{n+1} \\ \operatorname{end} \end{array}
```

The expression expr is evaluated and should yield a term which is matched against $cpattern_1$. The matching is non-linear: if a metavariable occurs more than once, it should match the same expression every time. It is first-order except on the variables of the form @?id that occur in head position of an application. For these variables, the matching is second-order and returns a functional term.

If the matching with $cpattern_1$ succeeds, then $expr_1$ is evaluated into some value by substituting the pattern matching instantiations to the metavariables. If $expr_1$ evaluates to a tactic and the match expression is in position to be applied to a goal (e.g. it is not bound to a variable by a let in), then this tactic is applied. If the tactic succeeds, the list of resulting subgoals is the result of the match expression. If $expr_1$ does not evaluate to a tactic or if the match expression is not in position to be applied to a goal, then the result of the evaluation of $expr_1$ is the result of the match expression.

If the matching with $cpattern_1$ fails, or if it succeeds but the evaluation of $expr_1$ fails, or if the evaluation of $expr_1$ succeeds but returns a tactic in execution position whose execution fails, then $cpattern_2$ is used and so on. The pattern $_$ matches any term and shunts all remaining patterns if any. If all clauses fail (in particular, there is no pattern $_$) then a no-matching-clause error is raised.

Error messages:

- No matching clauses for match
 No pattern can be used and, in particular, there is no pattern.
- 2. Argument of match does not evaluate to a term This happens when *expr* does not denote a term.

Variants:

- 1. Using lazymatch instead of match has an effect if the right-hand-side of a clause returns a tactic. With match, the tactic is applied to the current goal (and the next clause is tried if it fails). With lazymatch, the tactic is directly returned as the result of the whole lazymatch block without being first tried to be applied to the goal. Typically, if the lazymatch block is bound to some variable x in a let in, then tactic expression gets bound to the variable x.
- 2. There is a special form of patterns to match a subterm against the pattern:

```
context ident [ cpattern ]
```

It matches any term with a subterm matching *cpattern*. If there is a match, the optional *ident* is assigned the "matched context", i.e. the initial term where the matched subterm is replaced by a hole. The example below will show how to use such term contexts.

If the evaluation of the right-hand-side of a valid match fails, the next matching subterm is tried. If no further subterm matches, the next clause is tried. Matching subterms are considered top-bottom and from left to right (with respect to the raw printing obtained by setting option Printing All, see Section 2.9).

```
Coq < Ltac f x :=
Cog < match x with
Coq <
      context f [S ?X] =>
Coq <
        idtac X;
                                   (* To display the evaluation order *)
       assert (p := eq_refl 1 : X=1); (* To filter the case X=1 *)
Coq <
       let x:= context f[0] in assert (x=0) (* To observe the context *)
Coq < end.
f is defined
Coq < Goal True.
1 subgoal
  True
Coq < f (3+4).
2
1
2 subgoals
 p : 1 = 1
 _____
  1 + 4 = 0
subgoal 2 is:
 True
```

9.2 Semantics 243

3. For historical reasons, context considers n-ary applications such as (f 1 2) as a whole, and not as a sequence of unary applications ((f 1) 2). Hence context [f ?x] will fail to find a matching subterm in (f 1 2): if the pattern is a partial application, the matched subterms will be necessarily be applications with exactly the same number of arguments. Alternatively, one may now use the following variant of context:

```
appcontext ident [ cpattern ]
```

The behavior of appcontext is the same as the one of context, except that a matching subterm could be a partial part of a longer application. For instance, in $(f \ 1 \ 2)$, an appcontext $[f \ ?x]$ will find the matching subterm $(f \ 1)$.

Pattern matching on goals

We can make pattern matching on goals using the following expression:

```
\begin{array}{lll} \text{match goal with} \\ & | \; hyp_{1,1} \text{,...,} \; hyp_{1,m_1} & | \; -cpattern_1 => expr_1 \\ & | \; hyp_{2,1} \text{,...,} \; hyp_{2,m_2} & | \; -cpattern_2 => expr_2 \\ & ... \\ & | \; hyp_{n,1} \text{,...,} \; hyp_{n,m_n} & | \; -cpattern_n => expr_n \\ & | \; \_ & => expr_{n+1} \\ & \text{end} \end{array}
```

If each hypothesis pattern $hyp_{1,i}$, with $i=1,...,m_1$ is matched (non-linear first-order unification) by an hypothesis of the goal and if $cpattern_1$ is matched by the conclusion of the goal, then $expr_1$ is evaluated to v_1 by substituting the pattern matching to the metavariables and the real hypothesis names bound to the possible hypothesis names occurring in the hypothesis patterns. If v_1 is a tactic value, then it is applied to the goal. If this application fails, then another combination of hypotheses is tried with the same proof context pattern. If there is no other combination of hypotheses then the second proof context pattern is tried and so on. If the next to last proof context pattern fails then $expr_{n+1}$ is evaluated to v_{n+1} and v_{n+1} is applied. Note also that matching against subterms (using the context ident [cpattern]) is available and may itself induce extra backtrackings.

```
Error message: No matching clauses for match goal
```

No clause succeeds, i.e. all matching patterns, if any, fail at the application of the right-hand-side.

It is important to know that each hypothesis of the goal can be matched by at most one hypothesis pattern. The order of matching is the following: hypothesis patterns are examined from the right to the left (i.e. hyp_{i,m_i} before $hyp_{i,1}$). For each hypothesis pattern, the goal hypothesis are matched in order (fresher hypothesis first), but it possible to reverse this order (older first) with the match reverse goal with variant.

Variant: Using lazymatch instead of match has an effect if the right-hand-side of a clause returns a tactic. With match, the tactic is applied to the current goal (and the next clause is tried if it fails). With lazymatch, the tactic is directly returned as the result of the whole lazymatch block without being first tried to be applied to the goal. Typically, if the lazymatch block is bound to some variable x in a let in, then tactic expression gets bound to the variable x.

```
Coq < Ltac test_lazy :=
Coq < lazymatch goal with</pre>
```

```
Coq <  | _ => idtac "here"; fail
Coq < | _ => idtac "wasn't lazy"; trivial
Coq < end.
test_lazy is defined
Coq < Ltac test_eager :=</pre>
Coq < match goal with
Coq < | _ => idtac "here"; fail
Coq <  | _ => idtac "wasn't lazy"; trivial
Coq < end.
test eager is defined
Coq < Goal True.
1 subgoal
  True
Coq < test_lazy || idtac "was lazy".</pre>
was lazy
1 subgoal
   True
Cog < test_eager || idtac "was lazy".</pre>
wasn't lazy
No more subgoals.
```

Filling a term context

The following expression is not a tactic in the sense that it does not produce subgoals but generates a term to be used in tactic expressions:

```
context ident [ expr ]
```

ident must denote a context variable bound by a context pattern of a match expression. This expression evaluates replaces the hole of the value of *ident* by the value of *expr*.

```
Error message: not a context variable
```

Generating fresh hypothesis names

Tactics sometimes have to generate new names for hypothesis. Letting the system decide a name with the intro tactic is not so good since it is very awkward to retrieve the name the system gave. The following expression returns an identifier:

```
fresh component ... component
```

It evaluates to an identifier unbound in the goal. This fresh identifier is obtained by concatenating the value of the *component*'s (each of them is, either an *ident* which has to refer to a name, or directly a name denoted by a *string*). If the resulting name is already used, it is padded with a number so that it becomes fresh. If no component is given, the name is a fresh derivative of the name H.

9.2 Semantics 245

Computing in a constr

Evaluation of a term can be performed with:

```
eval redexpr in term
```

where redexpr is a reduction tactic among red, hnf, compute, simpl, cbv, lazy, unfold, fold, pattern.

Type-checking a term

The following returns the type of *term*:

```
type of term
```

Proving a subgoal as a separate lemma

From the outside "abstract expr" is the same as solve expr. Internally it saves an auxiliary lemma called $ident_subproofn$ where ident is the name of the current goal and n is chosen so that this is a fresh name.

This tactical is useful with tactics such as omega or discriminate that generate huge proof terms. With that tool the user can avoid the explosion at time of the Save command without having to cut manually the proof in smaller lemmas.

Variants:

1. abstract *expr* using *ident*. Give explicitly the name of the auxiliary lemma.

Error message: Proof is not complete

Calling an external tactic

The tactic external allows to run an executable outside the CoQ executable. The communication is done via an XML encoding of constructions. The syntax of the command is

```
external "command" "request" tacarg ... tacarg
```

The string *command*, to be interpreted in the default execution path of the operating system, is the name of the external command. The string *request* is the name of a request to be sent to the external command. Finally the list of tactic arguments have to evaluate to terms. An XML tree of the following form is sent to the standard input of the external command.

```
<REQUEST req="request">
the XML tree of the first argument
...
the XML tree of the last argument
</REQUEST>
```

Conversely, the external command must send on its standard output an XML tree of the following forms:

where $ltac_qualified_ident$ is the name of a defined \mathcal{L}_{tac} function and each subsequent XML tree is recursively a CALL or a TERM node.

The Document Type Definition (DTD) for terms of the Calculus of Inductive Constructions is the one developed as part of the MoWGLI European project. It can be found in the file dev/doc/cic.dtd of the CoQ source archive.

An example of parser for this DTD, written in the Objective Caml - Camlp4 language, can be found in the file parsing/g_xml.ml4 of the CoQ source archive.

9.3 Tactic toplevel definitions

9.3.1 Defining \mathcal{L}_{tac} functions

Basically, \mathcal{L}_{tac} toplevel definitions are made as follows:

```
Ltac ident ident_1 \dots ident_n := expr
```

This defines a new \mathcal{L}_{tac} function that can be used in any tactic script or new \mathcal{L}_{tac} toplevel definition.

Remark: The preceding definition can equivalently be written:

```
Ltac ident := fun ident_1 ... ident_n => expr
```

Recursive and mutual recursive function definitions are also possible with the syntax:

```
Ltac ident_1 \ ident_{1,1} \dots \ ident_{1,m_1} := expr_1 with ident_2 \ ident_{2,1} \dots \ ident_{2,m_2} := expr_2 ... with ident_n \ ident_{n,1} \dots \ ident_{n,m_n} := expr_n
```

It is also possible to *redefine* an existing user-defined tactic using the syntax:

```
Ltac qualid ident_1 \dots ident_n ::= expr
```

A previous definition of *qualid* must exist in the environment. The new definition will always be used instead of the old one and it goes across module boundaries.

If preceded by the keyword Local the tactic definition will not be exported outside the current module.

9.3.2 Printing \mathcal{L}_{tac} tactics

Defined \mathcal{L}_{tac} functions can be displayed using the command

```
Print Ltac qualid.
```

9.4 Debugging \mathcal{L}_{tac} tactics

The \mathcal{L}_{tac} interpreter comes with a step-by-step debugger. The debugger can be activated using the command

```
Set Ltac Debug.
```

and deactivated using the command

```
Unset Ltac Debug.
```

To know if the debugger is on, use the command Test Ltac Debug. When the debugger is activated, it stops at every step of the evaluation of the current \mathcal{L}_{tac} expression and it prints information on what it is doing. The debugger stops, prompting for a command which can be one of the following:

simple newline: go to the next step

h: get help

x: exit current evaluation

s: continue current evaluation without stopping

r n: advance n steps further

r string: advance up to the next call to "idtac string"

Chapter 10

Detailed examples of tactics

This chapter presents detailed examples of certain tactics, to illustrate their behavior.

10.1 dependent induction

The tactics dependent induction and dependent destruction are another solution for inverting inductive predicate instances and potentially doing induction at the same time. It is based on the BasicElim tactic of Conor McBride which works by abstracting each argument of an inductive instance by a variable and constraining it by equalities afterwards. This way, the usual induction and destruct tactics can be applied to the abstracted instance and after simplification of the equalities we get the expected goals.

The abstracting tactic is called <code>generalize_eqs</code> and it takes as argument an hypothesis to generalize. It uses the <code>JMeq</code> datatype defined in <code>Coq.Logic.JMeq</code>, hence we need to require it before. For example, revisiting the first example of the inversion documentation above:

The index S n gets abstracted by a variable here, but a corresponding equality is added under the abstract instance so that no information is actually lost. The goal is now almost amenable to do induction or case analysis. One should indeed first move n into the goal to strengthen it before doing induction, or n will be fixed in the inductive hypotheses (this does not matter for case analysis). As a rule of thumb, all the variables that appear inside constructors in the indices of the hypothesis should be generalized. This is exactly what the generalize_eqs_vars variant does:

As the hypothesis itself did not appear in the goal, we did not need to use an heterogeneous equality to relate the new hypothesis to the old one (which just disappeared here). However, the tactic works just as well in this case, e.g.:

One drawback of this approach is that in the branches one will have to substitute the equalities back into the instance to get the right assumptions. Sometimes injection of constructors will also be needed to recover the needed equalities. Also, some subgoals should be directly solved because of inconsistent contexts arising from the constraints on indexes. The nice thing is that we can make a tactic based on discriminate, injection and variants of substitution to automatically do such simplifications (which may involve the K axiom). This is what the simplify_dep_elim tactic from Coq.Program.Equality does. For example, we might simplify the previous goals considerably:

```
Coq < induction p ; simplify_dep_elim.
1 subgoal

n : nat
m : nat
p : Le n m
IHp : forall (n0 : nat) (p0 : Le (S n0) m),</pre>
```

The higher-order tactic do_depind defined in Coq.Program.Equality takes a tactic and combines the building blocks we have seen with it: generalizing by equalities calling the given tactic with the generalized induction hypothesis as argument and cleaning the subgoals with respect to equalities. Its most important instantiations are dependent induction and dependent destruction that do induction or simply case analysis on the generalized hypothesis. For example we can redo what we've done manually with dependent destruction:

This gives essentially the same result as inversion. Now if the destructed hypothesis actually appeared in the goal, the tactic would still be able to invert it, contrary to dependent inversion. Consider the following example on vectors:

```
Coq < Require Import Coq.Program.Equality.</pre>
Coq < Set Implicit Arguments.
Coq < Variable A : Set.
Coq < Inductive vector : nat -> Type :=
Coq < | vnil : vector 0</pre>
Coq < | vcons : A \rightarrow forall n, vector n \rightarrow vector (S n).
Coq < Goal forall n, forall v : vector (S n),
      exists v': vector n, exists a: A, v = vcons a v'.
Coq <
Coq < intros n v.
      dependent destruction v.
Coq <
1 subgoal
 n : nat
 a : A
  v : vector n
  exists (v' : vector n) (a0 : A), vcons a v = vcons a0 v'
```

In this case, the v variable can be replaced in the goal by the generalized hypothesis only when it has a type of the form vector (S n), that is only in the second case of the destruct. The first one is dismissed because S n <> 0.

10.1.1 A larger example

Let's see how the technique works with induction on inductive predicates on a real example. We will develop an example application to the theory of simply-typed lambda-calculus formalized in a dependently-typed style:

```
Coq < Inductive type : Type :=
Coq < | base : type</pre>
Coq < | arrow : type -> type -> type.
Coq < Notation " t \rightarrow t' " := (arrow t t') (at level 20, t' at next level).
Cog < Inductive ctx : Type :=
Coq < | empty : ctx</pre>
Coq < | snoc : ctx -> type -> ctx.
Cog < Notation " G , tau " := (snoc G tau) (at level 20, tau at next level).
Coq < Fixpoint conc (G D : ctx) : ctx :=
Coq < match D with
Coq <
        | empty => G
         \mid snoc D' x => snoc (conc G D') x
Coq <
      end.
Coq <
Coq < Notation " G; D " := (conc G D) (at level 20).
Coq < Inductive term : ctx -> type -> Type :=
Coq < | ax : forall G tau, term (G, tau) tau
Coq < | weak : forall G tau,
Coq < term G tau -> forall tau', term (G, tau') tau
Coq < | abs : forall G tau tau',
Coq < term (G , tau) tau' -> term G (tau -> tau')
Coq < | app : forall G tau tau',
Coq < term G (tau -> tau') -> term G tau -> term G tau'.
```

We have defined types and contexts which are snoc-lists of types. We also have a conc operation that concatenates two contexts. The term datatype represents in fact the possible typing derivations of the calculus, which are isomorphic to the well-typed terms, hence the name. A term is either an application of:

- the axiom rule to type a reference to the first variable in a context,
- the weakening rule to type an object in a larger context
- the abstraction or lambda rule to type a function
- the application to type an application of a function to an argument

Once we have this datatype we want to do proofs on it, like weakening:

```
Coq < Lemma weakening : forall G D tau, term (G ; D) tau \rightarrow Coq < forall tau', term (G , tau' ; D) tau.
```

The problem here is that we can't just use induction on the typing derivation because it will forget about the G; D constraint appearing in the instance. A solution would be to rewrite the goal as:

```
Coq < Lemma weakening' : forall G' tau, term G' tau -> Coq < forall G D, (G ; D) = G' -> Coq < forall tau', term (G, tau' ; D) tau.
```

With this proper separation of the index from the instance and the right induction loading (putting G and D after the inducted-on hypothesis), the proof will go through, but it is a very tedious process. One is also forced to make a wrapper lemma to get back the more natural statement. The dependent induction tactic alleviates this trouble by doing all of this plumbing of generalizing and substituting back automatically. Indeed we can simply write:

```
Coq < Require Import Coq.Program.Tactics.
Coq < Lemma weakening : forall G D tau, term (G; D) tau ->
Coq < forall tau', term (G, tau'; D) tau.
Coq < Proof with simpl in *; simpl_depind; auto.
Coq < intros G D tau H. dependent induction H generalizing G D; intros.</pre>
```

This call to dependent induction has an additional arguments which is a list of variables appearing in the instance that should be generalized in the goal, so that they can vary in the induction hypotheses. By default, all variables appearing inside constructors (except in a parameter position) of the instantiated hypothesis will be generalized automatically but one can always give the list explicitly.

```
Coq <
       Show.
4 subgoals
 G0 : ctx
 tau : type
 G : ctx
 D : ctx
 x : G0, tau = G; D
 tau' : type
 term ((G, tau'); D) tau
subgoal 2 is:
term ((G, tau'0); D) tau
subgoal 3 is:
term ((G, tau'0); D) (tau -> tau')
subgoal 4 is:
term ((G, tau'0); D) tau'
```

The simpl_depind tactic includes an automatic tactic that tries to simplify equalities appearing at the beginning of induction hypotheses, generally using trivial applications of reflexivity. In cases where the equality is not between constructor forms though, one must help the automation by giving some arguments, using the specialize tactic for example.

```
Coq < destruct D... apply weak ; apply ax. apply ax.
Coq < destruct D...
Coq < Show.
4 subgoals
G0 : ctx</pre>
```

```
tau : type
 H : term G0 tau
 tau' : type
 IHterm : forall G D : ctx,
          G0 = G; D \rightarrow forall tau'0 : type, term ((G, tau'0); D) tau
  tau'0 : type
  term ((G0, tau'), tau'0) tau
subgoal 2 is:
term (((G, tau'0); D), t) tau
subgoal 3 is:
term ((G, tau'0); D) (tau -> tau')
subgoal 4 is:
term ((G, tau'0); D) tau'
Coq <
      specialize (IHterm GO empty eq_refl).
4 subgoals
 G0 : ctx
 tau : type
 H : term G0 tau
 tau' : type
 IHterm: forall tau'0: type, term ((G0, tau'0); empty) tau
 tau'0 : type
 _____
  term ((G0, tau'), tau'0) tau
subgoal 2 is:
term (((G, tau'0); D), t) tau
subgoal 3 is:
term ((G, tau'0); D) (tau -> tau')
subgoal 4 is:
term ((G, tau'0); D) tau'
```

Once the induction hypothesis has been narrowed to the right equality, it can be used directly.

```
Coq < apply weak, IHterm.
3 subgoals
 tau : type
 G: ctx
 D : ctx
 t : type
 tau'0 : type
 H: term (G; D) tau
 IHterm : forall GO DO : ctx,
          G; D = G0; D0 ->
         forall tau' : type, term ((G0, tau'); D0) tau
 _____
  term (((G, tau'0); D), t) tau
subgoal 2 is:
term ((G, tau'0); D) (tau -> tau')
subgoal 3 is:
term ((G, tau'0); D) tau'
```

10.2 autorewrite 255

If there is an easy first-order solution to these equations as in this subgoal, the specialize_eqs tactic can be used instead of giving explicit proof terms:

```
Coa <
       specialize_eqs IHterm.
3 subgoals
 tau : type
 G : ctx
 D : ctx
 t : type
 tau'0 : type
 H : term (G; D) tau
 IHterm : forall tau' : type, term ((G, tau'); D) tau
  _____
  term (((G, tau'0); D), t) tau
subgoal 2 is:
term ((G, tau'0); D) (tau -> tau')
subgoal 3 is:
term ((G, tau'0); D) tau'
```

This concludes our example. **See also:** The induction 11, case 9 and inversion 8.15 tactics.

10.2 autorewrite

Here are two examples of autorewrite use. The first one (*Ackermann function*) shows actually a quite basic use where there is no conditional rewriting. The second one (*Mac Carthy function*) involves conditional rewritings and shows how to deal with them using the optional tactic of the Hint Rewrite command.

Example 1: Ackermann function

```
Cog < Reset Initial.
Coq < Require Import Arith.
Coq < Variable Ack :
                nat -> nat -> nat.
Coq < Axiom Ack0 :
             forall m:nat, Ack 0 m = S m.
Coa <
Coq < Axiom Ack1 : forall n:nat, Ack (S n) 0 = Ack n 1.
Coq < Axiom Ack2 : forall n m:nat, Ack (S n) (S m) = Ack n (Ack (S n) m).
Coq < Hint Rewrite Ack0 Ack1 Ack2 : base0.
Coq < Lemma ResAck0 :
Coq < Ack 3 2 = 29.
1 subgoal
  _____
  Ack \ 3 \ 2 = 29
Coq < autorewrite with base0 using try reflexivity.
No more subgoals.
```

Example 2: *Mac Carthy function*

```
Coq < Require Import Omega.
Coq < Variable g :</pre>
                nat -> nat -> nat.
Coq <
Coq < Axiom g0 :
            forall m:nat, q 0 m = m.
Coq < Axiom
Coq < g1 :
Coq < forall n m:nat,
          (n > 0) \rightarrow (m > 100) \rightarrow q n m = q (pred n) (m - 10).
Coq < Axiom
Coq < g2 :
       forall n m:nat,
Coq <
Coq <
           (n > 0) \rightarrow (m \le 100) \rightarrow g n m = g (S n) (m + 11).
Coq < Hint Rewrite g0 g1 g2 using omega : base1.
Coq < Lemma Resg0 :
Coq < g 1 110 = 100.
1 subgoal
 q 1 110 = 100
Coq < autorewrite with basel using reflexivity || simpl.
No more subgoals.
Coq < Lemma Resg1 : g 1 95 = 91.
1 subgoal
  _____
  q 1 95 = 91
Cog < autorewrite with basel using reflexivity || simpl.
No more subgoals.
```

10.3 quote

The tactic <code>quote</code> allows using Barendregt's so-called 2-level approach without writing any ML code. Suppose you have a language L of 'abstract terms' and a type A of 'concrete terms' and a function $f:L \to A$. If L is a simple inductive datatype and f a simple fixpoint, <code>quote</code> f will replace the head of current goal by a convertible term of the form (f t). L must have a constructor of type: $A \to L$.

Here is an example:

```
Coq < Require Import Quote.
Coq < Parameters A B C : Prop.
A is assumed
B is assumed
C is assumed
Coq < Inductive formula : Type :=</pre>
```

10.3 quote 257

```
| f_and : formula -> formula -> formula (* binary constructor *)
Coq <
Coq < | f_or : formula -> formula -> formula
| f_const : Prop -> formula (* constructor for constants *).
formula is defined
formula_rect is defined
formula_ind is defined
formula_rec is defined
Coq < Fixpoint interp_f (f:</pre>
                     formula) : Prop :=
Coq <
     match f with
Coq < | f_and f1 f2 => interp_f f1 /\ interp_f f2
      | f_or f1 f2 => interp_f f1 \/ interp_f f2
     | f_not f1 => ~ interp_f f1
Coq <
Coq < | f_true => True
Coq < | f_const c => c
Coq < end.
interp_f is recursively defined (decreasing on 1st argument)
Coq < Goal A /\ (A /\ True) /\ ~ B /\ (A <-> A).
1 subgoal
 _____
  A / \ (A \ / True) / \ \sim B / \ (A <-> A)
Coq < quote interp_f.
1 subgoal
 _____
  interp_f
    (f_and (f_const A)
       (f and (f or (f const A) f true)
         (f\_and (f\_not (f\_const B)) (f\_const (A <-> A)))))
```

The algorithm to perform this inversion is: try to match the term with right-hand sides expression of f. If there is a match, apply the corresponding left-hand side and call yourself recursively on sub-terms. If there is no match, we are at a leaf: return the corresponding constructor (here f_{const}) applied to the term.

Error messages:

1. quote: not a simple fixpoint Happens when quote is not able to perform inversion properly.

10.3.1 Introducing variables map

The normal use of quote is to make proofs by reflection: one defines a function simplify: formula -> formula and proves a theorem simplify_ok: (f:formula) (interp_f (simplify f)) -> (interp_f f). Then, one can simplify formulas by doing:

```
quote interp_f.
apply simplify_ok.
compute.
```

But there is a problem with leafs: in the example above one cannot write a function that implements, for example, the logical simplifications $A \wedge A \to A$ or $A \wedge \neg A \to \texttt{False}$. This is because the Prop is impredicative.

It is better to use that type of formulas:

Coq < Fixpoint interp_f (vm:</pre>

index is defined in module quote. Equality on that type is decidable so we are able to simplify $A \wedge A$ into A at the abstract level.

When there are variables, there are bindings, and quote provides also a type (varmap A) of bindings from index to any set A, and a function varmap_find to search in such maps. The interpretation function has now another argument, a variables map:

```
varmap Prop) (f:formula) {struct f} : Prop :=
Coq <
Coq <
     match f with
Coq < | f_and f1 f2 => interp_f vm f1 /\ interp_f vm f2
Coq < f_or f1 f2 \Rightarrow interp_f vm f1 \/ interp_f vm f2
       | f_not f1 => ~ interp_f vm f1
       | f_true => True
Coq <
Coq <
       | f_atom i => varmap_find True i vm
       end.
interp_f is recursively defined (decreasing on 2nd argument)
quote handles this second case properly:
Cog < Goal A / (B / A) / (A / ~ B).
1 subgoal
  ______
  A / \ (B \ / \ A) / \ (A \ / \ \sim B)
Coq < quote interp_f.
1 subgoal
  ______
     (Node_vm B (Node_vm A (Empty_vm Prop)) (Empty_vm Prop)) (Empty_vm Prop))
     (f_and (f_atom (Left_idx End_idx))
        (f_and (f_or (f_atom End_idx) (f_atom (Left_idx End_idx)))
           (f_or (f_atom (Left_idx End_idx)) (f_not (f_atom End_idx)))))
```

It builds vm and t such that (f vm t) is convertible with the conclusion of current goal.

10.3 quote 259

10.3.2 Combining variables and constants

One can have both variables and constants in abstracts terms; that is the case, for example, for the ring tactic (chapter 24). Then one must provide to quote a list of *constructors of constants*. For example, if the list is [O S] then closed natural numbers will be considered as constants and other terms as variables.

Example:

```
Coq < Inductive formula : Type :=</pre>
       | f_and : formula -> formula -> formula
       | f_or : formula -> formula -> formula
Coq < | f_not : formula -> formula
Coq <
      | f_true : formula
      | f_const : Prop -> formula (* constructor for constants *)
Coq <
      | f_atom : index -> formula.
Coq <
Coq < Fixpoint interp_f</pre>
Coq < (vm:
                       (* constructor for variables *)
       varmap Prop) (f:formula) {struct f} : Prop :=
Coq <
      match f with
       | f_and f1 f2 => interp_f vm f1 /\ interp_f vm f2
Coq <
       | f_or f1 f2 => interp_f vm f1 \/ interp_f vm f2
Coq <
       | f_not f1 => ~ interp_f vm f1
Coq <
      | f_true => True
Coq <
      | f_const c => c
Coq <
      | f_atom i => varmap_find True i vm
Coq <
      end.
Coq < Goal
Coq < A /\ (A \ /\ True) /\ ~ B /\ (C <-> C).
Coq < quote interp_f [ A B ].</pre>
1 subgoal
   interp_f (Node_vm (C <-> C) (Empty_vm Prop) (Empty_vm Prop))
     (f_and (f_const A)
        (f_and (f_or (f_const A) f_true)
           (f_and (f_not (f_const B)) (f_atom End_idx))))
Coq < Undo.
1 subgoal
   A /\ (A \/ True) /\ ~ B /\ (C <-> C)
Coq <
      quote interp_f [ B C iff ].
1 subgoal
  _____
   interp_f (Node_vm A (Empty_vm Prop) (Empty_vm Prop))
     (f_and (f_atom End_idx)
        (f_and (f_or (f_atom End_idx) f_true)
           (f\_and (f\_not (f\_const B)) (f\_const (C \leftarrow C)))))
```

Warning: Since function inversion is undecidable in general case, don't expect miracles from it!

Variants:

- 1. quote *ident* in *term* using *tactic*tactic must be a functional tactic (starting with fun x =>) and will be called with the quoted version of *term* according to *ident*.
- 2. quote ident [$ident_1$... $ident_n$] in term using tactic Same as above, but will use $ident_1, ..., ident_n$ to chose which subterms are constants (see above).

See also: comments of source file plugins/quote/quote.ml

See also: the ring tactic (Chapter 24)

10.4 Using the tactical language

10.4.1 About the cardinality of the set of natural numbers

A first example which shows how to use the pattern matching over the proof contexts is the proof that natural numbers have more than two elements. The proof of such a lemma can be done as follows:

```
Coq < Lemma card_nat :
Coq < ~ (exists x : nat, exists y : nat, forall z:nat, x = z \/ y = z).
Coq < Proof.
Coq < red; intros (x, (y, Hy)).
Coq < elim (Hy 0); elim (Hy 1); elim (Hy 2); intros;
Coq < match goal with
Coq < | [_:(?a = ?b),_:(?a = ?c) |-_ ] =>
Coq < cut (b = c); [ discriminate | transitivity a; auto ]
Coq < Qed.</pre>
```

We can notice that all the (very similar) cases coming from the three eliminations (with three distinct natural numbers) are successfully solved by a match goal structure and, in particular, with only one pattern (use of non-linear matching).

10.4.2 Permutation on closed lists

Another more complex example is the problem of permutation on closed lists. The aim is to show that a closed list is a permutation of another one.

First, we define the permutation predicate as shown in table 10.1.

A more complex example is the problem of permutation on closed lists. The aim is to show that a closed list is a permutation of another one. First, we define the permutation predicate as shown on Figure 10.1.

Next, we can write naturally the tactic and the result can be seen on Figure 10.2. We can notice that we use two toplevel definitions PermutProve and Permut. The function to be called is PermutProve which computes the lengths of the two lists and calls Permut with the length if the

```
Cog < Section Sort.
Coq < Variable A : Set.
Coq < Inductive permut : list A -> list A -> Prop :=
Coq <
        | permut refl
                        : forall 1, permut 1 1
Coq <
        | permut_cons
            forall a 10 11, permut 10 11 -> permut (a :: 10) (a :: 11)
Coq <
Coq <
        | permut_append : forall a l, permut (a :: l) (l ++ a :: nil)
Coq <
        | permut_trans
            forall 10 11 12, permut 10 11 -> permut 11 12 -> permut 10 12.
Coq <
Coq < End Sort.
```

Figure 10.1: Definition of the permutation predicate

```
Cog < Ltac Permut n :=
Coq <
        match goal with
Coq <
        | |- (permut _ ?l ?l) => apply permut_refl
        | |- (permut _ (?a :: ?11) (?a :: ?12)) =>
Coq <
Coq <
            let newn := eval compute in (length 11) in
Coq <
            (apply permut_cons; Permut newn)
Coq <
        | |- (permut ?A (?a :: ?11) ?12) =>
Coq <
            match eval compute in n with
Coq <
            | 1 => fail
Coq <
            | _ =>
Coq <
                let 11' := constr:(11 ++ a :: nil) in
Coq <
                (apply (permut_trans A (a :: 11) 11' 12);
Coq <
                  [ apply permut_append | compute; Permut (pred n) ])
Coq <
            end
Coq <
        end.
Permut is defined
Cog < Ltac PermutProve :=</pre>
Coq <
       match goal with
        | |- (permut _ ?11 ?12) =>
Coq <
Coq <
            match eval compute in (length 11 = length 12) with
            | (?n = ?n) => Permut n
Coq <
Coq <
            end
Coq <
        end.
PermutProve is defined
```

Figure 10.2: Permutation tactic

two lists have the same length. Permut works as expected. If the two lists are equal, it concludes. Otherwise, if the lists have identical first elements, it applies Permut on the tail of the lists. Finally, if the lists have different first elements, it puts the first element of one of the lists (here the second one which appears in the permut predicate) at the end if that is possible, i.e., if the new first element has been at this place previously. To verify that all rotations have been done for a list, we use the length of the list as an argument for Permut and this length is decremented for each rotation down to, but not including, 1 because for a list of length n, we can make exactly n-1 rotations to generate at most n distinct lists. Here, it must be noticed that we use the natural numbers of CoQ for the rotation counter. On Figure 9.1, we can see that it is possible to use usual natural numbers but they are only used as arguments for prim-

itive tactics and they cannot be handled, in particular, we cannot make computations with them. So, a natural choice is to use CoQ data structures so that CoQ makes the computations (reductions) by eval compute in and we can get the terms back by match.

With PermutProve, we can now prove lemmas as follows:

```
Coq < Lemma permut_ex1 :
Coq < permut nat (1 :: 2 :: 3 :: nil) (3 :: 2 :: 1 :: nil).

Coq < Proof. PermutProve. Qed.

Coq < Lemma permut_ex2 :
Coq < permut nat
Coq < (0 :: 1 :: 2 :: 3 :: 4 :: 5 :: 6 :: 7 :: 8 :: 9 :: nil)
Coq < (0 :: 2 :: 4 :: 6 :: 8 :: 9 :: 7 :: 5 :: 3 :: 1 :: nil).</pre>
Coq < Proof. PermutProve. Qed.
```

10.4.3 Deciding intuitionistic propositional logic

The pattern matching on goals allows a complete and so a powerful backtracking when returning tactic values. An interesting application is the problem of deciding intuitionistic propositional logic. Considering the contraction-free sequent calculi LJT* of Roy Dyckhoff ([54]), it is quite natural to code such a tactic using the tactic language as shown on Figures 10.3 and 10.4. The tactic Axioms tries to conclude using usual axioms. The tactic DSimplif applies all the reversible rules of Dyckhoff's system. Finally, the tactic TautoProp (the main tactic to be called) simplifies with DSimplif, tries to conclude with Axioms and tries several paths using the backtracking rules (one of the four Dyckhoff's rules for the left implication to get rid of the contraction and the right or).

For example, with TautoProp, we can prove tautologies like those:

```
Coq < Lemma tauto_ex1 : forall A B:Prop, A /\ B -> A \/ B.
Coq < Proof. TautoProp. Qed.
Coq < Lemma tauto_ex2 :
Coq < forall A B:Prop, (~ ~ B -> B) -> (A -> B) -> ~ ~ A -> B.
Coq < Proof. TautoProp. Qed.</pre>
```

10.4.4 Deciding type isomorphisms

A more tricky problem is to decide equalities between types and modulo isomorphisms. Here, we choose to use the isomorphisms of the simply typed λ -calculus with Cartesian product and unit type (see, for example, [43]). The axioms of this λ -calculus are given by table 10.5.

```
Coq < Ltac Axioms :=
Coq < match goal with
Coq < | |- True => trivial
Coq < | _:False |- _ => elimtype False; assumption
Coq < | _:?A |- ?A => auto
Coq < end.
Axioms is defined</pre>
```

Figure 10.3: Deciding intuitionistic propositions (1)

```
Coq < Ltac DSimplif :=</pre>
Coq <
        repeat
Coq <
        (intros;
Coq <
          match goal with
Coq <
           | id:(~ _) |- _ => red in id
Coq <
           | id:(_ /\ _) |- _ =>
               elim id; do 2 intro; clear id
Coq <
           | id:(_ \/ _) |- _ =>
Coq <
Coq <
               elim id; intro; clear id
Coq <
           | id:(?A /\ ?B -> ?C) |- _ =>
Coq <
               cut (A \rightarrow B \rightarrow C);
Coq <
                [ intro | intros; apply id; split; assumption ]
Coq <
           | id:(?A \/ ?B -> ?C) |- _ =>
Coq <
               cut (B -> C);
                [ cut (A -> C);
Coq <
Coq <
                    [ intros; clear id
Coq <
                    | intro; apply id; left; assumption ]
Coq <
                 | intro; apply id; right; assumption ]
Coq <
           | id0:(?A -> ?B),id1:?A |- _ =>
               cut B; [ intro; clear id0 | apply id0; assumption ]
Coq <
Coq <
           | |- (<u>_</u> /\ _) => split
Coq <
           | |- (~ _) => red
Coq <
           end).
DSimplif is defined
Coq < Ltac TautoProp :=</pre>
Coq < DSimplif;</pre>
Coq <
        Axioms ||
Coq <
           match goal with
Coq <
           | id:((?A -> ?B) -> ?C) |- _ =>
Coq <
                cut (B -> C);
                 [ intro; cut (A -> B);
Coq <
Coq <
                    [ intro; cut C;
Coq <
                       [ intro; clear id | apply id; assumption ]
                    | clear id ]
Coq <
                | intro; apply id; intro; assumption ]; TautoProp
Coq <
Coq <
           | id:(~ ?A -> ?B) |- _ =>
Coq <
               cut (False -> B);
Coq <
                [ intro; cut (A -> False);
Coq <
                    [ intro; cut B;
Coq <
                       [ intro; clear id | apply id; assumption ]
Coq <
                    | clear id ]
                 | intro; apply id; red; intro; assumption |; TautoProp
Coq <
Coq <
           | |- (_ \/ _) => (left; TautoProp) || (right; TautoProp)
Coq <
           end.
TautoProp is defined
```

Figure 10.4: Deciding intuitionistic propositions (2)

A more tricky problem is to decide equalities between types and modulo isomorphisms. Here, we choose to use the isomorphisms of the simply typed λ -calculus with Cartesian product and *unit* type (see, for example, [43]). The axioms of this λ -calculus are given on Figure 10.5.

```
Coq < Open Scope type_scope.
Coq < Section Iso_axioms.
Coq < Variables A B C : Set.
Coq < Axiom Com : A * B = B * A.
Coq < Axiom Ass : A * (B * C) = A * B * C.
Coq < Axiom Cur : (A * B -> C) = (A -> B -> C).
Coq < Axiom Dis : (A -> B * C) = (A -> B) * (A -> C).
Coq < Axiom P_unit : A * unit = A.
Coq < Axiom AR_unit : (A -> unit) = unit.
Coq < Axiom AL_unit : (unit -> A) = A.
Coq < Lemma Cons : B = C -> A * B = A * C.
Coq < Proof.
Coq < intro Heq; rewrite Heq; reflexivity.
Coq < Qed.
Coq < End Iso_axioms.</pre>
```

Figure 10.5: Type isomorphism axioms

The tactic to judge equalities modulo this axiomatization can be written as shown on Figures 10.6 and 10.7. The algorithm is quite simple. Types are reduced using axioms that can be oriented (this done by MainSimplif). The normal forms are sequences of Cartesian products without Cartesian product in the left component. These normal forms are then compared modulo permutation of the components (this is done by CompareStruct). The main tactic to be called and realizing this algorithm is IsoProve.

Here are examples of what can be solved by IsoProve.

```
Coq < Lemma isos_ex1 :
Coq < forall A B:Set, A * unit * B = B * (unit * A).

Coq < Proof.

Coq < intros; IsoProve.

Coq < Qed.

Coq <
Coq < Lemma isos_ex2 :
Coq < forall A B C:Set,
Coq < (A * unit -> B * (C * unit)) =
Coq < (A * unit -> (C -> unit) * C) * (unit -> A -> B).

Coq < Proof.

Coq < Qed.

Coq < Qed.</pre>
```

```
Coq < Ltac DSimplif trm :=</pre>
Coq <
     match trm with
Coq <
       | (?A * ?B * ?C) =>
Coq <
           rewrite <- (Ass A B C); try MainSimplif</pre>
Coq <
      | (?A * ?B -> ?C) =>
Coq <
          rewrite (Cur A B C); try MainSimplif
Coq < | (?A -> ?B * ?C) =>
          rewrite (Dis A B C); try MainSimplif
Coq <
Coq <
     | (?A * unit) =>
Coq <
          rewrite (P_unit A); try MainSimplif
Coq <
      | (unit * ?B) =>
Coq <
          rewrite (Com unit B); try MainSimplif
Coq < | (?A -> unit) =>
Coq <
          rewrite (AR_unit A); try MainSimplif
Coq < | (unit -> ?B) =>
Coq <
          rewrite (AL_unit B); try MainSimplif
Coq < | (?A * ?B) =>
          (DSimplif A; try MainSimplif) || (DSimplif B; try MainSimplif)
Coq <
      | (?A -> ?B) =>
Coq <
Coq <
           (DSimplif A; try MainSimplif) || (DSimplif B; try MainSimplif)
Coq < end
Coq < with MainSimplif :=</pre>
Coq < match goal with
Coq < | |- (?A = ?B) => try DSimplif A; try DSimplif B
Coq <
      end.
DSimplif is defined
MainSimplif is defined
Coq < Ltac Length trm :=
Coq < match trm with
Coq < | (\_ * ?B) => let succ := Length B in constr:(S succ)
Coq <
      end.
Length is defined
Coq < Ltac assoc := repeat rewrite <- Ass.
assoc is defined
```

Figure 10.6: Type isomorphism tactic (1)

```
Coq < Ltac DoCompare n :=</pre>
Coq < match goal with
Coq <
      | [ | - (?A = ?A) ] = reflexivity
Coq < | [ | - (?A * ?B = ?A * ?C) ] =>
          apply Cons; let newn := Length B in
Coq <
Coq <
                        DoCompare newn
      | [ | - (?A * ?B = ?C) ] =>
Coq <
       match eval compute in n with
Coq <
Coq <
           | 1 => fail
Coq <
          | _ =>
Coq <
               pattern (A \star B) at 1; rewrite Com; assoc; DoCompare (pred n)
Coq <
           end
Coq < end.
DoCompare is defined
Coq < Ltac CompareStruct :=</pre>
Coq < match goal with
Coq <
      | [ |- (?A = ?B) ] =>
Coq <
           let 11 := Length A
           with 12 := Length B in
Coq <
Coq <
          match eval compute in (11 = 12) with
           | (?n = ?n) => DoCompare n
Coq <
Coq <
           end
Coq <
      end.
CompareStruct is defined
Coq < Ltac IsoProve := MainSimplif; CompareStruct.</pre>
IsoProve is defined
```

Figure 10.7: Type isomorphism tactic (2)

Chapter 11

The Mathematical Proof Language

11.1 Introduction

11.1.1 Foreword

In this chapter, we describe an alternative language that may be used to do proofs using the Coq proof assistant. The language described here uses the same objects (proof-terms) as Coq, but it differs in the way proofs are described. This language was created by Pierre Corbineau at the Radboud University of Nijmegen, The Netherlands.

The intent is to provide language where proofs are less formalism- and implementation-sensitive, and in the process to ease a bit the learning of computer-aided proof verification.

11.1.2 What is a declarative proof?

In vanilla Coq, proofs are written in the imperative style: the user issues commands that transform a so called proof state until it reaches a state where the proof is completed. In the process, the user mostly described the transitions of this system rather than the intermediate states it goes through.

The purpose of a declarative proof language is to take the opposite approach where intermediate states are always given by the user, but the transitions of the system are automated as much as possible.

11.1.3 Well-formedness and Completeness

The Mathematical Proof Language introduces a notion of well-formed proofs which are weaker than correct (and complete) proofs. Well-formed proofs are actually proof script where only the reasoning is incomplete. All the other aspects of the proof are correct:

- All objects referred to exist where they are used
- Conclusion steps actually prove something related to the conclusion of the theorem (the thesis.
- Hypothesis introduction steps are done when the goal is an implication with a corresponding assumption.
- Sub-objects in the elimination steps for tuples are correct sub-objects of the tuple being decomposed.
- Patterns in case analysis are type-correct, and induction is well guarded.

11.1.4 Note for tactics users

This section explain what differences the casual Coq user will experience using the Mathematical Proof Language.

- 1. The focusing mechanism is constrained so that only one goal at a time is visible.
- 2. Giving a statement that Coq cannot prove does not produce an error, only a warning: this allows to go on with the proof and fill the gap later.
- 3. Tactics can still be used for justifications and after escape.

11.1.5 Compatibility

The Mathematical Proof Language is available for all Coq interfaces that use text-based interaction, including:

- the command-line toplevel coqtop
- the native GUI coqide
- the Proof-General emacs mode
- Cezary Kaliszyk's Web interface
- L.E. Mamane's tmEgg TeXmacs plugin

However it is not supported by structured editors such as PCoq.

11.2 Syntax

Here is a complete formal description of the syntax for DPL commands.

The lexical conventions used here follows those of section 1.1. Conventions:

• <tactic> stands for an Coq tactic.

11.2.1 Temporary names

In proof commands where an optional name is asked for, omitting the name will trigger the creation of a fresh temporary name (e.g. for a hypothesis). Temporary names always start with an undescore '_' character (e.g. _hyp0). Temporary names have a lifespan of one command: they get erased after the next command. They can however be safely in the step after their creation.

11.3 Language description

11.3.1 Starting and Ending a mathematical proof

The standard way to use the Mathematical Proof Languageis to first state a Lemma/Theorem/Definition and then use the proof command to switch the current subgoal to mathematical mode. After the proof is completed, the end proof command will close the mathematical proof. If any subgoal remains to be proved, they will be displayed using the usual Coq display.

```
instruction
               ∷= proof
                    assume statement and ... and statement [[and {we have}-clause]]
                    {let,be}-clause
                    {given}-clause
                    {consider}-clause from term
                    (have | then | thus | hence]) statement justification
                    [thus] (\sim = |= \sim) [ident:]term justification
                    suffices ({to have}-clause | statement and ... and statement [and {to have}-clause]
                    to show statement justification
                    (claim | focus on) statement
                    take term
                    define ident[var, ..., var] as term
                    reconsider (ident | thesis) as type
                    per(cases|induction) on term
                    per cases of type justification
                    suppose [ident , ... , ident and] it is pattern
                    [such that statement and ... and statement [and {we have}-clause]]
                    end(proof|claim|focus|cases|induction)
                    escape
                    return
\{\alpha,\beta\}-clause
              := \alpha \text{ var} , ... , \text{var } \beta \text{ such that statement} and ... and statement
                    [and \{\alpha, \beta\}-clause]
               ::= [ident : ] type
statement
                    thesis
                    thesis for ident
              ::= ident[: type]
var
justification
                  [by (* | term , ... , term)] [using tactic]
               ::=
```

Figure 11.1: Syntax of mathematical proof commands

```
Anomaly: Cannot print a raw proof_instr. Please report.
```

The proof command only applies to *one subgoal*, thus if several sub-goals are already present, the proof ... end proof sequence has to be used several times.

```
Coq <
     Show.
3 subgoals
 ______
subgoal 2 is:
True
subgoal 3 is:
True
Coq < proof. (* first subgoal *)</pre>
1 focused subgoal (unfocused: 2)
 True
Coq < thus thesis.
2 subgoals
 _____
  True
subgoal 2 is:
True
Coq < end proof.
Anomaly: Uncaught exception Invalid_argument("get_info").
Please report.
     trivial. (* second subgoal *)
Coq <
1 subgoal
 Coq < proof. (* third subgoal *)</pre>
1 focused subgoal (unfocused: 0)
 Cog < thus thesis.
No more subgoals.
Coq < end proof.
No more subgoals.
```

As with all other block structures, the end proof command assumes that your proof is complete. If not, executing it will be equivalent to admitting that the statement is proved: A warning will be issued and you will not be able to run the Qed command. Instead, you can run Admitted if you wish to start another theorem and come back later.

```
Coq < Theorem this_is_not_so_trivial: False.</pre>
1 subgoal
 False
Coq < proof.
1 focused subgoal (unfocused: 0)
 ______
  False
Cog < end proof. (* here a warning is issued *)</pre>
1 focused subgoal (unfocused: 0)
 False
Coq < Qed. (* fails : the proof in incomplete *)</pre>
Error: Attempt to save an incomplete proof
Cog < Admitted. (* Oops! *)
this_is_not_so_trivial is assumed
```

11.3.2 Switching modes

When writing a mathematical proof, you may wish to use procedural tactics at some point. One way to do so is to write a using-phrase in a deduction step (see section 11.3.14). The other way is to use an escape...return block.

The return statement expects all subgoals to be closed, otherwise a warning is issued and the proof cannot be saved anymore.

It is possible to use the proof command inside an escape...return block, thus nesting a mathematical proof inside a procedural proof inside a mathematical proof ...

11.3.3 Computation steps

The reconsider ... as command allows to change the type of a hypothesis or of thesis to a convertible one.

```
Coa < Show.
1 focused subgoal (unfocused: 0)
 a := false : bool
 b := true : bool
 H : if a then True else False
 _____
  if b then True else False
Coq < reconsider H as False.
1 focused subgoal (unfocused: 0)
 a := false : bool
 b := true : bool
 H : False
 _____
  if b then True else False
Cog < reconsider thesis as True.
1 focused subgoal (unfocused: 0)
 a := false : bool
 b := true : bool
 H : False
 True
```

11.3.4 Deduction steps

The most common instruction in a mathematical proof is the deduction step: it asserts a new statement (a formula/type of the pCIC) and tries to prove it using a user-provided indication: the justification. The asserted statement is then added as a hypothesis to the proof context.

It is very often the case that the justifications uses the last hypothesis introduced in the context, so the then keyword can be used as a shortcut, e.g. if we want to do the same as the last example:

In this example, you can also see the creation of a temporary name _fact.

11.3.5 Iterated equalities

A common proof pattern when doing a chain of deductions, is to do multiple rewriting steps over the same term, thus proving the corresponding equalities. The iterated equalities are a syntactic support for this kind of reasoning:

```
Coq < Show.
1 focused subgoal (unfocused: 0)
 x : nat
 H : x = 2
 _____
  x + x = x * x
Coq < have (4 = 4).
1 focused subgoal (unfocused: 0)
 x : nat
 H : x = 2
 _fact : 4 = 4
 _____
  X + X = X * X
          ~= (2 * 2).
1 focused subgoal (unfocused: 0)
 x : nat
 H : x = 2
 \_eq: 4 = 2 * 2
 ______
  x + x = x * x
Coq < \sim= (x * x) by H.
```

```
1 focused subgoal (unfocused: 0)
 x : nat
 H : x = 2
 \_eq0 : 4 = x * x
 _____
  x + x = x * x
      =\sim (2 + 2).
1 focused subgoal (unfocused: 0)
 x : nat
 H : x = 2
 _{eq}: 2 + 2 = x * x
  -----
  X + X = X * X
      = ~H': (x + x) by H.
1 focused subgoal (unfocused: 0)
 x : nat
 H : x = 2
 H': x + x = x * x
 _____
  x + x = x * x
```

Notice that here we use temporary names heavily.

11.3.6 Subproofs

When an intermediate step in a proof gets too complicated or involves a well contained set of intermediate deductions, it can be useful to insert its proof as a subproof of the current proof. this is done by using the claim ... end claim pair of commands.

Now the rest of the proof can happen.

11.3.7 Conclusion steps

The commands described above have a conclusion counterpart, where the new hypothesis is used to refine the conclusion.

Let us begin with simple examples:

```
Coq < Show.
1 focused subgoal (unfocused: 0)
 A : Prop
 B : Prop
 HA : A
 HB : B
 _____
  A / \setminus B
Coq < hence B.
1 focused subgoal (unfocused: 0)
 A : Prop
 B : Prop
 HA : A
 HB : B
 _fact : B
 _____
  Α
```

In the next example, we have to use thus because HB is no longer the last hypothesis.

X	simple	with previous step	opens sub-proof	iterated equality
intermediate step	have	then	claim	~=/=~
conclusion step	thus	hence	focus on	thus $\sim=/=\sim$

Figure 11.2: Correspondence between basic forward steps and conclusion steps

```
Coq < Show.
1 focused subgoal (unfocused: 0)
 A : Prop
 B : Prop
 C: Prop
 HA : A
 HB : B
 HC : C
 _____
  A / \setminus B / \setminus C
Coq < thus B by HB.
1 focused subgoal (unfocused: 0)
 A : Prop
 B : Prop
 C : Prop
 HA : A
 HB : B
 HC : C
 _fact : B
  _____
  A / \ C
```

The command fails the refinement process cannot find a place to fit the object in a proof of the conclusion.

The refinement process may induce non reversible choices, e.g. when proving a disjunction it may *choose* one side of the disjunction.

```
Coq < hence B.
No more subgoals.</pre>
```

In this example you can see that the right branch was chosen since D remains to be proved.

```
Coq < Show.
1 focused subgoal (unfocused: 0)
 A : Prop
 B : Prop
 C : Prop
 D : Prop
 HC : C
 HD : D
 A / \setminus B \setminus / C / \setminus D
Coq < thus C by HC.
1 focused subgoal (unfocused: 0)
 A : Prop
 B : Prop
 C : Prop
 D : Prop
 HC : C
 HD : D
 _fact : C
  _____
```

Now for existential statements, we can use the take command to choose 2 as an explicit witness of existence.

It is also possible to prove the existence directly.

```
Coq < Show.
1 focused subgoal (unfocused: 0)</pre>
```

Here a more involved example where the choice of P 2 propagates the choice of 2 to another part of the formula.

```
Coq < Show.
1 focused subgoal (unfocused: 0)
 P : nat -> Prop
 R : nat -> nat -> Prop
 HP : P 2
 HR : R 0 2
 _____
  exists x y : nat, P y / \ R x y
Coq < thus (P 2) by HP.
1 focused subgoal (unfocused: 0)
 P : nat -> Prop
 R : nat -> nat -> Prop
 HP : P 2
 HR : R 0 2
 _fact : P 2
  _____
  exists n : nat, R n 2
```

Now, an example with the suffices command. suffices is a sort of dual for have: it allows to replace the conclusion (or part of it) by a sufficient condition.

```
Coq < Show.
1 focused subgoal (unfocused: 0)
 A : Prop
 B : Prop
 P : nat -> Prop
 HP: forall x: nat, P x -> B
 HA : A
  A / \setminus B
Coq < suffices to have x such that {\tt HP'}:(P\ x) to show B by {\tt HP},{\tt HP'}.
1 focused subgoal (unfocused: 0)
 A : Prop
 B : Prop
 P : nat -> Prop
 HP : forall x : nat, P x -> B
 \_cofact : forall x : nat, P x -> B
```

```
A / (exists n : nat, P n)
  Finally, an example where focus is handy: local assumptions.
Coq < Show.
1 focused subgoal (unfocused: 0)
 A : Prop
 P : nat -> Prop
 HP : P 2
  A / (forall x : nat, x = 2 \rightarrow P x)
Coq < focus on (forall x, x = 2 \rightarrow P x).
Error: No such section variable or assumption: _claim.
Coq < let x be such that (x = 2).
Error: No product even after head-reduction.
Coq < hence thesis by HP.
No more subgoals.
Coq < end focus.
```

11.3.8 Declaring an Abbreviation

No more subgoals.

In order to shorten long expressions, it is possible to use the define ... as ... command to give a name to recurring expressions.

```
Cog < Show.
1 focused subgoal (unfocused: 0)
 x : nat
 H : X = 0
 _____
  x + x = x * x
Coq < define sqr x as (x * x).
1 focused subgoal (unfocused: 0)
 x : nat
 H : X = 0
 sqr := fun x0 : nat => x0 * x0 : nat -> nat
 x + x = x \star x
Coq < reconsider thesis as (x + x = sqr x).
1 focused subgoal (unfocused: 0)
 x : nat
 H : x = 0
 sqr := fun x0 : nat => x0 * x0 : nat -> nat
 _____
  x + x = sqr x
```

11.3.9 Introduction steps

When the thesis consists of a hypothetical formula (implication or universal quantification (e.g. A -> B), it is possible to assume the hypothetical part A and then prove B. In the Mathematical Proof Language, this comes in two syntactic flavors that are semantically equivalent: let and assume. Their syntax is designed so that let works better for universal quantifiers and assume for implications.

```
Coq < Show.
1 focused subgoal (unfocused: 0)
 P : nat -> Prop
 _____
  forall x : nat, P x \rightarrow P x
Coq < let x:nat.</pre>
1 focused subgoal (unfocused: 0)
 P : nat -> Prop
 x : nat
  _____
  P \times -> P \times
Coq < assume HP: (P x).
1 focused subgoal (unfocused: 0)
 P : nat -> Prop
 x: nat
 HP : P x
 P X
```

In the let variant, the type of the assumed object is optional provided it can be deduced from the command. The objects introduced by let can be followed by assumptions using such that.

```
Coq < Show.
1 focused subgoal (unfocused: 0)
 P : nat -> Prop
  _____
  forall x : nat, P x \rightarrow P x
Coq < let x. (* fails because x's type is not clear *)</pre>
Toplevel input, characters 4-5:
> let x.
Error: Cannot infer the type of x.
Coq < let x be such that HP:(P x). (* here x's type is inferred from (P x) *)
1 focused subgoal (unfocused: 0)
 P : nat -> Prop
 x : nat
 HP : P x
  _____
  P x
```

In the assume variant, the type of the assumed object is mandatory but the name is optional:

```
Coq < Show.
1 focused subgoal (unfocused: 0)
 P : nat -> Prop
 x : nat
 P \times -> P \times -> P \times
Coq < assume (P x). (* temporary name created *)
1 focused subgoal (unfocused: 0)
 P : nat -> Prop
 x : nat
 _hyp : P x
 _____
  P \times -> P \times
  After such that, it is also the case:
Coq < Show.
1 focused subgoal (unfocused: 0)
 P : nat -> Prop
 _____
  forall x : nat, P x \rightarrow P x
Coq < let x be such that (P x). (* temporary name created *)
1 focused subgoal (unfocused: 0)
 P : nat -> Prop
 x : nat
 _hyp : P x
 _____
```

11.3.10 Tuple elimination steps

In the pCIC, many objects dealt with in simple proofs are tuples: pairs, records, existentially quantified formulas. These are so common that the Mathematical Proof Language provides a mechanism to extract members of those tuples, and also objects in tuples within tuples within tuples...

```
P : nat -> Prop
 A : Prop
 H : exists x : nat, Px / A
 x : nat
 HP : P x
 HA : A
 Here is an example with pairs:
Coq < Show.
1 focused subgoal (unfocused: 0)
 p : nat * nat
 _____
  fst p \ge snd p \setminus fst p < snd p
Coq < consider x:nat,y:nat from p.</pre>
1 focused subgoal (unfocused: 0)
```

x : nat y : nat

p : nat * nat

 $fst(x, y) \ge snd(x, y) \setminus fst(x, y) < snd(x, y)$

Coq < reconsider thesis as $(x \ge y \setminus x < y)$. 1 focused subgoal (unfocused: 0)

p : nat * nat

x : nat y : nat _____ $x \ge y \setminus x < y$

Coq < Show.

It is sometimes desirable to combine assumption and tuple decomposition. This can be done using the given command.

```
1 focused subgoal (unfocused: 0)
 P : nat -> Prop
 HP: forall n: nat, P n \rightarrow P (n-1)
 ______
  (exists m: nat, P m) -> P 0
Coq < given m such that Hm: (P m).
1 focused subgoal (unfocused: 0)
 P : nat -> Prop
 HP: forall n: nat, P n \rightarrow P (n-1)
 m : nat
 Hm : P m
 _____
```

11.3.11 Disjunctive reasoning

In some proofs (most of them usually) one has to consider several cases and prove that the thesis holds in all the cases. This is done by first specifying which object will be subject to case distinction (usually a disjunction) using per cases, and then specifying which case is being proved by using suppose.

```
Coq < per cases on HAB.
1 focused subgoal (unfocused: 0-0)
 A : Prop
 B : Prop
 C : Prop
 HAC : A \rightarrow C
 HBC : B \rightarrow C
 HAB : A \setminus / B
  _____
   C
Coq < suppose A.
1 focused subgoal (unfocused: 1-0-0)
 A : Prop
 B : Prop
  C : Prop
 HAC : A \rightarrow C
 HBC : B → C
 HAB : A \setminus / B
  _hyp : A
  _____
   C
Coq < hence thesis by HAC.
1 focused subgoal (unfocused: 0-0)
 A : Prop
 B : Prop
 C : Prop
  HAC : A \rightarrow C
  HBC : B → C
 HAB : A \setminus / B
  subcase_ : A -> C
  _____
Coq < suppose HB:B.
1 focused subgoal (unfocused: 1-0-0)
 A : Prop
 B : Prop
  C : Prop
 HAC : A \rightarrow C
 HBC : B → C
  HAB : A \setminus / B
  HB : B
```

The proof is well formed (but incomplete) even if you type end cases or the next suppose before the previous case is proved.

If the disjunction is derived from a more general principle, e.g. the excluded middle axiom), it is desirable to just specify which instance of it is being used:

```
Coq < Hypothesis EM : forall P:Prop, P \/ ~ P.
EM is assumed
Warning: EM is declared as a parameter because it is at a global level
Coq < per cases of (A \/\ ~A) by EM.
1 focused subgoal (unfocused: 0-0)
 A : Prop
 C : Prop
 HAC : A \rightarrow C
 HNAC : \sim A -> C
 anonymous_matched : A \/ ~ A
 _____
  C
Coq < suppose (\sim A).
1 focused subgoal (unfocused: 1-0-0)
 A : Prop
 C : Prop
 HAC : A \rightarrow C
 HNAC : \sim A -> C
 anonymous_matched : A \/ ~ A
 _hyp : ~ A
  _____
  C
Coq < hence thesis by HNAC.
1 focused subgoal (unfocused: 0-0)
```

```
A : Prop
 C : Prop
 HAC : A \rightarrow C
 HNAC : \sim A -> C
 anonymous_matched : A \/ ~ A
 subcase_ : ~ A -> C
  _____
  C
Coq < suppose A.
1 focused subgoal (unfocused: 1-0-0)
 A : Prop
 C : Prop
 HAC : A \rightarrow C
 HNAC : \sim A -> C
 anonymous_matched : A \/\ ~ A
 _hyp : A
 _____
Coq < hence thesis by HAC.
1 focused subgoal (unfocused: 0-0)
 A : Prop
 C : Prop
 HAC : A \rightarrow C
 HNAC : \sim A -> C
 anonymous_matched : A \/ ~ A
 subcase\_ : ~ A -> C
 subcase_0 : A -> C
 Coq < end cases.
No more subgoals.
```

11.3.12 Proofs per cases

If the case analysis is to be made on a particular object, the script is very similar: it starts with per cases on *object* instead.

```
Coq < per cases on (EM A).

1 focused subgoal (unfocused: 0-0)

A: Prop
C: Prop
HAC: A -> C
HNAC: ~ A -> C
==========
C

Coq < suppose (~A).

1 focused subgoal (unfocused: 1-0-0)
```

If the object on which a case analysis occurs in the statement to be proved, the command suppose it is *pattern* is better suited than suppose. *pattern* may contain nested patterns with as clauses. A detailed description of patterns is to be found in figure 1.2. here is an example.

```
Coq < per cases on x.
1 focused subgoal (unfocused: 0-0)
 A : Prop
 B : Prop
 x : bool
 _____
   (if x then A else B) \rightarrow A \/ B
Coq < suppose it is true.
1 focused subgoal (unfocused: 1-0-0)
 A : Prop
 B : Prop
 x : bool
 ______
  A -> A \/ B
Coq < assume A.
1 focused subgoal (unfocused: 1-0-0)
 A : Prop
 B : Prop
 x : bool
 _hyp : A
  _____
  A \setminus / B
Coq < hence A.
1 focused subgoal (unfocused: 0-0)
 A : Prop
 B : Prop
 x : bool
 subcase\_ : (if true then A else B) -> A \/ B
 _____
  (if x then A else B) \rightarrow A \/ B
Coq < suppose it is false.
1 focused subgoal (unfocused: 1-0-0)
 A : Prop
 B : Prop
```

```
x : bool
 _____
  B \rightarrow A \setminus B
Coq < assume B.
1 focused subgoal (unfocused: 1-0-0)
 A : Prop
 B : Prop
 x : bool
 _hyp : B
 ______
  A \setminus / B
Coq < hence B.
1 focused subgoal (unfocused: 0-0)
 A : Prop
 B : Prop
 x : bool
 subcase_ : (if true then A else B) -> A \/ B
 subcase\_0 : (if false then A else B) -> A \/ B
 _____
   (if x then A else B) \rightarrow A \/ B
Coq < end cases.
No more subgoals.
```

11.3.13 Proofs by induction

Proofs by induction are very similar to proofs per cases: they start with per induction on object and proceed with suppose it is pattern and induction hypothesis. The induction hypothesis can be given explicitly or identified by the sub-object m it refers to using thesis for m.

```
Coq < per induction on n.
1 focused subgoal (unfocused: 0-0)
 n : nat
 _____
  n + 0 = n
Coq < suppose it is 0.
1 focused subgoal (unfocused: 1-0-0)
 n : nat
 _____
  0 + 0 = 0
Coq < thus (0 + 0 = 0).
1 focused subgoal (unfocused: 0-0)
 n : nat
 subcase_{-}: 0 + 0 = 0
 _____
  n + 0 = n
```

```
Coq < suppose it is (S m) and H:thesis for m.
1 focused subgoal (unfocused: 1-0-0)
 n : nat
 m : nat
 H : m + 0 = m
 S m + 0 = S m
Coq < then (S (m + 0) = S m).
1 focused subgoal (unfocused: 1-0-0)
 n : nat
 m : nat
 H : m + 0 = m
 \_fact : S (m + 0) = S m
 _____
  S m + 0 = S m
Coq < thus =\sim (S m + 0).
1 focused subgoal (unfocused: 0-0)
 n : nat
 subcase\_ : 0 + 0 = 0
 subcase\_0 : forall m : nat, m + 0 = m -> S m + 0 = S m
 _____
  n + 0 = n
Coq < end induction.
No more subgoals.
```

11.3.14 Justifications

Intuitively, justifications are hints for the system to understand how to prove the statements the user types in. In the case of this language justifications are made of two components:

Justification objects: by followed by a comma-separated list of objects that will be used by a selected tactic to prove the statement. This defaults to the empty list (the statement should then be tautological). The * wildcard provides the usual tactics behavior: use all statements in local context. However, this wildcard should be avoided since it reduces the robustness of the script.

Justification tactic: using followed by a Coq tactic that is executed to prove the statement. The default is a solver for (intuitionistic) first-order with equality.

11.4 More details and Formal Semantics

I suggest the users looking for more information have a look at the paper [33]. They will find in that paper a formal semantics of the proof state transition induces by mathematical commands.

Part III User extensions

Chapter 12

Syntax extensions and interpretation scopes

In this chapter, we introduce advanced commands to modify the way CoQ parses and prints objects, i.e. the translations between the concrete and internal representations of terms and commands. The main commands are Notation and Infix which are described in section 12.1. It also happens that the same symbolic notation is expected in different contexts. To achieve this form of overloading, CoQ offers a notion of interpretation scope. This is described in Section 12.2.

Remark: The commands Grammar, Syntax and Distfix which were present for a while in CoQ are no longer available from CoQ version 8.0. The underlying AST structure is also no longer available. The functionalities of the command Syntactic Definition are still available, see Section 12.3.

12.1 Notations

12.1.1 Basic notations

A *notation* is a symbolic abbreviation denoting some term or term pattern.

A typical notation is the use of the infix symbol $/ \setminus$ to denote the logical conjunction (and). Such a notation is declared by

```
Coq < Notation "A /\ B" := (and A B).
```

The expression (and A B) is the abbreviated term and the string "A $/ \$ B" (called a *notation*) tells how it is symbolically written.

A notation is always surrounded by double quotes (excepted when the abbreviation is a single identifier, see 12.3). The notation is composed of *tokens* separated by spaces. Identifiers in the string (such as A and B) are the *parameters* of the notation. They must occur at least once each in the denoted term. The other elements of the string (such as $/ \$) are the *symbols*.

An identifier can be used as a symbol but it must be surrounded by simple quotes to avoid the confusion with a parameter. Similarly, every symbol of at least 3 characters and starting with a simple quote must be quoted (then it starts by two single quotes). Here is an example.

```
Coq < Notation "'IF' c1 'then' c2 'else' c3" := (IF_then_else c1 c2 c3).
```

A notation binds a syntactic expression to a term. Unless the parser and pretty-printer of CoQ already know how to deal with the syntactic expression (see 12.1.7), explicit precedences and associativity rules have to be given.

12.1.2 Precedences and associativity

Mixing different symbolic notations in a same text may cause serious parsing ambiguity. To deal with the ambiguity of notations, CoQ uses precedence levels ranging from 0 to 100 (plus one extra level numbered 200) and associativity rules.

Consider for example the new notation

```
Coq < Notation "A \/ B" := (or A B).
```

Clearly, an expression such as forall A:Prop, True /\ A \/ A \/ False is ambiguous. To tell the CoQ parser how to interpret the expression, a priority between the symbols /\ and \/ has to be given. Assume for instance that we want conjunction to bind more than disjunction. This is expressed by assigning a precedence level to each notation, knowing that a lower level binds more than a higher level. Hence the level for disjunction must be higher than the level for conjunction.

Since connectives are the less tight articulation points of a text, it is reasonable to choose levels not so far from the higher level which is 100, for example 85 for disjunction and 80 for conjunction¹.

Similarly, an associativity is needed to decide whether True /\ False /\ False defaults to True /\ (False /\ False) (right associativity) or to (True /\ False) /\ False (left associativity). We may even consider that the expression is not well-formed and that parentheses are mandatory (this is a "no associativity")². We don't know of a special convention of the associativity of disjunction and conjunction, let's apply for instance a right associativity (which is the choice of COQ).

Precedence levels and associativity rules of notations have to be given between parentheses in a list of modifiers that the Notation command understands. Here is how the previous examples refine.

```
Coq < Notation "A /\ B" := (and A B) (at level 80, right associativity). Coq < Notation "A \/ B" := (or A B) (at level 85, right associativity).
```

By default, a notation is considered non associative, but the precedence level is mandatory (except for special cases whose level is canonical). The level is either a number or the mention next level whose meaning is obvious. The list of levels already assigned is on Figure 3.1.

12.1.3 Complex notations

Notations can be made from arbitraly complex symbols. One can for instance define prefix notations.

```
Coq < Notation "\sim x" := (not x) (at level 75, right associativity).
```

One can also define notations for incomplete terms, with the hole expected to be inferred at typing time.

```
Coq < Notation "x = y" := (@eq x y) (at level 70, no associativity).
```

One can define *closed* notations whose both sides are symbols. In this case, the default precedence level for inner subexpression is 200.

```
Coq < Notation "( x , y )" := (@pair \_ x y) (at level 0).
```

¹which are the levels effectively chosen in the current implementation of CoQ

² COQ accepts notations declared as no associative but the parser on which COQ is built, namely CAMLP4, currently does not implement the no-associativity and replace it by a left associativity; hence it is the same for COQ: no-associativity is in fact left associativity

12.1 Notations 293

One can also define notations for binders.

```
Coq < Notation "{ x : A \mid P }" := (sig A (fun x => P)) (at level 0).
```

In the last case though, there is a conflict with the notation for type casts. This last notation, as shown by the command Print Grammar constr is at level 100. To avoid x: A being parsed as a type cast, it is necessary to put x at a level below 100, typically 99. Hence, a correct definition is

```
Coq < Notation "{ x : A \mid P}" := (sig A (fun x \Rightarrow P)) (at level 0, x at level 99).
```

See the next section for more about factorization.

12.1.4 Simple factorization rules

CoQ extensible parsing is performed by Camlp5 which is essentially a LL1 parser. Hence, some care has to be taken not to hide already existing rules by new rules. Some simple left factorization work has to be done. Here is an example.

```
Coq < Notation "x < y" := (lt x y) (at level 70).

Coq < Notation "x < y < z" := (x < y / y < z) (at level 70).
```

In order to factorize the left part of the rules, the subexpression referred by y has to be at the same level in both rules. However the default behavior puts y at the next level below 70 in the first rule (no associativity is the default), and at the level 200 in the second rule (level 200 is the default for inner expressions). To fix this, we need to force the parsing level of y, as follows.

```
Coq < Notation "x < y" := (lt x y) (at level 70).

Coq < Notation "x < y < z" := (x < y / \ y < z) (at level 70, y at next level).
```

For the sake of factorization with COQ predefined rules, simple rules have to be observed for notations starting with a symbol: e.g. rules starting with "{" or "(" should be put at level 0. The list of COQ predefined notations can be found in Chapter 3.

The command to display the current state of the Coo term parser is

```
Print Grammar constr.
```

Variant:

```
Print Grammar pattern.
```

This displays the state of the subparser of patterns (the parser used in the grammar of the match with constructions).

12.1.5 Displaying symbolic notations

The command Notation has an effect both on the Coo parser and on the Coo printer. For example:

```
Coq < Check (and True True).
True /\ True
: Prop</pre>
```

However, printing, especially pretty-printing, requires more care than parsing. We may want specific indentations, line breaks, alignment if on several lines, etc.

The default printing of notations is very rudimentary. For printing a notation, a *formatting box* is opened in such a way that if the notation and its arguments cannot fit on a single line, a line break is inserted before the symbols of the notation and the arguments on the next lines are aligned with the argument on the first line.

A first, simple control that a user can have on the printing of a notation is the insertion of spaces at some places of the notation. This is performed by adding extra spaces between the symbols and parameters: each extra space (other than the single space needed to separate the components) is interpreted as a space to be inserted by the printer. Here is an example showing how to add spaces around the bar of the notation.

The second, more powerful control on printing is by using the format modifier. Here is an example

```
Coq < Notation "'If' c1 'then' c2 'else' c3" := (IF_then_else c1 c2 c3) Coq < (at level 200, right associativity, format Coq < "'[v ''If' c1'/''[''then' c2']''']'''). Identifier 'If' now a keyword
```

A *format* is an extension of the string denoting the notation with the possible following elements delimited by single quotes:

- extra spaces are translated into simple spaces
- tokens of the form ' / ' are translated into breaking point, in case a line break occurs, an indentation of the number of spaces after the "/" is applied (2 spaces in the given example)
- token of the form ' / / ' force writing on a new line
- well-bracketed pairs of tokens of the form ' [' and '] ' are translated into printing boxes; in case a line break occurs, an extra indentation of the number of spaces given after the "[" is applied (4 spaces in the example)
- well-bracketed pairs of tokens of the form ' [hv ' and ']' are translated into horizontalorelse-vertical printing boxes; if the content of the box does not fit on a single line, then every breaking point forces a newline and an extra indentation of the number of spaces given after the "[" is applied at the beginning of each newline (3 spaces in the example)

12.1 Notations 295

• well-bracketed pairs of tokens of the form '[v ' and ']' are translated into vertical printing boxes; every breaking point forces a newline, even if the line is large enough to display the whole content of the box, and an extra indentation of the number of spaces given after the "[" is applied at the beginning of each newline

Thus, for the previous example, we get

Notations do not survive the end of sections. No typing of the denoted expression is performed at definition time. Type-checking is done only at the time of use of the notation.

Remark: Sometimes, a notation is expected only for the parser. To do so, the option *only parsing* is allowed in the list of modifiers of Notation.

12.1.6 The Infix command

The Infix command is a shortening for declaring notations of infix symbols. Its syntax is

```
Infix "symbol" := qualid (modifier, ..., modifier).

and it is equivalent to

Notation "x symbol y" := (qualid x y) (modifier, ..., modifier).

where x and y are fresh names distinct from qualid. Here is an example.

Coq < Infix "/\" := and (at level 80, right associativity).
```

12.1.7 Reserving notations

A given notation may be used in different contexts. CoQ expects all uses of the notation to be defined at the same precedence and with the same associativity. To avoid giving the precedence and associativity every time, it is possible to declare a parsing rule in advance without giving its interpretation. Here is an example from the initial state of CoQ.

```
Coq < Reserved Notation "x = y" (at level 70, no associativity).
```

Reserving a notation is also useful for simultaneously defined an inductive type or a recursive constant and a notation for it.

Remark: The notations mentioned on Figure 3.1 are reserved. Hence their precedence and associativity cannot be changed.

12.1.8 Simultaneous definition of terms and notations

Thanks to reserved notations, the inductive, co-inductive, recursive and corecursive definitions can benefit of customized notations. To do this, insert a where notation clause after the definition of the (co)inductive type or (co)recursive term (or after the definition of each of them in case of mutual definitions). The exact syntax is given on Figure 12.1. Here are examples:

```
Coq < Inductive and (A B:Prop) : Prop := conj : A -> B -> A /\ B
Coq < where "A /\ B" := (and A B).

Coq < Fixpoint plus (n m:nat) {struct n} : nat :=
Coq < match n with
Coq < | O => m
Coq < | S p => S (p+m)
Coq < end
Coq < where "n + m" := (plus n m).</pre>
```

12.1.9 Displaying informations about notations

To deactivate the printing of all notations, use the command

```
Unset Printing Notations.
```

To reactivate it, use the command

```
Set Printing Notations.
```

The default is to use notations for printing terms wherever possible.

```
See also: Set Printing All in Section 2.9.
```

12.1.10 Locating notations

To know to which notations a given symbol belongs to, use the command

```
Locate symbol
```

where symbol is any (composite) symbol surrounded by double quotes. To locate a particular notation, use a string where the variables of the notation are replaced by "_" and where possible single quotes inserted around identifiers or tokens starting with a single quote are dropped.

Example:

12.1 Notations 297

```
::= [Local] Notation string := term [modifiers] [:scope] .
sentence
                  [Local] Infix string := qualid [modifiers] [:scope] .
                  [Local] Reserved Notation string [modifiers] .
                  Inductive ind body [decl notation] with ... with ind body [decl notation].
                  CoInductive ind_body [decl_notation] with ... with ind_body [decl_notation].
                  Fixpoint fix_body [decl_notation] with ... with fix_body [decl_notation] .
                  Cofixpoint cofix_body [decl_notation] with ... with cofix_body [decl_notation].
             ::= [where string := term [:scope] and ... and string := term [:scope]].
decl_notation
modifiers
              ::= ident , ... , ident at level natural
                  ident , ... , ident at next level
                  at level natural
                  left associativity
                  right associativity
                  no associativity
                  ident ident
                  ident binder
                  ident closed binder
                  ident global
                  ident bigint
                  only parsing
                   format string
```

Figure 12.1: Syntax of the variants of Notation

See also: Section 6.3.10.

12.1.11 Notations and simple binders

Notations can be defined for binders as in the example:

```
Coq < Notation "{ x : A \mid P }" := (sig (fun x : A \Rightarrow P)) (at level 0).
```

The binding variables in the left-hand-side that occur as a parameter of the notation naturally bind all their occurrences appearing in their respective scope after instantiation of the parameters of the notation.

Contrastingly, the binding variables that are not a parameter of the notation do not capture the variables of same name that could appear in their scope after instantiation of the notation. E.g., for the notation

```
Coq < Notation "'exists_different' n" := (exists p:nat, p<>n) (at level 200).
```

the next command fails because p does not bind in the instance of n.

Remark: Binding variables must not necessarily be parsed using the ident entry. For factorization purposes, they can be said to be parsed at another level (e.g. \times in " { \times : A | P } " must be parsed at level 99 to be factorized with the notation " { A } + { B } " for which A can be any term). However, even if parsed as a term, this term must at the end be effectively a single identifier.

12.1.12 Notations with recursive patterns

A mechanism is provided for declaring elementary notations with recursive patterns. The basic example is:

```
Coq < Notation "[x; ...; y]" := (cons x ... (cons y nil) ..).
```

On the right-hand side, an extra construction of the form \dots t \dots can be used. Notice that \dots is part of the CoQ syntax and it must not be confused with the three-dots notation \dots used in this manual to denote a sequence of arbitrary size.

On the left-hand side, the part " $x \ s$... $s \ y$ " of the notation parses any number of time (but at least one time) a sequence of expressions separated by the sequence of tokens s (in the example, s is just ";").

In the right-hand side, the term enclosed within .. must be a pattern with two holes of the form $\phi([\]_E,[\]_I)$ where the first hole is occupied either by x or by y and the second hole is occupied by an arbitrary term t called the *terminating* expression of the recursive notation. The subterm .. $\phi(x,t)$... (or ... $\phi(y,t)$...) must itself occur at second position of the same pattern where the first hole is occupied by the other variable, y or x. Otherwise said, the right-hand side must contain a subterm of the form either $\phi(x,\ldots\phi(y,t)\ldots)$ or $\phi(y,\ldots\phi(x,t)\ldots)$. The pattern ϕ is the *iterator* of the recursive notation and, of course, the name x and y can be chosen arbitrarily.

The parsing phase produces a list of expressions which are used to fill in order the first hole of the iterating pattern which is repeatedly nested as many times as the length of the list, the second hole being the nesting point. In the innermost occurrence of the nested iterating pattern, the second hole is finally filled with the terminating expression.

In the example above, the iterator $\phi([]_E,[]_I)$ is cons $[]_E$ $[]_I$ and the terminating expression is nil. Here are other examples:

```
Coq < Notation "( x , y , ..., z )" := (pair .. (pair x y) ... z) (at level 0). Coq < Notation "[| t * ( x , y , ..., z ) ; ( a , b , ..., c ) * u |]" := Coq < (pair (pair .. (pair (pair t x) (pair t y)) ... (pair t z)) Coq < (pair ... (pair (pair a u) (pair b u)) ... (pair c u))) Coq < (t at level 39).
```

Notations with recursive patterns can be reserved like standard notations, they can also be declared within interpretation scopes (see section 12.2).

12.1 Notations 299

12.1.13 Notations with recursive patterns involving binders

Recursive notations can also be used with binders. The basic example is:

```
Coq < Notation "'exists' x .. y , p" := (ex (fun x => .. (ex (fun y => p)) ..)) Coq < (at level 200, x binder, y binder, right associativity).
```

The principle is the same as in Section 12.1.12 except that in the iterator $\phi([]_E,[]_I)$, the first hole is a placeholder occurring at the position of the binding variable of a fun or a forall.

To specify that the part "x ... y" of the notation parses a sequence of binders, x and y must be marked as binder in the list of modifiers of the notation. Then, the list of binders produced at the parsing phase are used to fill in the first hole of the iterating pattern which is repeatedly nested as many times as the number of binders generated. If ever the generalization operator '(see Section 2.7.20) is used in the binding list, the added binders are taken into account too.

Binders parsing exist in two flavors. If x and y are marked as binder, then a sequence such as a b c: T will be accepted and interpreted as the sequence of binders (a:T) (b:T) (c:T). For instance, in the notation above, the syntax exists a b: nat, a = b is provided.

The variables x and y can also be marked as closed binder in which case only well-bracketed binders of the form (a b c:T) or {a b c:T} etc. are accepted.

With closed binders, the recursive sequence in the left-hand side can be of the general form $x \ s$. . $s \ y$ where s is an arbitrary sequence of tokens. With open binders though, s has to be empty. Here is an example of recursive notation with closed binders:

```
Coq < Notation "'mylet' f x .. y := t 'in' u":= Coq < (let f := fun x => .. (fun y => t) .. in u) Coq < (x closed binder, y closed binder, at level 200, right associativity).
```

12.1.14 Summary

Syntax of notations The different syntactic variants of the command Notation are given on Figure 12.1. The optional : scope is described in the Section 12.2.

Remark: No typing of the denoted expression is performed at definition time. Type-checking is done only at the time of use of the notation.

Remark: Many examples of Notation may be found in the files composing the initial state of CoQ (see directory \$COQLIB/theories/Init).

Remark: The notation " $\{x\}$ " has a special status in such a way that complex notations of the form " $x+\{y\}$ " or " $x*\{y\}$ " can be nested with correct precedences. Especially, every notation involving a pattern of the form " $\{x\}$ " is parsed as a notation where the pattern " $\{x\}$ " has been simply replaced by "x" and the curly brackets are parsed separately. E.g. " $y+\{z\}$ " is not parsed as a term of the given form but as a term of the form "y+z" where z has been parsed using the rule parsing " $\{x\}$ ". Especially, level and precedences for a rule including patterns of the form " $\{x\}$ " are relative not to the textual notation but to the notation where the curly brackets have been removed (e.g. the level and the associativity given to some notation, say " $\{y\}$ & $\{z\}$ " in fact applies to the underlying " $\{x\}$ "-free rule which is "y & z").

Persistence of notations Notations do not survive the end of sections. They survive modules unless the command Local Notation is used instead of Notation.

12.2 Interpretation scopes

An *interpretation scope* is a set of notations for terms with their interpretation. Interpretation scopes provides with a weak, purely syntactical form of notations overloading: a same notation, for instance the infix symbol + can be used to denote distinct definitions of an additive operator. Depending on which interpretation scopes is currently open, the interpretation is different. Interpretation scopes can include an interpretation for numerals and strings. However, this is only made possible at the OBJECTIVE CAML level.

See Figure 12.1 for the syntax of notations including the possibility to declare them in a given scope. Here is a typical example which declares the notation for conjunction in the scope type_scope.

```
Notation "A /\ B" := (and A B) : type_scope.
```

Remark: A notation not defined in a scope is called a *lonely* notation.

12.2.1 Global interpretation rules for notations

At any time, the interpretation of a notation for term is done within a *stack* of interpretation scopes and lonely notations. In case a notation has several interpretations, the actual interpretation is the one defined by (or in) the more recently declared (or open) lonely notation (or interpretation scope) which defines this notation. Typically if a given notation is defined in some scope *scope* but has also an interpretation not assigned to a scope, then, if *scope* is open before the lonely interpretation is declared, then the lonely interpretation is used (and this is the case even if the interpretation of the notation in *scope* is given after the lonely interpretation: otherwise said, only the order of lonely interpretations and opening of scopes matters, and not the declaration of interpretations within a scope).

The initial state of CoQ declares three interpretation scopes and no lonely notations. These scopes, in opening order, are core_scope, type_scope and nat_scope.

The command to add a scope to the interpretation scope stack is

```
Open Scope scope.
```

It is also possible to remove a scope from the interpretation scope stack by using the command

```
Close Scope scope.
```

Notice that this command does not only cancel the last Open Scope but all the invocation of it

Remark: Open Scope and Close Scope do not survive the end of sections where they occur. When defined outside of a section, they are exported to the modules that import the module where they occur.

Variants:

- 1. Local Open Scope scope.
- 2. Local Close Scope scope.

These variants are not exported to the modules that import the module where they occur, even if outside a section.

- 3. Global Open Scope scope.
- 4. Global Close Scope scope.

These variants survive sections. They behave as if Global were absent when not inside a section.

12.2.2 Local interpretation rules for notations

In addition to the global rules of interpretation of notations, some ways to change the interpretation of subterms are available.

Local opening of an interpretation scope

It is possible to locally extend the interpretation scope stack using the syntax (term)%key (or simply term%key for atomic terms), where key is a special identifier called delimiting key and bound to a given scope.

In such a situation, the term *term*, and all its subterms, are interpreted in the scope stack extended with the scope bound to *key*.

To bind a delimiting key to a scope, use the command

```
Delimit Scope scope with ident
```

Binding arguments of a constant to an interpretation scope

It is possible to set in advance that some arguments of a given constant have to be interpreted in a given scope. The command is

```
Arguments qualid name%scope ... name%scope
```

where the list is the list of the arguments of *qualid* eventually annotated with their *scope*. Grouping round parentheses can be used to decorate multiple arguments with the same scope. *scope* can be either a scope name or its delimiting key. For example the following command puts the first two arguments of plus_fct in the scope delimited by the key F (Rfun_scope) and the last argument in the scope delimited by the key R (R_scope).

```
Coq < Arguments plus_fct (f1 f2)%F x%R.
```

The Arguments command accepts scopes decoration to all grouping parentheses. In the following example arguments A and B are marked as maximally inserted implicit arguments and are put into the type_scope scope.

```
Coq < Arguments respectful {A B}%type (R R')%signature _ _.
```

When interpreting a term, if some of the arguments of *qualid* are built from a notation, then this notation is interpreted in the scope stack extended by the scopes bound (if any) to these arguments.

Arguments scopes can be cleared with the following command:

```
Arguments qualid : clear scopes
```

Variants:

1. Global Arguments qualid name % scope ... name % scope

This behaves like Arguments *qualid name*% scope ... name% scope but survives when a section is closed instead of stopping working at section closing. Without the Global modifier, the effect of the command stops when the section it belongs to ends.

2. Local Arguments qualid name%scope ... name%scope

This behaves like Arguments *qualid name%scope* ... *name%scope* but does not survive modules and files. Without the Local modifier, the effect of the command is visible from within other modules or files.

See also: The command to show the scopes bound to the arguments of a function is described in Section 2.

Binding types of arguments to an interpretation scope

When an interpretation scope is naturally associated to a type (e.g. the scope of operations on the natural numbers), it may be convenient to bind it to this type. The effect of this is that any argument of a function that syntactically expects a parameter of this type is interpreted using scope. More precisely, it applies only if this argument is built from a notation, and if so, this notation is interpreted in the scope stack extended by this particular scope. It does not apply to the subterms of this notation (unless the interpretation of the notation itself expects arguments of the same type that would trigger the same scope).

More generally, any *class* (see Chapter 18) can be bound to an interpretation scope. The command to do it is

Bind Scope scope with class

Example:

```
Coq < Parameter U : Set.
U is assumed
Coq < Bind Scope U_scope with U.
Coq < Parameter Uplus : U -> U -> U.
Uplus is assumed
Coq < Parameter P : forall T:Set, T -> U -> Prop.
P is assumed
Coq < Parameter f : forall T:Set, T -> U.
f is assumed
Coq < Infix "+" := Uplus : U_scope.
Coq < Unset Printing Notations.
Coq < Open Scope nat_scope. (* Define + on the nat as the default for + \star)
Coq < Check (fun x y1 y2 z t => P _ (x + t) ((f _ (y1 + y2) + z))).
fun (x y1 y2 : nat) (z : U) (t : nat) =>
P nat (Peano.plus x t) (Uplus (f nat (Peano.plus y1 y2)) z)
     : nat -> nat -> nat -> U -> nat -> Prop
```

Remark: The scope type_scope has also a local effect on interpretation. See the next section.

See also: The command to show the scopes bound to the arguments of a function is described in Section 2.

12.2.3 The type_scope interpretation scope

The scope type_scope has a special status. It is a primitive interpretation scope which is temporarily activated each time a subterm of an expression is expected to be a type. This includes goals and statements, types of binders, domain and codomain of implication, codomain of products, and more generally any type argument of a declared or defined constant.

12.2.4 Interpretation scopes used in the standard library of Coo

We give an overview of the scopes used in the standard library of CoQ. For a complete list of notations in each scope, use the commands Print Scopes or Print Scope scope.

```
type_scope
```

This includes infix \star for product types and infix + for sum types. It is delimited by key type.

```
nat_scope
```

This includes the standard arithmetical operators and relations on type nat. Positive numerals in this scope are mapped to their canonical representent built from 0 and S. The scope is delimited by key nat.

```
N_scope
```

This includes the standard arithmetical operators and relations on type N (binary natural numbers). It is delimited by key N and comes with an interpretation for numerals as closed term of type Z.

```
Z_scope
```

This includes the standard arithmetical operators and relations on type \mathbb{Z} (binary integer numbers). It is delimited by key \mathbb{Z} and comes with an interpretation for numerals as closed term of type \mathbb{Z} .

```
positive_scope
```

This includes the standard arithmetical operators and relations on type positive (binary strictly positive numbers). It is delimited by key positive and comes with an interpretation for numerals as closed term of type positive.

```
Q_scope
```

This includes the standard arithmetical operators and relations on type $\mathbb Q$ (rational numbers defined as fractions of an integer and a strictly positive integer modulo the equality of the numerator-denominator cross-product). As for numerals, only 0 and 1 have an interpretation in scope $\mathbb Q_scope$ (their interpretations are $\frac{0}{1}$ and $\frac{1}{1}$ respectively).

```
Qc_scope
```

This includes the standard arithmetical operators and relations on the type Qc of rational numbers defined as the type of irreducible fractions of an integer and a strictly positive integer.

```
real_scope
```

This includes the standard arithmetical operators and relations on type R (axiomatic real numbers). It is delimited by key R and comes with an interpretation for numerals as term of type R. The interpretation is based on the binary decomposition. The numeral 2 is represented by 1+1. The interpretation $\phi(n)$ of an odd positive numerals greater n than 3 is $1+(1+1)*\phi((n-1)/2)$. The interpretation $\phi(n)$ of an even positive numerals greater n than 4 is $(1+1)*\phi(n/2)$. Negative numerals are represented as the opposite of the interpretation of their absolute value. E.g. the syntactic object -11 is interpreted as -(1+(1+1)*(1+1)*(1+(1+1))) where the unit 1 and all the operations are those of R.

```
bool_scope
```

This includes notations for the boolean operators. It is delimited by key bool.

```
list_scope
```

This includes notations for the list operators. It is delimited by key list.

```
core_scope
```

This includes the notation for pairs. It is delimited by key core.

```
string_scope
```

This includes notation for strings as elements of the type string. Special characters and escaping follow COQ conventions on strings (see Section 1.1). Especially, there is no convention to visualize non printable characters of a string. The file String.v shows an example that contains quotes, a newline and a beep (i.e. the ascii character of code 7).

```
char_scope
```

This includes interpretation for all strings of the form "c" where c is an ascii character, or of the form "nnn" where nnn is a three-digits number (possibly with leading 0's), or of the form """". Their respective denotations are the ascii code of c, the decimal ascii code nnn, or the ascii code of the character " (i.e. the ascii code 34), all of them being represented in the type ascii.

12.2.5 Displaying informations about scopes

```
Print Visibility
```

This displays the current stack of notations in scopes and lonely notations that is used to interpret a notation. The top of the stack is displayed last. Notations in scopes whose interpretation is hidden by the same notation in a more recently open scope are not displayed. Hence each notation is displayed only once.

Variant:

```
Print Visibility scope
```

This displays the current stack of notations in scopes and lonely notations assuming that *scope* is pushed on top of the stack. This is useful to know how a subterm locally occurring in the scope of *scope* is interpreted.

12.3 Abbreviations 305

```
Print Scope scope
```

This displays all the notations defined in interpretation scope *scope*. It also displays the delimiting key if any and the class to which the scope is bound, if any.

```
Print Scopes
```

This displays all the notations, delimiting keys and corresponding class of all the existing interpretation scopes. It also displays the lonely notations.

12.3 Abbreviations

An *abbreviation* is a name, possibly applied to arguments, that denotes a (presumably) more complex expression. Here are examples:

An abbreviation expects no precedence nor associativity, since it follows the usual syntax of application. Abbreviations are used as much as possible by the CoQ printers unless the modifier (only parsing) is given.

Abbreviations are bound to an absolute name as an ordinary definition is, and they can be referred by qualified names too.

Abbreviations are syntactic in the sense that they are bound to expressions which are not typed at the time of the definition of the abbreviation but at the time it is used. Especially, abbreviations can be bound to terms with holes (i.e. with "_"). The general syntax for abbreviations is

```
[Local] Notation ident [ident ident ... ident ident] := term [(only parsing)].
```

Example:

```
Coq < Definition explicit_id (A:Set) (a:A) := a.
explicit_id is defined
Coq < Notation id := (explicit_id _).
Coq < Check (id 0).
id 0
: nat</pre>
```

Abbreviations do not survive the end of sections. No typing of the denoted expression is performed at definition time. Type-checking is done only at the time of use of the abbreviation.

12.4 Tactic Notations

Tactic notations allow to customize the syntax of the tactics of the tactic language³. Tactic notations obey the following syntax

```
sentence
                        Tactic Notation [tactic_level] production_item ... production_item
                         := tactic .
production_item
                        string | tactic_argument_type (ident)
                    ::=
tactic level
                        (at level natural)
                    ::=
                        ident | simple_intropattern | reference
tactic argument type
                        hyp | hyp_list | ne_hyp_list
                        constr | constr_list | ne_constr_list
                        integer | integer_list | ne_integer_list
                        int_or_var | int_or_var_list | ne_int_or_var_list
                        tactic | tactic n (for 0 \le n \le 5)
```

A tactic notation Tactic Notation tactic_level [production_item ... production_item] := tactic extends the parser and pretty-printer of tactics with a new rule made of the list of production items. It then evaluates into the tactic expression tactic. For simple tactics, it is recommended to use a terminal symbol, i.e. a string, for the first production item. The tactic level indicates the parsing precedence of the tactic notation. This information is particularly relevant for notations of tacticals. Levels 0 to 5 are available (default is 0). To know the parsing precedences of the existing tacticals, use the command Print Grammar tactic.

Each type of tactic argument has a specific semantic regarding how it is parsed and how it is interpreted. The semantic is described in the following table. The last command gives examples of tactics which use the corresponding kind of argument.

Tactic argument type	parsed as	interpreted as	as in tactic
ident	identifier	a user-given name	intro
simple_intropattern	intro_pattern	an intro_pattern	intros
hyp	identifier	an hypothesis defined in context	clear
reference	qualified identifier	a global reference of term	unfold
constr	term	a term	exact
integer	integer	an integer	
int_or_var	identifier or integer	an integer	do
tactic	tactic at level 5	a tactic	
tactic n	tactic at level n	a tactic	
<pre>entry_list</pre>	list of entry	a list of how <i>entry</i> is interpreted	
ne_ <i>entry</i> _list	non-empty list of entry	a list of how <i>entry</i> is interpreted	

Remark: In order to be bound in tactic definitions, each syntactic entry for argument type must include the case of simple \mathcal{L}_{tac} identifier as part of what it parses. This is naturally the case for ident, simple_intropattern, reference, constr, ... but not for integer. This is the reason for introducing a special entry int_or_var which evaluates to integers only but which syntactically includes identifiers in order to be usable in tactic definitions.

 $^{^3}$ Tactic notations are just a simplification of the Grammar tactic simple_tactic command that existed in versions prior to version 8.0.

12.4 Tactic Notations 307

Remark: The *entry*_list and ne_*entry*_list entries can be used in primitive tactics or in other notations at places where a list of the underlying entry can be used: *entry* is either constr, hyp, integer or int_or_var.

12 Syntax extensions and	interpretation scopes
--------------------------	-----------------------

Chapter 13

Proof schemes

13.1 Generation of induction principles with Scheme

The Scheme command is a high-level tool for generating automatically (possibly mutual) induction principles for given types and sorts. Its syntax follows the schema:

```
Scheme ident_1 := Induction for ident'_1 Sort sort_1 with ... with ident_m := Induction for ident'_m Sort sort_m
```

where $ident'_1 \dots ident'_m$ are different inductive type identifiers belonging to the same package of mutual inductive definitions. This command generates $ident_1 \dots ident_m$ to be mutually recursive definitions. Each term $ident_i$ proves a general principle of mutual induction for objects in type $term_i$.

Variants:

```
1. Scheme ident_1 := Minimality for ident'_1 Sort sort_1 with ... with ident_m := Minimality for ident'_m Sort sort_m
```

Same as before but defines a non-dependent elimination principle more natural in case of inductively defined relations.

2. Scheme Equality for $ident_1$

Tries to generate a Boolean equality and a proof of the decidability of the usual equality. If $ident_i$ involves some other inductive types, their equality has to be defined first.

```
3. Scheme Induction for ident_1 Sort sort_1 with ... with Induction for ident_m Sort sort_m
```

If you do not provide the name of the schemes, they will be automatically computed from the sorts involved (works also with Minimality).

Example 1: *Induction scheme for tree and forest*

The definition of principle of mutual induction for tree and forest over the sort Set is defined by the command:

310 13 Proof schemes

You may now look at the type of tree_forest_rec:

```
Coq < Check tree_forest_rec.
tree_forest_rec
: forall (P : tree -> Set) (P0 : forest -> Set),
      (forall (a : A) (f : forest), P0 f -> P (node a f)) ->
      (forall b : B, P0 (leaf b)) ->
      (forall t : tree, P t -> forall f1 : forest, P0 f1 -> P0 (cons t f1)) ->
      forall t : tree, P t
```

This principle involves two different predicates for trees and forests; it also has three premises each one corresponding to a constructor of one of the inductive definitions.

The principle forest_tree_rec shares exactly the same premises, only the conclusion now refers to the property of forests.

Example 2: Predicates odd and even on naturals

Let odd and even be inductively defined as:

The following command generates a powerful elimination principle:

```
Coq < Scheme odd_even := Minimality for odd Sort Prop
Coq < with even_odd := Minimality for even Sort Prop.
even_odd is defined
odd_even is defined
odd_even, even_odd are recursively defined</pre>
```

The type of odd even for instance will be:

The type of even_odd shares the same premises but the conclusion is (n:nat) (even n) -> (Q n).

13.1.1 Automatic declaration of schemes

It is possible to deactivate the automatic declaration of the induction principles when defining a new inductive type with the Unset Elimination Schemes command. It may be reactivated at any time with Set Elimination Schemes.

You can also activate the automatic declaration of those Boolean equalities and their proof (see the second variant of Scheme) with respectively the commands Set Boolean Equality Schemes and Set Decidable Equality Schemes. However you have to be careful with this option since CoQ may now reject well-defined inductive types because it cannot compute a Boolean equality for them.

13.1.2 Combined Scheme

The Combined Scheme command is a tool for combining induction principles generated by the Scheme command. Its syntax follows the schema:

```
Combined Scheme ident_0 from ident_1, ..., ident_n
```

where $ident_1 \dots ident_n$ are different inductive principles that must belong to the same package of mutual inductive principle definitions. This command generates $ident_0$ to be the conjunction of the principles: it is built from the common premises of the principles and concluded by the conjunction of their conclusions.

Example: We can define the induction principles for trees and forests using:

```
Coq < Scheme tree_forest_ind := Induction for tree Sort Prop
Coq < with forest_tree_ind := Induction for forest Sort Prop.
forest_tree_ind is defined
tree_forest_ind is defined
tree_forest_ind, forest_tree_ind are recursively defined</pre>
```

Then we can build the combined induction principle which gives the conjunction of the conclusions of each individual principle:

```
Coq < Combined Scheme tree_forest_mutind from tree_forest_ind, forest_tree_ind.
tree_forest_mutind is defined
tree_forest_mutind is recursively defined</pre>
```

The type of tree forest mutrec will be:

312 13 Proof schemes

13.2 Generation of induction principles with Functional Scheme

The Functional Scheme command is a high-level experimental tool for generating automatically induction principles corresponding to (possibly mutually recursive) functions. Its syntax follows the schema:

```
Functional Scheme ident_1 := Induction for ident'_1 Sort sort_1 with ... with ident_m := Induction for ident'_m Sort sort_m
```

where $ident'_1 \dots ident'_m$ are different mutually defined function names (they must be in the same order as when they were defined). This command generates the induction principles $ident_1 \dots ident_m$, following the recursive structure and case analyses of the functions $ident'_1 \dots ident'_m$.

Remark: There is a difference between obtaining an induction scheme by using Functional Scheme on a function defined by Function or not. Indeed Function generally produces smaller principles, closer to the definition written by the user.

Example 1: *Induction scheme for* div2

We define the function div2 as follows:

The definition of a principle of induction corresponding to the recursive structure of div2 is defined by the command:

```
Coq < Functional Scheme div2_ind := Induction for div2 Sort Prop.
div2_equation is defined
div2_ind is defined</pre>
```

You may now look at the type of div2_ind:

```
(forall n n0 : nat, n = S n0 \rightarrow n0 = 0 \rightarrow P 1 0) \rightarrow

(forall n n0 : nat, n = S n0 \rightarrow

n = S n0 \rightarrow

forall n' : nat, n0 = S n' \rightarrow P n' (div2 n') \rightarrow P (S (S n')) (S (div2 n'))) \rightarrow

forall n : nat, P n (div2 n)
```

We can now prove the following lemma using this principle:

```
Coq < Lemma div2_le' : forall n:nat, div2 n <= n.
Coq < intro n.
Coq < pattern n , (div2 n).
Coq < apply div2_ind; intros.</pre>
3 subgoals
 n : nat
 n0 : nat
 e : n0 = 0
 _____
  0 <= 0
subgoal 2 is:
0 <= 1
subgoal 3 is:
S (div2 n') \le S (S n')
Coq < auto with arith.
Coq < auto with arith.
Coq < simpl; auto with arith.
Cog < Qed.
```

We can use directly the functional induction (8.5.5) tactic instead of the pattern/apply trick:

314 13 Proof schemes

```
Coq < auto with arith.
Coq < auto with arith.
Coq < auto with arith.
Coq < Qed.</pre>
```

Remark: There is a difference between obtaining an induction scheme for a function by using Function (see Section 2.3) and by using Functional Scheme after a normal definition using Fixpoint or Definition. See 2.3 for details.

Example 2: Induction scheme for tree_size

We define trees by the following mutual inductive type:

We define the function tree_size that computes the size of a tree or a forest. Note that we use Function which generally produces better principles.

```
Coq < Function tree_size (t:tree) : nat :=
Coq < match t with
Coq < | node A f => S (forest_size f)
Coq < end
Coq < with forest_size (f:forest) : nat :=
Coq < match f with
Coq < | empty => 0
Coq < | cons t f' => (tree_size t + forest_size f')
Coq < end.</pre>
```

Remark: Function generates itself non mutual induction principles tree_size_ind and forest_size_ind:

```
Coq < Check tree_size_ind.
tree_size_ind
   : forall P : tree -> nat -> Prop,
        (forall (t : tree) (A : A) (f : forest),
        t = node A f -> P (node A f) (S (forest_size f))) ->
        forall t : tree, P t (tree_size t)
```

The definition of mutual induction principles following the recursive structure of $tree_size$ and $forest_size$ is defined by the command:

```
Coq < Functional Scheme tree_size_ind2 := Induction for tree_size Sort Prop
Coq < with forest_size_ind2 := Induction for forest_size Sort Prop.</pre>
```

You may now look at the type of tree size ind2:

13.3 Generation of inversion principles with Derive Inversion

The syntax of Derive Inversion follows the schema:

```
Derive Inversion ident with forall (\vec{x}:\vec{T}), \vec{I} \vec{t} Sort sort
```

This command generates an inversion principle for the inversion ... using tactic. Let I be an inductive predicate and \vec{x} the variables occurring in \vec{t} . This command generates and stocks the inversion lemma for the sort *sort* corresponding to the instance $\forall (\vec{x}:\vec{T}), I \ \vec{t}$ with the name *ident* in the **global** environment. When applied, it is equivalent to having inverted the instance with the tactic inversion.

Variants:

- 1. Derive Inversion_clear *ident* with forall $(\vec{x}:\vec{T})$, \vec{I} fort sort When applied, it is equivalent to having inverted the instance with the tactic inversion replaced by the tactic inversion_clear.
- 2. Derive Dependent Inversion *ident* with forall $(\vec{x}:\vec{T})$, I \vec{t} Sort *sort* When applied, it is equivalent to having inverted the instance with the tactic dependent inversion.
- 3. Derive Dependent Inversion_clear ident with forall $(\vec{x}:\vec{T})$, \vec{I} fort sort

When applied, it is equivalent to having inverted the instance with the tactic dependent inversion_clear.

Example:

Let us consider the relation Le over natural numbers and the following variable:

To generate the inversion lemma for the instance (Le (S n) m) and the sort Prop, we do:

316 13 Proof schemes

```
Coq < Derive Inversion_clear leminv with (forall n m:nat, Le (S n) m) Sort Prop.
Coq < Check leminv.
leminv
    : forall (n m : nat) (P : nat -> nat -> Prop),
       (forall m0 : nat, Le n m0 \rightarrow P n (S m0)) \rightarrow Le (S n) m \rightarrow P n m
  Then we can use the proven inversion lemma:
Coq < Show.
1 subgoal
 n : nat
 m : nat
 H: Le (S n) m
 _____
  P n m
Coq < inversion H using leminv.
1 subgoal
 n : nat
 m : nat
 H : Le (S n) m
 _____
  forall m0: nat, Le n m0 -> P n (S m0)
```

Part IV Practical tools

Chapter 14

The CoQ commands

There are three CoQ commands:

- coqtop: The CoQ toplevel (interactive mode);
- coqc: The Coq compiler (batch compilation).
- coqchk: The CoQ checker (validation of compiled libraries)

The options are (basically) the same for the first two commands, and roughly described below. You can also look at the man pages of coqtop and coqc for more details.

14.1 Interactive use (coqtop)

In the interactive mode, also known as the CoQ toplevel, the user can develop his theories and proofs step by step. The CoQ toplevel is run by the command coqtop.

They are two different binary images of CoQ: the byte-code one and the native-code one (if Objective Caml provides a native-code compiler for your platform, which is supposed in the following). When invoking coqtop or coqc, the native-code version of the system is used. The command-line options —byte and —opt explicitly select the byte-code and the native-code versions, respectively.

The byte-code toplevel is based on a Caml toplevel (to allow the dynamic link of tactics). You can switch to the Caml toplevel with the command <code>Drop.</code>, and come back to the CoQ toplevel with the command <code>Toplevel.loop();;</code>.

14.2 Batch compilation (coqc)

The coqc command takes a name file as argument. Then it looks for a vernacular file named file .v, and tries to compile it into a file .v0 file (See 6.5).

Warning: The name *file* must be a regular CoQ identifier, as defined in the Section 1.1. It must only contain letters, digits or underscores (_). Thus it can be /bar/foo/toto.v but cannot be /bar/foo/to-to.v.

Notice that the -byte and -opt options are still available with coqc and allow you to select the byte-code or native-code versions of the system.

14.3 Customization at launch time

14.3.1 By resource file

When COQ is launched, with either coqtop or coqc, the resource file \$XDG_CONFIG_HOME/coq/coqrc.xxx is loaded, where \$XDG_CONFIG_HOME is the configuration directory of the user (by default its home directory /.config and xxx is the version number (e.g. 8.3). If this file is not found, then the file \$XDG_CONFIG_HOME/coqrc is searched. You can also specify an arbitrary name for the resource file (see option -init-file below).

This file may contain, for instance, Add LoadPath commands to add directories to the load path of CoQ. It is possible to skip the loading of the resource file with the option -q.

14.4 By environment variables

Load path can be specified to the CoQ system by setting up \$COQPATH environment variable. It is a list of directories separated by : (; on windows).

CoQwill also honour \$XDG_DATA_HOME and \$XDG_DATA_DIRS (see http://standards.freedesktop.org/basedir-spec/basedir-spec-latest.html). CoQadds \${XDG_DATA_HOME}/coq and \${XDG_DATA_DIRS}/coq to its search path.

14.4.1 By command line options

The following command-line options are recognized by the commands coqc and coqtop, unless stated otherwise:

```
-I directory, -include directory[ -as dirpath ]
```

Add physical path *directory* to the list of directories where to look for a file and bind it to the empty logical directory/the logical directory *dirpath*. The sub-directory structure of *directory* is recursively available from CoQ using absolute names (extending the *dirpath* prefix) (see Section 2.6.2).

See also: Add LoadPath in Section 6.6.3 and logical paths in Section 2.6.1.

-R directory dirpath, -R directory [-as dirpath]

Do as -I directory -as dirpath but make the sub-directory structure of directory recursively visible so that the recursive contents of physical directory is available from CoQ using short or partially qualified names.

See also: Add Rec LoadPath in Section 6.6.4 and logical paths in Section 2.6.1.

```
-top dirpath, -notop
```

This sets the toplevel module name to *dirpath*/the empty logical path instead of Top. Not valid for coqc.

```
-exclude-dir subdirectory
```

This tells to exclude any sub-directory named *subdirectory* while processing option -R. Without this option only the conventional version control management sub-directories named CVS and darcs are excluded.

-is file, -inputstate file, -outputstate file

Load at the beginning/Dump at the end a CoQ state from the file file.

Incompatible with some not purely functional aspect of the code

-nois

Cause CoQ to begin with an empty state.

-init-file file, -q

Take *file* as the resource file. / Cause CoQ not to load the resource file.

-load-ml-source file

Load the Caml source file file.

-load-ml-object file

Load the Caml object file *file*.

-1[v] file, -load-vernac-source[-verbose] file

Load CoQ file *file* . v optionally with copy it contents on the standard input.

-load-vernac-object file

Load CoQ compiled file file. vo

-require file

Load CoQ compiled file file. vo and import it (Require file).

-compile file, -compile-verbose file, -batch

coqtop options only used internally by coqc.

This compiles file file. v into file. vo without/with a copy of the contents of the file on standard input. This option implies options -batch (exit just after arguments parsing). It is only available for cogtop.

-verbose

This option is only for coqc. It tells to compile the file with a copy of its contents on standard input.

-xml

This option is for use with coqc. It tells CoQ to export on the standard output the content of the compiled file into XML format.

-with-geoproof (yeslno)

Activate or not special functions for Geoproof within Coqide (default is yes).

-beautify

While compiling *file*, pretty prints each command just after having parsing it in *file*.beautified in order to get old-fashion syntax/definitions/notations.

-quality Improve the legibility of the proof terms produced by some tactics.

-emacs, -ide-slave

Start a special main loop to communicate with ide.

-impredicative-set

Change the logical theory of CoQ by declaring the sort Set impredicative; warning: this is known to be inconsistent with some standard axioms of classical mathematics such as the functional axiom of choice or the principle of description

-compat version Attempt to maintain some of the incompatible changes in their version behavior.

-dump-glob*file*

This dumps references for global names in file *file* (to be used by coqdoc, see 15.4)

-dont-load-proofs

Warning: this is an unsafe mode. Instead of loading in memory the proofs of opaque theorems, they are treated as axioms. This results in smaller memory requirement and faster compilation, but the behavior of the system might slightly change (for instance during module subtyping), and some features won't be available (for example Print Assumptions).

-lazy-load-proofs

This is the default behavior. Proofs of opaque theorems aren't loaded immediately in memory, but only when necessary, for instance during some module subtyping or Print Assumptions. This should be almost as fast and efficient as -dont-load-proofs, with none of its drawbacks.

-force-load-proofs

Proofs of opaque theorems are loaded in memory as soon as the corresponding Require is done. This used to be Coq's default behavior.

```
-no-hash-consing
```

-vm

This activates the use of the bytecode-based conversion algorithm for the current session (see Section 6.11.5).

-image *file*

This option sets the binary image to be used by coqc to be *file* instead of the standard one. Not of general use.

-bindir directory

Set for coqc the directory containing CoQ binaries. It is equivalent to do export COQBIN=directory before launching coqc.

```
-where, -config, -filteropts
```

Print the CoQ's standard library location or CoQ's binaries, dependencies, libraries locations or the list of command line arguments that coqtop has recognize as options and exit.

 $-\nabla$

Print the CoQ's version and exit.

-h, -help

Print a short usage and exit.

14.5 Compiled libraries checker (coqchk)

The coqchk command takes a list of library paths as argument. The corresponding compiled libraries (.vo files) are searched in the path, recursively processing the libraries they depend on. The content of all these libraries is then type-checked. The effect of coqchk is only to return with normal exit code in case of success, and with positive exit code if an error has been found. Error messages are not deemed to help the user understand what is wrong. In the current version, it does not modify the compiled libraries to mark them as successfully checked.

Note that non-logical information is not checked. By logical information, we mean the type and optional body associated to names. It excludes for instance anything related to the concrete syntax of objects (customized syntax rules, association between short and long names), implicit arguments, etc.

This tool can be used for several purposes. One is to check that a compiled library provided by a third-party has not been forged and that loading it cannot introduce inconsistencies. Another point is to get an even higher level of security. Since coqtop can be extended with custom tactics, possibly ill-typed code, it cannot be guaranteed that the produced compiled libraries are correct. coqchk is a standalone verifier, and thus it cannot be tainted by such malicious code.

Command-line options -I, -R, -where and -impredicative-set are supported by coqchk and have the same meaning as for coqtop. Extra options are:

-norec module

Check *module* but do not force check of its dependencies.

-admit module

Do not check *module* and any of its dependencies, unless explicitly required.

-0

At exit, print a summary about the context. List the names of all assumptions and variables (constants without body).

-silent

Do not write progress information in standard output.

Environment variable \$COQLIB can be set to override the location of the standard library.

The algorithm for deciding which modules are checked or admitted is the following: assuming that coqchk is called with argument M, option -norec N, and -admit A. Let us write \overline{S} the set of reflexive transitive dependencies of set S. Then:

• Modules $C = \overline{M} \setminus \overline{A} \cup M \cup N$ are loaded and type-checked before being added to the context.

¹Ill-formed non-logical information might for instance bind Coq.Init.Logic.True to short name False, so apparently False is inhabited, but using fully qualified names, Coq.Init.Logic.False will always refer to the absurd proposition, what we guarantee is that there is no proof of this latter constant.

• And $\overline{M} \cup \overline{N} \setminus C$ is the set of modules that are loaded and added to the context without type-checking. Basic integrity checks (checksums) are nonetheless performed.

As a rule of thumb, the -admit can be used to tell that some libraries have already been checked. So coqchk A B can be split in coqchk A && coqchk B -admit A without type-checking any definition twice. Of course, the latter is slightly slower since it makes more disk access. It is also less secure since an attacker might have replaced the compiled library A after it has been read by the first command, but before it has been read by the second command.

Chapter 15

Utilities

The distribution provides utilities to simplify some tedious works beside proof development, tactics writing or documentation.

15.1 Building a toplevel extended with user tactics

The native-code version of CoQ cannot dynamically load user tactics using Objective Caml code. It is possible to build a toplevel of CoQ, with Objective Caml code statically linked, with the tool cogmktop.

For example, one can build a native-code CoQ toplevel extended with a tactic which source is in tactic.ml with the command

```
% coqmktop -opt -o mytop.out tactic.cmx
```

where tactic.ml has been compiled with the native-code compiler ocamlopt. This command generates an executable called mytop.out. To use this executable to compile your CoQ files, use coqc -image mytop.out.

A basic example is the native-code version of CoQ (coqtop.opt), which can be generated by coqmktop -opt -o coqopt.opt.

Application: how to use the Objective Caml debugger with Coq. One useful application of coqmktop is to build a CoQ toplevel in order to debug your tactics with the Objective Caml debugger. You need to have configured and compiled CoQ for debugging (see the file INSTALL included in the distribution). Then, you must compile the Caml modules of your tactic with the option -g (with the bytecode compiler) and build a stand-alone bytecode toplevel with the following command:

```
% coqmktop -g -o coq-debug <your .cmo files>
```

To launch the OBJECTIVE CAML debugger with the image you need to execute it in an environment which correctly sets the COQLIB variable. Moreover, you have to indicate the directories in which ocamldebug should search for Caml modules.

A possible solution is to use a wrapper around ocamldebug which detects the executables containing the word coq. In this case, the debugger is called with the required additional arguments. In other cases, the debugger is simply called without additional arguments. Such a wrapper can be found in the dev/ subdirectory of the sources.

15.2 Modules dependencies

In order to compute modules dependencies (so to use make), CoQ comes with an appropriate tool, coqdep.

coqdep computes inter-module dependencies for CoQ and OBJECTIVE CAML programs, and prints the dependencies on the standard output in a format readable by make. When a directory is given as argument, it is recursively looked at.

Dependencies of COQ modules are computed by looking at Require commands (Require, Require Export, Require Import, but also at the command Declare ML Module.

Dependencies of OBJECTIVE CAML modules are computed by looking at open commands and the dot notation *module.value*. However, this is done approximatively and you are advised to use ocamldep instead for the OBJECTIVE CAML modules dependencies.

See the man page of coqdep for more details and options.

15.3 Creating a Makefile for Coo modules

When a proof development becomes large, is split into several files or contains Ocaml plugins, it becomes crucial to use a tool like make to compile CoQ modules.

The writing of a generic and complete Makefile may be a tedious work and that's why CoQ provides a tool to automate its creation, coq_makefile.

You can get a description of the arguments by the command % <code>coq_makefile -help</code>. Arguments can be directly written on the command line interface but it is recommended to write them in a file (<code>_CoqProject</code> by default) and then call <code>coq_makefile -f _CoqProject -o Makefile</code>. That means options are read from <code>_CoqProject</code> and written in <code>Makefile</code>. This way, <code>Makefile</code> will be automagically regenerated when something changes in <code>_CoqProject</code>.

The first time you use this tool, you may be happy with:

```
% { echo '-R . MyFancyLib ' ; find -name '*.v' -print } >
_CoqProject && coq_makefile -f _CoqProject -o Makefile
```

To customize things further, remember the following:

- Coofiles must end in .v, OBJECTIVE CAMLmodules in .ml4 if they require camlp preprocessing (and in .ml otherwise), and OBJECTIVE CAMLmodule signatures in .mli.
- Whenever a directory is passed as argument, any inner Makefile will be recursively called.
- -R option is for CoQ, -I for OBJECTIVE CAML. The same directory can be "included" by both.
 Using -R option gives a correct logical path and a correct installation emplacement to your coq files.
- If your files depend on an external library, never use $-\mathbb{R}$. . . to include it in the path, the *make clean* command would erase it! Take advantage of the COQPATH variable (see 14.4) instead if necessary.

Under normal circumstances, the only other variable that you may use is \$COQBIN to specify the directory where the binaries are.

15.4 Documenting CoQ files with coqdoc

coqdoc is a documentation tool for the proof assistant CoQ, similar to javadoc or ocamldoc. The task of coqdoc is

- 1. to produce a nice LATEX and/or HTML document from the COQ sources, readable for a human and not only for the proof assistant;
- 2. to help the user navigating in his own (or third-party) sources.

15.4.1 Principles

Documentation is inserted into CoQ files as *special comments*. Thus your files will compile as usual, whether you use coqdoc or not. coqdoc presupposes that the given CoQ files are well-formed (at least lexically). Documentation starts with (**, followed by a space, and ends with the pending *). The documentation format is inspired by Todd A. Coram's*Almost Free Text (AFT)*tool: it is mainly ASCII text with some syntax-light controls, described below. coqdoc is robust: it shouldn't fail, whatever the input is. But remember: "garbage in, garbage out".

CoQ material inside documentation. CoQ material is quoted between the delimiters [and]. Square brackets may be nested, the inner ones being understood as being part of the quoted code (thus you can quote a term like fun x => u by writing [fun x => u]). Inside quotations, the code is pretty-printed in the same way as it is in code parts.

Pre-formatted vernacular is enclosed by [[and]]. The former must be followed by a newline and the latter must follow a newline.

Pretty-printing. coqdoc uses different faces for identifiers and keywords. The pretty-printing of CoQ tokens (identifiers or symbols) can be controlled using one of the following commands:

```
(** printing token %...PTEX...% #...HTML...# *)
or
(** printing token $...PTEX math...$ #...HTML...# *)
```

It gives the LATEX and HTML texts to be produced for the given CoQ token. One of the LATEX or HTML text may be omitted, causing the default pretty-printing to be used for this token.

The printing for one token can be removed with

```
(** remove printing token *)
```

Initially, the pretty-printing table contains the following mapping:

Any of these can be overwritten or suppressed using the printing commands.

Important note: the recognition of tokens is done by a (ocaml)lex automaton and thus applies the longest-match rule. For instance, $->\sim$ is recognized as a single token, where CoQ sees two tokens. It is the responsibility of the user to insert space between tokens or to give pretty-printing rules for the possible combinations, e.g.

```
(** printing ->~ %\ensuremath{\rightarrow\lnot}% *)
```

Sections. Sections are introduced by 1 to 4 leading stars (i.e. at the beginning of the line) followed by a space. One star is a section, two stars a sub-section, etc. The section title is given on the remaining of the line. Example:

```
(** * Well-founded relations
In this section, we introduce... *)
```

Lists. List items are introduced by a leading dash. **coqdoc** uses whitespace to determine the depth of a new list item and which text belongs in which list items. A list ends when a line of text starts at or before the level of indenting of the list's dash. A list item's dash must always be the first non-space character on its line (so, in particular, a list can not begin on the first line of a comment - start it on the second line instead).

Example:

```
We go by induction on [n]:
- If [n] is 0...
- If [n] is [S n'] we require...

two paragraphs of reasoning, and two subcases:
- In the first case...
- In the second case...
So the theorem holds.
```

Rules. More than 4 leading dashes produce an horizontal rule.

Emphasis. Text can be italicized by placing it in underscores. A non-identifier character must precede the leading underscore and follow the trailing underscore, so that uses of underscores in names aren't mistaken for emphasis. Usually, these are spaces or punctuation.

```
This sentence contains some _emphasized text_.
```

Escaping to LATEX and HTML. Pure LATEX or HTML material can be inserted using the following escape sequences:

- \$...LaTeX stuff...\$ inserts some LATeX material in math mode. Simply discarded in HTML output.
- %...LaTeX stuff...% inserts some LATeX material. Simply discarded in HTML output.
- #...HTML stuff...# inserts some HTML material. Simply discarded in LATEX output.

Note: to simply output the characters \$, % and # and escaping their escaping role, these characters must be doubled.

Verbatim. Verbatim material is introduced by a leading << and closed by >> at the beginning of a line. Example:

```
Here is the corresponding caml code:
<<
  let rec fact n =
   if n <= 1 then 1 else n * fact (n-1)
>>
```

Hyperlinks. Hyperlinks can be inserted into the HTML output, so that any identifier is linked to the place of its definition.

coqc file.v automatically dumps localization information in file.glob or appends it to a file specified using option --dump-glob file. Take care of erasing this global file, if any, when starting the whole compilation process.

Then invoke coqdoc or coqdoc --glob-from file to tell coqdoc to look for name resolutions into the file file (it will look in file.glob by default).

Identifiers from the CoQ standard library are linked to the CoQ web site at http://coq.inria.fr/library/. This behavior can be changed using command line options --no-externals and --coqlib; see below.

Hiding / Showing parts of the source. Some parts of the source can be hidden using command line options -g and -1 (see below), or using such comments:

```
(* begin hide *)
some Coq material
(* end hide *)
```

Conversely, some parts of the source which would be hidden can be shown using such comments:

```
(* begin show *)
some Coq material
(* end show *)
```

The latter cannot be used around some inner parts of a proof, but can be used around a whole proof.

15.4.2 Usage

coqdoc is invoked on a shell command line as follows:

```
coqdoc < options and files >
```

Any command line argument which is not an option is considered to be a file (even if it starts with a -). CoQ files are identified by the suffixes .v and .g and LATEX files by the suffix .tex.

HTML output

This is the default output. One HTML file is created for each CoQ file given on the command line, together with a file index.html (unless option -no-index is passed). The HTML pages use a style sheet named style.css. Such a file is distributed with coqdoc.

LATEX output

A single LATEX file is created, on standard output. It can be redirected to a file with option $-\circ$. The order of files on the command line is kept in the final document. LATEX files given on the command line are copied 'as is' in the final document . DVI and PostScript can be produced directly with the options -dvi and -ps respectively.

T_EXmacs output

To translate the input files to TeXmacs format, to be used by the TeXmacs Coq interface (see http://www-sop.inria.fr/lemme/Philippe.Audebaud/tmcoq/).

Command line options

Overall options

--html

Select a HTML output.

--latex

Select a LATEX output.

--dvi

Select a DVI output.

--ps

Select a PostScript output.

--texmacs

Select a TEXmacs output.

-stdout

Write output to stdout.

-o file, --output file

Redirect the output into the file 'file' (meaningless with -html).

-d dir, --directory dir

Output files into directory 'dir' instead of current directory (option -d does not change the filename specified with option -d, if any).

--body-only

Suppress the header and trailer of the final document. Thus, you can insert the resulting document into a larger one.

-p string, --preamble string

Insert some material in the LATEX preamble, right before \begin{document} (meaningless with -html).

--vernac-file file, --tex-file file

Considers the file 'file' respectively as a .v (or .g) file or a .tex file.

--files-from file

Read file names to process in file 'file' as if they were given on the command line. Useful for program sources split up into several directories.

-q, --quiet

Be quiet. Do not print anything except errors.

-h, --help

Give a short summary of the options and exit.

-v, --version

Print the version and exit.

Index options Default behavior is to build an index, for the HTML output only, into index.html.

--no-index

Do not output the index.

--multi-index

Generate one page for each category and each letter in the index, together with a top page index.html.

--index string

Make the filename of the index string instead of "index". Useful since "index.html" is special.

Table of contents option

-toc, --table-of-contents

Insert a table of contents. For a LATEX output, it inserts a \tableofcontents at the beginning of the document. For a HTML output, it builds a table of contents into toc.html.

--toc-depth int

Only include headers up to depth *int* in the table of contents.

Hyperlinks options

--glob-from file

Make references using CoQ globalizations from file *file*. (Such globalizations are obtained with CoQ option -dump-glob).

--no-externals

Do not insert links to the CoQ standard library.

--external url coqdir

Use given URL for linking references whose name starts with prefix cogdir.

--coqlib url

Set base URL for the CoQ standard library (default is http://coq.inria.fr/library/). This is equivalent to --external *url* Coq.

-R dir coqdir

Map physical directory *dir* to CoQ logical directory *coqdir* (similarly to CoQ option −R).

Note: option $-\mathbb{R}$ only has effect on the files *following* it on the command line, so you will probably need to put this option first.

Title options

-s ,--short

Do not insert titles for the files. The default behavior is to insert a title like "Library Foo" for each file.

--lib-name string

Print "string Foo" instead of "Library Foo" in titles. For example "Chapter" and "Module" are reasonable choices.

--no-lib-name

Print just "Foo" instead of "Library Foo" in titles.

--lib-subtitles

Look for library subtitles. When enabled, the beginning of each file is checked for a comment of the form:

```
(** * ModuleName : text *)
```

where ModuleName must be the name of the file. If it is present, the text is used as a subtitle for the module in appropriate places.

-t string, --title string

Set the document title.

Contents options

-g, --gallina

Do not print proofs.

-1, --light

Light mode. Suppress proofs (as with -g) and the following commands:

- [Recursive] Tactic Definition
- Hint / Hints

- Require
- Transparent / Opaque
- Implicit Argument / Implicits
- Section / Variable / Hypothesis / End

The behavior of options $\neg g$ and $\neg l$ can be locally overridden using the (* begin show *) ... (* end show *) environment (see above).

There are a few options to drive the parsing of comments:

--parse-comments

Parses regular comments delimited by (* and *) as well. They are typeset inline.

--plain-comments

Do not interpret comments, simply copy them as plain-text.

--interpolate

Use the globalization information to typeset identifiers appearing in CoQ escapings inside comments.

Language options Default behavior is to assume ASCII 7 bits input files.

-latin1, --latin1

Select ISO-8859-1 input files. It is equivalent to -inputenc latin1 -charset iso-8859-1.

-utf8, --utf8

Select UTF-8 (Unicode) input files. It is equivalent to -inputenc utf8 -charset utf-8. LaTeX UTF-8 support can be found at http://www.ctan.org/pkg/unicode.

--inputenc string

Give a LATEX input encoding, as an option to LATEX package inputenc.

--charset string

Specify the HTML character set, to be inserted in the HTML header.

15.4.3 The coqdoc LATEX style file

In case you choose to produce a document without the default LATEX preamble (by using option --no-preamble), then you must insert into your own preamble the command

```
\usepackage{coqdoc}
```

The package optionally takes the argument [color] to typeset identifiers with colors (this requires the xcolor package).

Then you may alter the rendering of the document by redefining some macros:

coqdockw, coqdocid,...

The one-argument macros for typesetting keywords and identifiers. Defaults are sans-serif for keywords and italic for identifiers.

For example, if you would like a slanted font for keywords, you may insert

```
\renewcommand{\coqdockw}[1]{\textsl{#1}}
```

anywhere between \usepackage {coqdoc} and \begin {document}.

coqdocmodule

One-argument macro for typesetting the title of a .v file. Default is

```
\newcommand{\coqdocmodule}[1]{\section*{Module #1}}
```

and you may redefine it using \renewcommand.

15.5 Exporting CoQ theories to XML

This section describes the exportation of CoQ theories to XML that has been contributed by Claudio Sacerdoti Coen. Currently, the main applications are the rendering and searching tool developed within the HELM¹ and MoWGLI² projects mainly at the University of Bologna and partly at INRIA-Sophia Antipolis.

15.5.1 Practical use of the XML exportation tool

The basic way to export the logical content of a file into XML format is to use coqc with option -xml. When the -xml flag is set, every definition or declaration is immediately exported to XML once concluded. The system environment variable COQ_XML_LIBRARY_ROOT must be previously set to a directory in which the logical structure of the exported objects is reflected.

For Makefile files generated by coq_makefile (see section 15.3), it is sufficient to compile the files using

```
make COQ_XML=-xml
```

To export a development to XML, the suggested procedure is then:

1. add to your own contribution a valid Make file and use coq_makefile to generate the Makefile from the Make file.

Warning: Since logical names are used to structure the XML hierarchy, always add to the Make file at least one "-R" option to map physical file names to logical module paths.

- 2. set the COQ_XML_LIBRARY_ROOT environment variable to the directory where the XML file hierarchy must be physically rooted.
- compile your contribution with "make COQ_XML=-xml"

Remark: In case the system variable COQ_XML_LIBRARY_ROOT is not set, the output is done on the standard output. Also, the files are compressed using gzip after creation. This is to save disk space since the XML format is very verbose.

¹Hypertextual Electronic Library of Mathematics

²Mathematics on the Web, Get it by Logic and Interfaces

15.5.2 Reflection of the logical structure into the file system

For each COQ logical object, several independent files associated to this object are created. The structure of the long name of the object is reflected in the directory structure of the file system. E.g. an object of long name $ident_1 \dots ident_n$ ident is exported to files in the subdirectory $ident_1/\dots/ident_n$ of the directory bound to the environment variable COQ_XML_LIBRARY_ROOT.

15.5.3 What is exported?

The XML exportation tool exports the logical content of CoQ theories. This covers global definitions (including lemmas, theorems, ...), global assumptions (parameters and axioms), local assumptions or definitions, and inductive definitions.

Vernacular files are exported to .theory.xml files. Comments are pre-processed with coqdoc (see section 15.4). Especially, they have to be enclosed within (** and *) to be exported.

For each inductive definition of name $ident_1.....ident_n.ident_n$, a file named ident.ind.xml is created in the subdirectory $ident_1/..../ident_n$ of the xml library root directory. It contains the arities and constructors of the type. For mutual inductive definitions, the file is named after the name of the first inductive type of the block.

For each global definition of base name $ident_1....ident_n.ident$, files named ident.con.body.xml and ident.con.xml are created in the subdirectory $ident_1/.../ident_n$. They respectively contain the body and the type of the definition.

For each global assumption of base name $ident_1.ident_2....ident_n.ident$, a file named ident.con.xml is created in the subdirectory $ident_1/.../ident_n$. It contains the type of the global assumption.

For each local assumption or definition of base name *ident* located in sections $ident'_1, \ldots, ident'_p$ of the module $ident_1.ident_2.\ldots.ident_n.ident$, a file named ident.var.xml is created in the subdirectory $ident_1/\ldots/ident'_1/\ldots/ident'_p$. It contains its type and, if a definition, its body.

In order to do proof-rendering (for example in natural language), some redundant typing information is required, i.e. the type of at least some of the subterms of the bodies and types of the CIC objects. These types are called inner types and are exported to files of suffix .types.xml by the exportation tool.

15.5.4 Inner types

The type of a subterm of a construction is called an *inner type* if it respects the following conditions.

- 1. Its sort is $Prop^3$.
- 2. It is not a type cast nor an atomic term (variable, constructor or constant).
- 3. If it's root is an abstraction, then the root's parent node is not an abstraction, i.e. only the type of the outer abstraction of a block of nested abstractions is printed.

The rationale for the 3^{rd} condition is that the type of the inner abstractions could be easily computed starting from the type of the outer ones; moreover, the types of the inner abstractions requires a lot of disk/memory space: removing the 3^{rd} condition leads to XML file that are two times as big as the ones exported applying the 3^{rd} condition.

³or CProp which is the "sort"-like definition used in C-CoRN (see http://corn.cs.ru.nl) to type computationally relevant predicative propositions.

15.5.5 Interactive exportation commands

There are also commands to be used interactively in cogtop.

```
Print XML qualid
```

If the variable COQ_XML_LIBRARY_ROOT is set, this command creates files containing the logical content in XML format of *qualid*. If the variable is not set, the result is displayed on the standard output.

Variants:

1. Print XML File *string qualid*This writes the logical content of *qualid* in XML format to files whose prefix is *string*.

```
Show XML Proof
```

If the variable COQ_XML_LIBRARY_ROOT is set, this command creates files containing the current proof in progress in XML format. It writes also an XML file made of inner types. If the variable is not set, the result is displayed on the standard output.

Variants:

1. Show XML File *string* Proof

This writes the logical content of *qualid* in XML format to files whose prefix is *string*.

15.5.6 Applications: rendering, searching and publishing

The HELM team at the University of Bologna has developed tools exploiting the XML exportation of CoQ libraries. This covers rendering, searching and publishing tools.

All these tools require a running http server and, if possible, a MathML compliant browser. The procedure to install the suite of tools ultimately allowing rendering and searching can be found on the HELM web site http://helm.cs.unibo.it/library.html.

It may be easier though to upload your developments on the HELM http server and to re-use the infrastructure running on it. This requires publishing your development. To this aim, follow the instructions on http://mowqli.cs.unibo.it.

Notice that the HELM server already hosts a copy of the standard library of CoQ and of the CoQ user contributions.

15.5.7 Technical informations

CIC with Explicit Named Substitutions

The exported files are XML encoding of the lambda-terms used by the CoQ system. The implementative details of the CoQ system are hidden as much as possible, so that the XML DTD is a straightforward encoding of the Calculus of (Co)Inductive Constructions.

Nevertheless, there is a feature of the CoQ system that can not be hidden in a completely satisfactory way: discharging (see Sect.2.4). In CoQ it is possible to open a section, declare variables and use them in the rest of the section as if they were axiom declarations. Once the section is closed, every definition and theorem in the section is discharged by abstracting it over the section variables. Variable declarations as well as section declarations are entirely dropped. Since we are interested in an XML encoding of definitions and theorems as close as possible to those directly provided the user, we do not want to export

discharged forms. Exporting non-discharged theorem and definitions together with theorems that rely on the discharged forms obliges the tools that work on the XML encoding to implement discharging to achieve logical consistency. Moreover, the rendering of the files can be misleading, since hyperlinks can be shown between occurrences of the discharge form of a definition and the non-discharged definition, that are different objects.

To overcome the previous limitations, Claudio Sacerdoti Coen developed in his PhD. thesis an extension of CIC, called Calculus of (Co)Inductive Constructions with Explicit Named Substitutions, that is a slight extension of CIC where discharging is not necessary. The DTD of the exported XML files describes constants, inductive types and variables of the Calculus of (Co)Inductive Constructions with Explicit Named Substitutions. The conversion to the new calculus is performed during the exportation phase.

The following example shows a very small CoQ development together with its version in CIC with Explicit Named Substitutions.

```
# CIC version: #
Section S.
 Variable A : Prop.
Definition impl := A \rightarrow A.
 Theorem t : impl.
                             (* uses the undischarged form of impl *)
  Proof.
   exact (fun (a:A) => a).
  Qed.
End S.
Theorem t': (impl False). (* uses the discharged form of impl *)
Proof.
  exact (t False).
                             (* uses the discharged form of t *)
Qed.
# Corresponding CIC with Explicit Named Substitutions version: #
Section S.
Variable A : Prop.
Definition impl(A) := A \rightarrow A. (* theorems and definitions are
                                   explicitly abstracted over the
                                   variables. The name is sufficient to
                                   completely describe the abstraction *)
 Theorem t(A): impl.
                                (* impl where A is not instantiated *)
  Proof.
   exact (fun (a:A) => a).
  Qed.
End S.
```

```
Theorem t'(): impl{False/A}. (* impl where A is instantiated with False Notice that t' does not depend on A *)

Proof.

exact t{False/A}. (* t where A is instantiated with False *)

Oed.
```

Further details on the typing and reduction rules of the calculus can be found in Claudio Sacerdoti Coen PhD. dissertation, where the consistency of the calculus is also proved.

The CIC with Explicit Named Substitutions XML DTD

A copy of the DTD can be found in the file "cic.dtd" in the plugins/xml source directory of CoQ. The following is a very brief overview of the elements described in the DTD.

<ConstantType> is the root element of the files that correspond to constant types.

<ConstantBody> is the root element of the files that correspond to constant bodies. It is used only for closed definitions and theorems (i.e. when no metavariable occurs in the body or type of the constant)

<CurrentProof> is the root element of the file that correspond to the body of a constant that depends on metavariables (e.g. unfinished proofs)

<Variable> is the root element of the files that correspond to variables

<InductiveTypes> is the root element of the files that correspond to blocks of mutually defined
inductive definitions

The elements <LAMBDA>, <CAST>, <PROD>, <REL>, <SORT>, <APPLY>, <VAR>, <META>, <IMPLICIT>, <CONST>, <LETIN>, <MUTIND>, <MUTCONSTRUCT>, <MUTCASE>, <FIX> and <COFIX> are used to encode the constructors of CIC. The sort or type attribute of the element, if present, is respectively the sort or the type of the term, that is a sort because of the typing rules of CIC.

The element <instantiate> correspond to the application of an explicit named substitution to its first argument, that is a reference to a definition or declaration in the environment.

All the other elements are just syntactic sugar.

15.6 Embedded Coq phrases inside LATEX documents

When writing a documentation about a proof development, one may want to insert CoQ phrases inside a LATEX document, possibly together with the corresponding answers of the system. We provide a mechanical way to process such CoQ phrases embedded in LATEX files: the <code>coq-tex</code> filter. This filter extracts Coq phrases embedded in LaTeX files, evaluates them, and insert the outcome of the evaluation after each phrase.

Starting with a file file.tex containing CoQ phrases, the coq-tex filter produces a file named file.v.tex with the CoQ outcome.

There are options to produce the CoQ parts in smaller font, italic, between horizontal rules, etc. See the man page of coq-tex for more details.

Remark. This Reference Manual and the Tutorial have been completely produced with cog-tex.

15.7 Coo and GNU EMACS

15.7.1 The CoQ Emacs mode

CoQ comes with a Major mode for GNU EMACS, coq.el. This mode provides syntax highlighting and also a rudimentary indentation facility in the style of the Caml GNU EMACS mode.

Add the following lines to your .emacs file:

```
(setq auto-mode-alist (cons '("\setminus v\$" . coq-mode) auto-mode-alist)) (autoload 'coq-mode "coq" "Major mode for editing Coq vernacular." t)
```

The CoQ major mode is triggered by visiting a file with extension .v, or manually with the command M-x coq-mode. It gives you the correct syntax table for the CoQ language, and also a rudimentary indentation facility:

- pressing TAB at the beginning of a line indents the line like the line above;
- extra TABs increase the indentation level (by 2 spaces by default);
- M-TAB decreases the indentation level.

An inferior mode to run CoQ under Emacs, by Marco Maggesi, is also included in the distribution, in file coq-inferior.el. Instructions to use it are contained in this file.

15.7.2 Proof General

Proof General is a generic interface for proof assistants based on Emacs. The main idea is that the CoQ commands you are editing are sent to a CoQ toplevel running behind Emacs and the answers of the system automatically inserted into other Emacs buffers. Thus you don't need to copy-paste the CoQ material from your files to the CoQ toplevel or conversely from the CoQ toplevel to some files.

Proof General is developed and distributed independently of the system CoQ. It is freely available at proofgeneral.inf.ed.ac.uk.

15.8 Module specification

Given a COQ vernacular file, the gallina filter extracts its specification (inductive types declarations, definitions, type of lemmas and theorems), removing the proofs parts of the file. The COQ file *file*.v gives birth to the specification file *file*.g (where the suffix .g stands for GALLINA).

See the man page of gallina for more details and options.

15.9 Man pages

There are man pages for the commands coqdep, gallina and coq-tex. Man pages are installed at installation time (see installation instructions in file INSTALL, step 6).

Chapter 16

COQ Integrated Development Environment

The CoQ Integrated Development Environment is a graphical tool, to be used as a user-friendly replacement to coqtop. Its main purpose is to allow the user to navigate forward and backward into a CoQ vernacular file, executing corresponding commands or undoing them respectively.

COQIDE is run by typing the command <code>coqide</code> on the command line. Without argument, the main screen is displayed with an "unnamed buffer", and with a file name as argument, another buffer displaying the contents of that file. Additionally, <code>coqide</code> accepts the same options as <code>coqtop</code>, given in Chapter 14, the ones having obviously no meaning for COQIDE being ignored. Additionally, <code>coqide</code> accepts the option <code>-enable-geoproof</code> to enable the support for <code>GeoProof</code> 1.

A sample CoQIDE main screen, while navigating into a file Fermat.v, is shown on Figure 16.1. At the top is a menu bar, and a tool bar below it. The large window on the left is displaying the various *script buffers*. The upper right window is the *goal window*, where goals to prove are displayed. The lower right window is the *message window*, where various messages resulting from commands are displayed. At the bottom is the status bar.

16.1 Managing files and buffers, basic edition

In the script window, you may open arbitrarily many buffers to edit. The *File* menu allows you to open files or create some, save them, print or export them into various formats. Among all these buffers, there is always one which is the current *running buffer*, whose name is displayed on a green background, which is the one where Coq commands are currently executed.

Buffers may be edited as in any text editor, and classical basic editing commands (Copy/Paste, ...) are available in the *Edit* menu. CoQIDE offers only basic editing commands, so if you need more complex editing commands, you may launch your favorite text editor on the current buffer, using the *Edit/External Editor* menu.

 $^{^1}GeoProof$ is dynamic geometry software which can be used in conjunction with CoQIDE to interactively build a Coq statement corresponding to a geometric figure. More information about GeoProof can be found here: http://home.gna.org/geoproof/

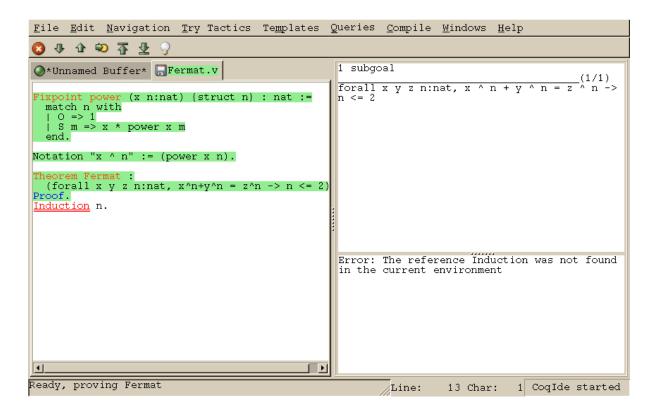


Figure 16.1: COQIDE main screen

16.2 Interactive navigation into CoQ scripts

The running buffer is the one where navigation takes place. The toolbar proposes five basic commands for this. The first one, represented by a down arrow icon, is for going forward executing one command. If that command is successful, the part of the script that has been executed is displayed on a green background. If that command fails, the error message is displayed in the message window, and the location of the error is emphasized by a red underline.

On Figure 16.1, the running buffer is Fermat.v, all commands until the Theorem have been already executed, and the user tried to go forward executing Induction n. That command failed because no such tactic exist (tactics are now in lowercase...), and the wrong word is underlined.

Notice that the green part of the running buffer is not editable. If you ever want to modify something you have to go backward using the up arrow tool, or even better, put the cursor where you want to go back and use the goto button. Unlike with coqtop, you should never use Undo to go backward.

Two additional tool buttons exist, one to go directly to the end and one to go back to the beginning. If you try to go to the end, or in general to run several commands using the goto button, the execution will stop whenever an error is found.

If you ever try to execute a command which happens to run during a long time, and would like to abort it before its termination, you may use the interrupt button (the white cross on a red circle).

Finally, notice that these navigation buttons are also available in the menu, where their keyboard shortcuts are given.

16.3 Try tactics automatically

The menu Try Tactics provides some features for automatically trying to solve the current goal using simple tactics. If such a tactic succeeds in solving the goal, then its text is automatically inserted into the script. There is finally a combination of these tactics, called the *proof wizard* which will try each of them in turn. This wizard is also available as a tool button (the light bulb). The set of tactics tried by the wizard is customizable in the preferences.

These tactics are general ones, in particular they do not refer to particular hypotheses. You may also try specific tactics related to the goal or one of the hypotheses, by clicking with the right mouse button on the goal or the considered hypothesis. This is the "contextual menu on goals" feature, that may be disabled in the preferences if undesirable.

16.4 Proof folding

As your script grows bigger and bigger, it might be useful to hide the proofs of your theorems and lemmas.

This feature is toggled via the Hide entry of the Navigation menu. The proof shall be enclosed between Proof. and Qed., both with their final dots. The proof that shall be hidden or revealed is the first one whose beginning statement (such as Theorem) precedes the insertion cursor.

16.5 Vernacular commands, templates

The Templates menu allows to use shortcuts to insert vernacular commands. This is a nice way to proceed if you are not sure of the spelling of the command you want.

Moreover, this menu offers some *templates* which will automatic insert a complex command like Fixpoint with a convenient shape for its arguments.

16.6 Queries

We call *query* any vernacular command that do not change the current state, such as Check, SearchAbout, etc. Those commands are of course useless during compilation of a file, hence should not be included in scripts. To run such commands without writing them in the script, COQIDE offers another input window called the *query window*. This window can be displayed on demand, either by using the Window menu, or directly using shortcuts given in the Queries menu. Indeed, with COQIDE the simplest way to perform a SearchAbout on some identifier is to select it using the mouse, and pressing F2. This will both make appear the query window and run the SearchAbout in it, displaying the result. Shortcuts F3 and F4 are for Check and Print respectively. Figure 16.2 displays the query window after selection of the word "mult" in the script windows, and pressing F4 to print its definition.

16.7 Compilation

The Compile menu offers direct commands to:

- compile the current buffer
- run a compilation using make

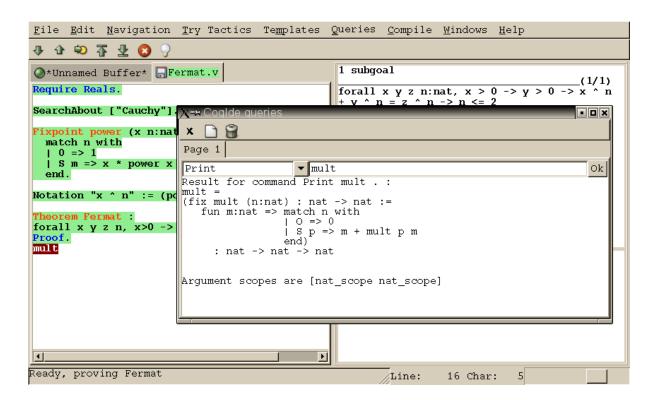


Figure 16.2: COQIDE: the query window

- go to the last compilation error
- create a makefile using coq_makefile.

16.8 Customizations

You may customize your environment using menu Edit/Preferences. A new window will be displayed, with several customization sections presented as a notebook.

The first section is for selecting the text font used for scripts, goal and message windows.

The second section is devoted to file management: you may configure automatic saving of files, by periodically saving the contents into files named #f# for each opened file f. You may also activate the *revert* feature: in case a opened file is modified on the disk by a third party, CoQIDE may read it again for you. Note that in the case you edited that same file, you will be prompt to choose to either discard your changes or not. The File charset encoding choice is described below in Section 16.9.3

The Externals section allows to customize the external commands for compilation, printing, web browsing. In the browser command, you may use %s to denote the URL to open, for example: mozilla -remote "OpenURL(%s)".

The Tactics Wizard section allows to defined the set of tactics that should be tried, in sequence, to solve the current goal.

The last section is for miscellaneous boolean settings, such as the "contextual menu on goals" feature presented in Section 16.3.

Notice that these settings are saved in the file .cogiderc of your home directory.

A gtk2 accelerator keymap is saved under the name .coqide.keys. This file should not be edited manually: to modify a given menu shortcut, go to the corresponding menu item without releasing the mouse button, press the key you want for the new shortcut, and release the mouse button afterwards.

For experts: it is also possible to set up a specific gtk resource file, under the name .coqide-gtk2rc, following the gtk2 resources syntax https://developer.gnome.org/gtk2/stable/gtk2-Resource-Files.html. http://developer.gnome.org/doc/API/2.0/gtk/gtk-Resource-Files.html. Such a default resource file can be found in the subdirectory lib/coq/ide of the root installation directory of CoQ (alternatively, it can be found in the subdirectory ide of the source archive of CoQ). You may copy this file into your home directory, and edit it using any text editor, CoQIDE itself for example.

16.9 Using unicode symbols

CoQIDE supports unicode character encoding in its text windows, consequently a large set of symbols is available for notations.

16.9.1 Displaying unicode symbols

You just need to define suitable notations as described in Chapter 12. For example, to use the mathematical symbols \forall and \exists , you may define

```
Notation "\forall x : t, P" := (forall x:t, P) (at level 200, x ident). Notation "\exists x : t, P" := (exists x:t, P) (at level 200, x ident).
```

There exists a small set of such notations already defined, in the file utf8.v of CoQ library, so you may enable them just by Require utf8 inside CoQIDE, or equivalently, by starting CoQIDE with coqide -1 utf8.

However, there are some issues when using such unicode symbols: you of course need to use a character font which supports them. In the Fonts section of the preferences, the Preview line displays some unicode symbols, so you could figure out if the selected font is OK. Related to this, one thing you may need to do is choose whether Gtk should use antialiased fonts or not, by setting the environment variable GDK USE XFT to 1 or 0 respectively.

16.9.2 Defining an input method for non ASCII symbols

To input an Unicode symbol, a general method is to press both the CONTROL and the SHIFT keys, and type the hexadecimal code of the symbol required, for example 2200 for the \forall symbol. A list of symbol codes is available at http://www.unicode.org.

This method obviously doesn't scale, that's why the preferred alternative is to use an Input Method Editor. On POSIX systems (Linux distros, BSD variants and MacOS X), you can use uim version 1.6 or later which provides a LATEX-style input method.

To configure uim, execute uim-pref-gtk as your regular user. In the "Global Settings" group set the default Input Method to "ELatin" (don't forget to tick the checkbox "Specify default IM"). In the "ELatin" group set the layout to "TeX", and remember the content of the "[ELatin] on" field (by default "<Control>\"). You can now execute CoqIDE with the following commands (assuming you use a Bourne-style shell):

```
$ export GTK_IM_MODULE=uim
$ coqide
```

Activate the ELatin Input Method with Ctrl-\, then type the sequence "\Gamma". You will see the sequence being replaced by Γ as soon as you type the second "a".

16.9.3 Character encoding for saved files

In the Files section of the preferences, the encoding option is related to the way files are saved.

If you have no need to exchange files with non UTF-8 aware applications, it is better to choose the UTF-8 encoding, since it guarantees that your files will be read again without problems. (This is because when CoQIDE reads a file, it tries to automatically detect its character encoding.)

If you choose something else than UTF-8, then missing characters will be written encoded by $x \{ \dots \}$ or $x \{ \dots \}$ where each dot is an hexadecimal digit: the number between braces is the hexadecimal UNICODE index for the missing character.

Part V Addendum to the Reference Manual

Presentation of the Addendum

Here you will find several pieces of additional documentation for the CoQ Reference Manual. Each of this chapters is concentrated on a particular topic, that should interest only a fraction of the CoQ users: that's the reason why they are apart from the Reference Manual.

- **Extended pattern-matching** This chapter details the use of generalized pattern-matching. It is contributed by Cristina Cornes and Hugo Herbelin.
- **Implicit coercions** This chapter details the use of the coercion mechanism. It is contributed by Amokrane Saïbi.
- **Program extraction** This chapter explains how to extract in practice ML files from F_{ω} terms. It is contributed by Jean-Christophe Filliâtre and Pierre Letouzey.
- **Program** This chapter explains the use of the Program vernacular which allows the development of certified programs in CoQ. It is contributed by Matthieu Sozeau and replaces the previous Program tactic by Catherine Parent.
- omega omega, written by Pierre Crégut, solves a whole class of arithmetic problems.
- **The** ring **tactic** This is a tactic to do AC rewriting. This chapter explains how to use it and how it works. The chapter is contributed by Patrick Loiseleur.
- **The Setoid_replace tactic** This is a tactic to do rewriting on types equipped with specific (only partially substitutive) equality. The chapter is contributed by Clément Renard.
- **Calling external provers** This chapter describes several tactics which call external provers.

Contents

Extended pattern-matching	353
Patterns	353
About patterns of parametric types	356
Matching objects of dependent types	357
Understanding dependencies in patterns	357
When the elimination predicate must be provided	358
Using pattern matching to write proofs	359
Pattern-matching on inductive objects involving local definitions	360
Pattern-matching and coercions	361
When does the expansion strategy fail?	361

Implicit Coercions 3	363
General Presentation	63
Classes	63
Coercions	64
Identity Coercions	64
Inheritance Graph	65
Declaration of Coercions	65
Coercion qualid : $class_1 >-> class_2$	65
Identity Coercion $ident: class_1 >-> class_2$	66
Displaying Available Coercions	67
Print Classes	67
Print Coercions	67
Print Graph	67
Print Coercion Paths $class_1$ $class_2$	67
Activating the Printing of Coercions	67
Set Printing Coercions	67
Set Printing Coercion qualid	67
Classes as Records	68
Coercions and Sections	68
Coercions and Modules	68
Examples	68
	373
Class and Instance declarations	
Binding classes	
Parameterized Instances	575
Sections and contexts	
Building hierarchies	576
Omega: a solver of quantifier-free problems in Presburger Arithmetic 3	381
Description of omega	
Arithmetical goals recognized by omega	
Messages from omega	
Technical data	
Overview of the tactic	
Overview of the <i>OMEGA</i> decision procedure	
Bugs	
Bugs	,0 .
Micromega: tactics for solving arithmetic goals over ordered rings	385
Short description of the tactics	85
Positivstellensatz refutations	86
lra: a decision procedure for linear real and rational arithmetic	86
psatz: a proof procedure for non-linear arithmetic	
lia: a tactic for linear integer arithmetic	
nia: a proof procedure for non-linear integer arithmetic	88

Extraction of programs in Objective Caml and Haskell	389
Generating ML code	389
Extraction options	
Setting the target language	390
Inlining and optimizations	390
Extra elimination of useless arguments	392
Realizing axioms	392
Avoiding conflicts with existing filenames	394
Differences between CoQ and ML type systems	394
Some examples	395
A detailed example: Euclidean division	396
Extraction's horror museum	397
Users' Contributions	397
Program	399
Elaborating programs	
Elaborating programs	377
The ring and field tactic families	405
What does this tactic do?	405
The variables map	406
Is it automatic?	406
Concrete usage in CoQ	406
Adding a ring structure	408
How does it work?	411
Dealing with fields	412
Adding a new field structure	414
Legacy implementation	414
History of ring	418
Discussion	418
Nsatz: tactics for proving equalities in integral domains	421
Using the basic tactic nsatz	
More about nsatz	
More about fisacz	721
User defined equalities and relations	423
Relations and morphisms	
Adding new relations and morphisms	
Rewriting and non reflexive relations	
Rewriting and non symmetric relations	
Rewriting in ambiguous setoid contexts	428
First class setoids and morphisms	429
Tactics enabled on user provided relations	
Printing relations and morphisms	
Deprecated syntax and backward incompatibilities	431
Rewriting under binders	431
Sub-relations	432
Constant unfolding	433

Chapter 17

Extended pattern-matching

Cristina Cornes and Hugo Herbelin

This section describes the full form of pattern-matching in CoQ terms.

17.1 Patterns

The full syntax of match is presented in Figures 1.1 and 1.2. Identifiers in patterns are either constructor names or variables. Any identifier that is not the constructor of an inductive or co-inductive type is considered to be a variable. A variable name cannot occur more than once in a given pattern. It is recommended to start variable names by a lowercase letter.

If a pattern has the form $(c \vec{x})$ where c is a constructor symbol and \vec{x} is a linear vector of (distinct) variables, it is called *simple*: it is the kind of pattern recognized by the basic version of match. On the opposite, if it is a variable x or has the form $(c \vec{p})$ with p not only made of variables, the pattern is called *nested*.

A variable pattern matches any value, and the identifier is bound to that value. The pattern "_" (called "don't care" or "wildcard" symbol) also matches any value, but does not bind anything. It may occur an arbitrary number of times in a pattern. Alias patterns written (pattern as identifier) are also accepted. This pattern matches the same values as pattern does and identifier is bound to the matched value. A pattern of the form pattern | pattern is called disjunctive. A list of patterns separated with commas is also considered as a pattern and is called multiple pattern. However multiple patterns can only occur at the root of pattern-matching equations. Disjunctions of multiple pattern are allowed though.

Since extended match expressions are compiled into the primitive ones, the expressiveness of the theory remains the same. Once the stage of parsing has finished only simple patterns remain. Re-nesting of pattern is performed at printing time. An easy way to see the result of the expansion is to toggle off the nesting performed at printing (use here Set Printing Matching), then by printing the term with Print if the term is a constant, or using the command Check.

The extended match still accepts an optional *elimination predicate* given after the keyword return. Given a pattern matching expression, if all the right-hand-sides of => (*rhs* in short) have the same type, then this type can be sometimes synthesized, and so we can omit the return part. Otherwise the predicate after return has to be provided, like for the basic match.

Let us illustrate through examples the different aspects of extended pattern matching. Consider for example the function that computes the maximum of two natural numbers. We can write it in primitive syntax by:

Multiple patterns Using multiple patterns in the definition of max allows to write:

which will be compiled into the previous form.

The pattern-matching compilation strategy examines patterns from left to right. A match expression is generated **only** when there is at least one constructor in the column of patterns. E.g. the following example does not build a match expression.

Aliasing subpatterns We can also use "as *ident*" to associate a name to a sub-pattern:

```
Coq < Reset max.

Coq < Fixpoint max (n m:nat) {struct n} : nat :=
Coq < match n, m with
Coq < | O, _ => m
Coq < | S n' as p, O => p
Coq < | S n', S m' => S (max n' m')
Coq < end.
max is recursively defined (decreasing on 1st argument)</pre>
```

17.1 Patterns 355

Nested patterns Here is now an example of nested patterns:

```
Coq < Fixpoint even (n:nat) : bool :=
Coq < match n with
Coq < | O => true
Coq < | S O => false
Coq < | S (S n') => even n'
Coq < end.
even is recursively defined (decreasing on 1st argument)</pre>
```

This is compiled into:

```
Coq < Print even.
even =
fix even (n : nat) : bool :=
  match n with
  | 0 => true
  | 1 => false
  | S (S n') => even n'
  end
     : nat -> bool
Argument scope is [nat_scope]
```

In the previous examples patterns do not conflict with, but sometimes it is comfortable to write patterns that admit a non trivial superposition. Consider the boolean function lef that given two natural numbers yields true if the first one is less or equal than the second one and false otherwise. We can write it as follows:

Note that the first and the second multiple pattern superpose because the couple of values \bigcirc \bigcirc matches both. Thus, what is the result of the function on those values? To eliminate ambiguity we use the *textual priority rule*: we consider patterns ordered from top to bottom, then a value is matched by the pattern at the *ith* row if and only if it is not matched by some pattern of a previous row. Thus in the example, \bigcirc \bigcirc is matched by the first pattern, and so (lef \bigcirc \bigcirc) yields true.

Another way to write this function is:

Here the last pattern superposes with the first two. Because of the priority rule, the last pattern will be used only for values that do not match neither the first nor the second one.

Terms with useless patterns are not accepted by the system. Here is an example:

Disjunctive patterns Multiple patterns that share the same right-hand-side can be factorized using the notation *mult_pattern* | ... | *mult_pattern*. For instance, max can be rewritten as follows:

Similarly, factorization of (non necessary multiple) patterns that share the same variables is possible by using the notation $pattern \mid ... \mid pattern$. Here is an example:

Here is another example using disjunctive subpatterns.

```
Coq < Definition filter_some_square_corners (p:nat*nat) : nat*nat :=
Coq < match p with
Coq < | ((2 as m | 4 as m), (3 as n | 5 as n)) => (m,n)
Coq < | _ => (0,0)
Coq < end.
filter_some_square_corners is defined</pre>
```

17.2 About patterns of parametric types

When matching objects of a parametric type, constructors in patterns *do not expect* the parameter arguments. Their value is deduced during expansion. Consider for example the type of polymorphic lists:

We can check the function *tail*:

When we use parameters in patterns there is an error message:

17.3 Matching objects of dependent types

The previous examples illustrate pattern matching on objects of non-dependent types, but we can also use the expansion strategy to destructure objects of dependent type. Consider the type listn of lists of a certain length:

17.3.1 Understanding dependencies in patterns

We can define the function length over listn by:

```
Coq < Definition length (n:nat) (l:listn n) := n.
length is defined</pre>
```

Just for illustrating pattern matching, we can define it by case analysis:

```
Coq < Reset length.
Coq < Definition length (n:nat) (l:listn n) :=
Coq < match l with
Coq < | niln => 0
Coq < | consn n _ _ => S n
Coq < end.
length is defined</pre>
```

We can understand the meaning of this definition using the same notions of usual pattern matching.

17.3.2 When the elimination predicate must be provided

The examples given so far do not need an explicit elimination predicate because all the rhs have the same type and the strategy succeeds to synthesize it. Unfortunately when dealing with dependent patterns it often happens that we need to write cases where the type of the rhs are different instances of the elimination predicate. The function concat for listn is an example where the branches have different type and we need to provide the elimination predicate:

```
Coq < Fixpoint concat (n:nat) (1:listn n) (m:nat) (1':listn m) {struct 1} :
Coq < listn (n + m) :=
Coq < match l in listn n return listn (n + m) with
Coq < | niln => 1'
Coq < | consn n' a y => consn (n' + m) a (concat n' y m l')
Coq < end.
concat is recursively defined (decreasing on 2nd argument)</pre>
```

The elimination predicate is fun (n:nat) (1:listn n) => listn (n+m). In general if m has type $(I \ q_1 \dots q_r \ t_1 \dots t_s)$ where $q_1 \dots q_r$ are parameters, the elimination predicate should be of the form: fun $y_1 \dots y_s$ $x: (I \ q_1 \dots q_r \ y_1 \dots y_s)$ => Q.

In the concrete syntax, it should be written:

```
match m as x in (I \_ ... \_ y_1 ... y_s) return Q with ... end
```

The variables which appear in the in and as clause are new and bounded in the property Q in the return clause. The parameters of the inductive definitions should not be mentioned and are replaced by

Recall that a list of patterns is also a pattern. So, when we destructure several terms at the same time and the branches have different type we need to provide the elimination predicate for this multiple pattern. It is done using the same scheme, each term may be associated to an **as** and in clause in order to introduce a dependent product.

For example, an equivalent definition for concat (even though the matching on the second term is trivial) would have been:

```
Coq < Reset concat.
Coq < Fixpoint concat (n:nat) (1:listn n) (m:nat) (1':listn m) {struct 1} :</pre>
```

```
Coq < listn (n + m) :=
Coq < match l in listn n, l' return listn (n + m) with
Coq < | niln, x => x
Coq < | consn n' a y, x => consn (n' + m) a (concat n' y m x)
Coq < end.
concat is recursively defined (decreasing on 2nd argument)</pre>
```

When the arity of the predicate (i.e. number of abstractions) is not correct Coq raises an error message. For example:

```
Coq < Fixpoint concat
Coq < (n:nat) (l:listn n) (m:nat)</pre>
Coq < (l': listn m) {struct l} : listn (n + m) :=
      match l, l' with
Coq <
Coq < | niln, x => x
Coq < | consn n' a y, x => consn (n' + m) a (concat n' y m x)
Coq < end.
Cog < Cog < Cog < Toplevel input, characters 342-343:
   | niln, x => x
Error:
In environment
concat : forall n : nat,
         listn n -> forall m : nat, listn m -> listn (n + m)
n : nat
1 : listn n
m : nat
l' : listn m
The term "l'" has type "listn m" while it is expected to have type
 "listn (?47 + ?48)".
```

17.4 Using pattern matching to write proofs

In all the previous examples the elimination predicate does not depend on the object(s) matched. But it may depend and the typical case is when we write a proof by induction or a function that yields an object of dependent type. An example of proof using match in given in Section 8.2.3.

For example, we can write the function buildlist that given a natural number n builds a list of length n containing zeros as follows:

```
Coq < Fixpoint buildlist (n:nat) : listn n :=
Coq < match n return listn n with
Coq < | O => niln
Coq < | S n => consn n 0 (buildlist n)
Coq < end.
buildlist is recursively defined (decreasing on 1st argument)</pre>
```

We can also use multiple patterns. Consider the following definition of the predicate less-equal Le:

We can use multiple patterns to write the proof of the lemma forall (n m:nat), (LE n m) \setminus (LE m n):

```
Coq < Fixpoint dec (n m:nat) {struct n} : LE n m \/ LE m n :=</pre>
        match n, m return LE n m \/ LE m n with
        \mid 0, x \Rightarrow or_introl (LE x 0) (LEO x)
Coq <
        | x, 0 \Rightarrow or_intror (LE x 0) (LEO x)
Coq <
        | S n as n', S m as m' =>
Coq <
Coq <
            match dec n m with
            | or_introl h => or_introl (LE m' n') (LES n m h)
Coq <
            | or_intror h => or_intror (LE n' m') (LES m n h)
Coq <
Coq <
Coq <
        end.
dec is recursively defined (decreasing on 1st argument)
```

In the example of dec, the first match is dependent while the second is not.

The user can also use match in combination with the tactic refine (see Section 8.2.3) to build incomplete proofs beginning with a match construction.

17.5 Pattern-matching on inductive objects involving local definitions

If local definitions occur in the type of a constructor, then there are two ways to match on this constructor. Either the local definitions are skipped and matching is done only on the true arguments of the constructors, or the bindings for local definitions can also be caught in the matching.

Example.

In the next example, the local definition is not caught.

```
Coq < Fixpoint length n (1:list n) {struct 1} : nat :=
Coq < match 1 with
Coq < | nil => 0
Coq < | cons n 10 => S (length (2 * n) 10)
Coq < end.
length is recursively defined (decreasing on 2nd argument)</pre>
```

But in this example, it is.

```
Coq < Fixpoint length' n (l:list n) {struct l} : nat :=
Coq < match l with
Coq < | nil => 0
Coq < | cons _ m 10 => S (length' m 10)
Coq < end.
length' is recursively defined (decreasing on 2nd argument)</pre>
```

Remark: for a given matching clause, either none of the local definitions or all of them can be caught.

17.6 Pattern-matching and coercions

If a mismatch occurs between the expected type of a pattern and its actual type, a coercion made from constructors is sought. If such a coercion can be found, it is automatically inserted around the pattern.

Example:

```
Cog < Inductive I : Set :=
Coq < | C1 : nat -> I
Coq < | C2 : I -> I.
I is defined
I_rect is defined
I_ind is defined
I_rec is defined
Coq < Coercion C1 : nat >-> I.
C1 is now a coercion
Coq < Check (fun x => match x with
                      | C2 O => 0
Coq <
                       | _ => 0
Coq <
                       end).
Coq <
fun x : I \Rightarrow
match x with
/ C1 _ => 0
| C2 (C1 0) => 0
| C2 (C1 (S _)) => 0
| C2 (C2 _) => 0
end
     : I -> nat
```

17.7 When does the expansion strategy fail?

The strategy works very like in ML languages when treating patterns of non-dependent type. But there are new cases of failure that are due to the presence of dependencies.

The error messages of the current implementation may be sometimes confusing. When the tactic fails because patterns are somehow incorrect then error messages refer to the initial expression. But the strategy may succeed to build an expression whose sub-expressions are well typed when the whole expression is not. In this situation the message makes reference to the expanded expression. We encourage users, when they have patterns with the same outer constructor in different equations, to name the variable patterns in the same positions with the same name. E.g. to write $(cons n \circ x) \Rightarrow e1$ and $(cons n \circ x) \Rightarrow e2$ instead of $(cons n \circ x) \Rightarrow e1$ and $(cons n \circ x) \Rightarrow e2$. This helps to maintain certain name correspondence between the generated expression and the original.

Here is a summary of the error messages corresponding to each situation:

Error messages:

1. The constructor ident expects num arguments
The variable ident is bound several times in pattern term
Found a constructor of inductive type term while a constructor of term is expected

Patterns are incorrect (because constructors are not applied to the correct number of the arguments, because they are not linear or they are wrongly typed).

2. Non exhaustive pattern-matching

The pattern matching is not exhaustive.

3. The elimination predicate *term* should be of arity *num* (for non dependent case) or *num* (for dependent case)

The elimination predicate provided to match has not the expected arity.

4. Unable to infer a match predicate Either there is a type incompatiblity or the problem involves dependencies

There is a type mismatch between the different branches. The user should provide an elimination predicate.

Chapter 18

Implicit Coercions

Amokrane Saïbi

18.1 General Presentation

This section describes the inheritance mechanism of CoQ. In CoQ with inheritance, we are not interested in adding any expressive power to our theory, but only convenience. Given a term, possibly not typable, we are interested in the problem of determining if it can be well typed modulo insertion of appropriate coercions. We allow to write:

- f a where f: f or all x: A, B and a: A' when A' can be seen in some sense as a subtype of A.
- x:A when A is not a type, but can be seen in a certain sense as a type: set, group, category etc.
- f a when f is not a function, but can be seen in a certain sense as a function: bijection, functor, any structure morphism etc.

18.2 Classes

A class with n parameters is any defined name with a type $forall\ (x_1:A_1)..(x_n:A_n), s$ where s is a sort. Thus a class with parameters is considered as a single class and not as a family of classes. An object of a class C is any term of type $C\ t_1..t_n$. In addition to these user-classes, we have two abstract classes:

- Sortclass, the class of sorts; its objects are the terms whose type is a sort.
- Funclass, the class of functions; its objects are all the terms with a functional type, i.e. of form $forall \ x : A, B$.

Formally, the syntax of a classes is defined on Figure 18.1.

Figure 18.1: Syntax of classes

18.3 Coercions

A name f can be declared as a coercion between a source user-class C with n parameters and a target class D if one of these conditions holds:

- D is a user-class, then the type of f must have the form $forall\ (x_1:A_1)..(x_n:A_n)(y:C\ x_1...x_n), D\ u_1...u_m$ where m is the number of parameters of D.
- D is Funclass, then the type of f must have the form $forall\ (x_1:A_1)..(x_n:A_n)(y:C\ x_1...x_n)(x:A), B$.
- D is Sortclass, then the type of f must have the form $forall\ (x_1:A_1)..(x_n:A_n)(y:C\ x_1...x_n), s$ with s a sort.

We then write f: C > -> D. The restriction on the type of coercions is called *the uniform inheritance* condition. Remark that the abstract classes Funclass and Sortclass cannot be source classes.

To coerce an object $t : C \ t_1..t_n$ of C towards D, we have to apply the coercion f to it; the obtained term $f \ t_1..t_n \ t$ is then an object of D.

18.4 Identity Coercions

Identity coercions are special cases of coercions used to go around the uniform inheritance condition. Let C and D be two classes with respectively n and m parameters and $f:forall\ (x_1:T_1)...(x_k:T_k)(y:C\ u_1...u_n), D\ v_1...v_m$ a function which does not verify the uniform inheritance condition. To declare f as coercion, one has first to declare a subclass C' of C:

$$C' := fun(x_1 : T_1)..(x_k : T_k) => C u_1..u_n$$

We then define an *identity coercion* between C' and C:

$$Id_{C'}C := fun(x_1:T_1)..(x_k:T_k)(y:C'x_1..x_k) => (y:Cu_1..u_n)$$

We can now declare f as coercion from C' to D, since we can "cast" its type as $forall\ (x_1:T_1)..(x_k:T_k)(y:C'\ x_1..x_k), D\ v_1..v_m$.

The identity coercions have a special status: to coerce an object $t: C' \ t_1..t_k$ of C' towards C, we does not have to insert explicitly $Id_C'_C$ since $Id_C'_C \ t_1..t_k$ t is convertible with t. However we "rewrite" the type of t to become an object of C; in this case, it becomes $C \ u_1^*..u_k^*$ where each u_i^* is the result of the substitution in u_i of the variables x_i by t_i .

18.5 Inheritance Graph

Coercions form an inheritance graph with classes as nodes. We call *coercion path* an ordered list of coercions between two nodes of the graph. A class C is said to be a subclass of D if there is a coercion path in the graph from C to D; we also say that C inherits from D. Our mechanism supports multiple inheritance since a class may inherit from several classes, contrary to simple inheritance where a class inherits from at most one class. However there must be at most one path between two classes. If this is not the case, only the *oldest* one is valid and the others are ignored. So the order of declaration of coercions is important.

We extend notations for coercions to coercion paths. For instance $[f_1; ...; f_k] : C > -> D$ is the coercion path composed by the coercions $f_1...f_k$. The application of a coercion path to a term consists of the successive application of its coercions.

18.6 Declaration of Coercions

18.6.1 Coercion qualid : $class_1 >-> class_2$.

Declares the construction denoted by qualid as a coercion between $class_1$ and $class_2$.

Error messages:

- 1. qualid not declared
- 2. qualid is already a coercion
- 3. Funclass cannot be a source class
- 4. Sortclass cannot be a source class
- 5. qualid is not a function
- 6. Cannot find the source class of qualid
- 7. Cannot recognize $class_1$ as a source class of qualid
- 8. qualid does not respect the uniform inheritance condition
- 9. Found target class class instead of class₂

When the coercion *qualid* is added to the inheritance graph, non valid coercion paths are ignored; they are signaled by a warning.

Warning:

1. Ambiguous paths: $[f_1^1;..;f_{n_1}^1]:C_1>->D_1\\ ...\\ [f_1^m;..;f_{n_m}^m]:C_m>->D_m$

Variants:

1. Local Coercion qualid : $class_1 >-> class_2$.

Declares the construction denoted by qualid as a coercion local to the current section.

- 2. Coercion *ident* := term

 This defines *ident* just like Definition *ident* := term, and then declares *ident* as a coercion between it source and its target.
- 3. Coercion ident := term : type

 This defines ident just like Definition ident : type := term, and then declares ident as a coercion between it source and its target.
- 4. Local Coercion *ident* := *term*This defines *ident* just like Let *ident* := *term*, and then declares *ident* as a coercion between it source and its target.
- 5. Assumptions can be declared as coercions at declaration time. This extends the grammar of assumptions from Figure 1.3 as follows:

If the extra > is present before the type of some assumptions, these assumptions are declared as coercions.

6. Constructors of inductive types can be declared as coercions at definition time of the inductive type. This extends and modifies the grammar of inductive types from Figure 1.3 as follows:

Especially, if the extra > is present in a constructor declaration, this constructor is declared as a coercion.

```
18.6.2 Identity Coercion ident:class<sub>1</sub> >-> class<sub>2</sub>.
```

We check that $class_1$ is a constant with a value of the form $fun(x_1:T_1)..(x_n:T_n) => (class_2 t_1..t_m)$ where m is the number of parameters of $class_2$. Then we define an identity function with the type $forall(x_1:T_1)..(x_n:T_n)(y:class_1 x_1..x_n), class_2 t_1..t_m$, and we declare it as an identity coercion between $class_1$ and $class_2$.

Error messages:

1. $class_1$ must be a transparent constant

Variants:

- 1. Local Identity Coercion $ident: ident_1 >-> ident_2$. Idem but locally to the current section.
- 2. SubClass ident := type.

If type is a class ident' applied to some arguments then ident is defined and an identity coercion of name Id_ident_ident' is declared. Otherwise said, this is an abbreviation for

```
Definition ident := type.
```

followed by

Identity Coercion Id_ident_ident':ident >-> ident'.

3. Local SubClass *ident* := *type*.

Same as before but locally to the current section.

18.7 Displaying Available Coercions

18.7.1 Print Classes.

Print the list of declared classes in the current context.

18.7.2 Print Coercions.

Print the list of declared coercions in the current context.

18.7.3 Print Graph.

Print the list of valid coercion paths in the current context.

18.7.4 Print Coercion Paths $class_1$ $class_2$.

Print the list of valid coercion paths from class₁ to class₂.

18.8 Activating the Printing of Coercions

18.8.1 Set Printing Coercions.

This command forces all the coercions to be printed. Conversely, to skip the printing of coercions, use Unset Printing Coercions. By default, coercions are not printed.

18.8.2 Set Printing Coercion qualid.

This command forces coercion denoted by *qualid* to be printed. To skip the printing of coercion *qualid*, use Unset Printing Coercion *qualid*. By default, a coercion is never printed.

18.9 Classes as Records

We allow the definition of *Structures with Inheritance* (or classes as records) by extending the existing Record macro (see Section 2.1). Its new syntax is:

The identifier ident is the name of the defined record and sort is its type. The identifier $ident_0$ is the name of its constructor. The identifiers $ident_1$, ..., $ident_n$ are the names of its fields and $term_1$, ..., $term_n$ their respective types. The alternative [:|:>] is ":" or ":>". If $ident_i:>term_i$, then $ident_i$ is automatically declared as coercion from ident to the class of $term_i$. Remark that $ident_i$ always verifies the uniform inheritance condition. If the optional ">" before ident is present, then $ident_0$ (or the default name $ident_0$ is omitted) is automatically declared as a coercion from the class of $term_n$ to ident (this may fail if the uniform inheritance condition is not satisfied).

Remark: The keyword Structure is a synonym of Record.

18.10 Coercions and Sections

The inheritance mechanism is compatible with the section mechanism. The global classes and coercions defined inside a section are redefined after its closing, using their new value and new type. The classes and coercions which are local to the section are simply forgotten. Coercions with a local source class or a local target class, and coercions which do not verify the uniform inheritance condition any longer are also forgotten.

18.11 Coercions and Modules

From Coq version 8.3, the coercions present in a module are activated only when the module is explicitly imported. Formerly, the coercions were activated as soon as the module was required, whatever it was imported or not.

To recover the behavior of the versions of Coq prior to 8.3, use the following command:

```
Set Automatic Coercions Import.
```

To cancel the effect of the option, use instead:

Unset Automatic Coercions Import.

18.12 Examples

There are three situations:

• f a is ill-typed where f: f or a a: a and a: a. If there is a coercion path between a and a: a is transformed into a and a: a is the result of the application of this coercion path to a.

We first give an example of coercion between atomic inductive types

18.12 Examples 369

Warning: "Check true=0." fails. This is "normal" behaviour of coercions. To validate true=0, the coercion is searched from nat to bool. There is none.

We give an example of coercion between classes with parameters.

```
Coq < Parameters
Cog < (C : nat \rightarrow Set) (D : nat \rightarrow bool \rightarrow Set) (E : bool \rightarrow Set).
{\it C} is assumed
D is assumed
E is assumed
Cog < Parameter f : forall n:nat, C n -> D (S n) true.
f is assumed
Coq < Coercion f : C >-> D.
f is now a coercion
Coq < Parameter g : forall (n:nat) (b:bool), D n b -> E b.
g is assumed
Coq < Coercion g : D >-> E.
g is now a coercion
Coq < Parameter c : C 0.
c is assumed
Coq < Parameter T : E true -> nat.
T is assumed
Coq < Check (T c).
T C
     : nat
Coq < Set Printing Coercions.
Coq < Check (T c).
T (g 1 true (f 0 c))
     : nat
```

We give now an example using identity coercions.

```
Coq < Definition D' (b:bool) := D 1 b.
D' is defined
Coq < Identity Coercion IdD'D : D' >-> D.
Coq < Print IdD'D.
IdD'D =
(fun (b : bool) (x : D' b) \Rightarrow x):forall b : bool, D' b \Rightarrow D 1 b
     : forall b : bool, D' b -> D 1 b
Argument scopes are [bool_scope _]
Coq < Parameter d' : D' true.
d' is assumed
Coq < Check (T d').
T d'
     : nat
Coq < Set Printing Coercions.
Coq < Check (T d').
T (g 1 true d')
     : nat
```

In the case of functional arguments, we use the monotonic rule of sub-typing. Approximatively, to coerce $t : forall \ x : A, B$ towards $forall \ x : A', B'$, one have to coerce A' towards A and B towards B'. An example is given below:

```
Coq < Parameters (A B : Set) (h : A -> B).
A is assumed
B is assumed
h is assumed
Coq < Coercion h : A >-> B.
h is now a coercion
Coq < Parameter U : (A -> E true) -> nat.
U is assumed
Coq < Parameter t : B -> C 0.
t is assumed
Coq < Check (U t).
U (fun x : A => t x)
     : nat
Coq < Set Printing Coercions.
Coq < Check (U t).
U (fun x : A => g 1 true (f 0 (t (h x))))
     : nat
```

Remark the changes in the result following the modification of the previous example.

```
Coq < Parameter U' : (C 0 \rightarrow B) \rightarrow nat. 
 U' is assumed 
 Coq < Parameter t' : E true \rightarrow A.
```

18.12 Examples 371

• An assumption x:A when A is not a type, is ill-typed. It is replaced by x:A' where A' is the result of the application to A of the coercion path between the class of A and Sortclass if it exists. This case occurs in the abstraction $fun \ x:A => t$, universal quantification $forall \ x:A,B$, global variables and parameters of (co-)inductive definitions and functions. In $forall \ x:A,B$, such a coercion path may be applied to B also if necessary.

```
Coq < Parameter Graph : Type.
Graph is assumed
Coq < Parameter Node : Graph -> Type.
Node is assumed
Coq < Coercion Node : Graph >-> Sortclass.
Node is now a coercion
Cog < Parameter G : Graph.
G is assumed
Coq < Parameter Arrows : G -> G -> Type.
Arrows is assumed
Coq < Check Arrows.
Arrows
     : G -> G -> Type
Coq < Parameter fg : G -> G.
fg is assumed
Coq < Check fg.
     : G -> G
Coq < Set Printing Coercions.
Coq < Check fg.
fg
     : Node G -> Node G
```

• f a is ill-typed because f: A is not a function. The term f is replaced by the term obtained by applying to f the coercion path between A and Funclass if it exists.

```
Coq < Parameter bij : Set -> Set -> Set.
bij is assumed
Coq < Parameter ap : forall A B:Set, bij A B -> A -> B.
ap is assumed
```

Let us see the resulting graph of this session.

```
Coq < Print Graph.
[sigT_of_sig; sig_of_sigT] : sig >-> sig
[sigT_of_sig] : sig >-> sigT
[sig_of_sigT] : sigT >-> sig
[sig_of_sigT] : sigT_of_sig] : sigT >-> sigT
[bool_in_nat] : bool >-> nat
[f] : C >-> D
[f; g] : C >-> E
[g] : D >-> E
[IdD'D] : D' >-> D
[IdD'D; g] : D' >-> E
[h] : A >-> B
[Node] : Graph >-> Sortclass
[ap] : bij >-> Funclass
```

Chapter 19

Type Classes

Matthieu Sozeau

The status of Type Classes is (extremely) experimental.

This chapter presents a quick reference of the commands related to type classes. For an actual introduction to type classes, there is a description of the system [128] and the literature on type classes in HASKELL which also applies.

19.1 Class and Instance declarations

The syntax for class and instance declarations is the same as record syntax of CoQ:

```
\begin{split} & \text{Class Id} \ (\alpha_1:\tau_1)\cdots(\alpha_n:\tau_n)[:sort] := \{ \\ & \text{$\mathfrak{f}_1$} \ : \ type_1; \\ & \vdots \\ & \text{$\mathfrak{f}_m$} \ : \ type_m \}. \end{split} & \text{Instance } \textit{ident} \ : \ \text{Id} \ \textit{term}_1\cdots\textit{term}_n := \{ \\ & \text{$\mathfrak{f}_1$} \ := \ \textit{term}_{f_1}; \\ & \vdots \\ & \text{$\mathfrak{f}_m$} \ := \ \textit{term}_{f_m} \}. \end{split}
```

The $\overrightarrow{\alpha_i}:\overrightarrow{\tau_i}$ variables are called the *parameters* of the class and the $\overrightarrow{f_k}: type_k$ are called the *methods*. Each class definition gives rise to a corresponding record declaration and each instance is a regular definition whose name is given by *ident* and type is an instantiation of the record type.

We'll use the following example class in the rest of the chapter:

```
Coq < Class EqDec (A : Type) := {
Coq < eqb : A -> A -> bool ;
Coq < eqb_leibniz : forall x y, eqb x y = true -> x = y }.
```

374 19 Type Classes

This class implements a boolean equality test which is compatible with Leibniz equality on some type. An example implementation is:

```
Coq < Instance unit_EqDec : EqDec unit :=
Coq < { eqb x y := true ;
Coq < eqb_leibniz x y H :=
Coq < match x, y return x = y with tt, tt => eq_refl tt end }.
```

If one does not give all the members in the Instance declaration, Coq enters the proof-mode and the user is asked to build inhabitants of the remaining fields, e.g.:

```
Coq < Instance eq_bool : EqDec bool :=</pre>
Coq < \{ eqb x y := if x then y else negb y \}.
Cog < Proof. intros x y H.
1 subgoal
  forall x \ y : bool, (if x \ then \ y \ else \ negb \ y) = true \rightarrow x = y
1 subgoal
  x : bool
  y : bool
 H: (if x then y else negb y) = true
  _____
  x = v
Coq < destruct x ; destruct y ; (discriminate || reflexivity).</pre>
No more subgoals.
Cog < Defined.
Global Instance eq_bool : (EqDec bool) :=
 { | eqb := fun x y => if x then y else negb y | }.
intros x y H.
destruct x; destruct y; discriminate || reflexivity.
eq_bool is defined
```

One has to take care that the transparency of every field is determined by the transparency of the Instance proof. One can use alternatively the Program Instance variant which has richer facilities for dealing with obligations.

19.2 Binding classes

Once a type class is declared, one can use it in class binders:

```
Coq < Definition neqb \{A\} {eqa : EqDec A} (x \ y : A) := negb (eqb x y). neqb is defined
```

When one calls a class method, a constraint is generated that is satisfied only in contexts where the appropriate instances can be found. In the example above, a constraint EqDec A is generated and satisfied by eqa : EqDec A. In case no satisfying constraint can be found, an error is raised:

The algorithm used to solve constraints is a variant of the eauto tactic that does proof search with a set of lemmas (the instances). It will use local hypotheses as well as declared lemmas in the typeclass_instances database. Hence the example can also be written:

```
Coq < Definition neqb' A (eqa : EqDec A) (x y : A) := negb (eqb x y). neqb' is defined
```

However, the generalizing binders should be used instead as they have particular support for type classes:

- They automatically set the maximally implicit status for type class arguments, making derived functions as easy to use as class methods. In the example above, A and eqa should be set maximally implicit.
- They support implicit quantification on partialy applied type classes (§2.7.20). Any argument not given as part of a type class binder will be automatically generalized.
- They also support implicit quantification on superclasses (§19.5.1)

Following the previous example, one can write:

```
Coq < Definition neqb_impl `{eqa : EqDec A} (x y : A) := negb (eqb x y). neqb_impl is defined
```

Here A is implicitly generalized, and the resulting function is equivalent to the one above.

19.3 Parameterized Instances

One can declare parameterized instances as in HASKELL simply by giving the constraints as a binding context before the instance, e.g.:

```
Coq < Instance prod_eqb '(EA : EqDec A, EB : EqDec B) : EqDec (A * B) :=
Coq < { eqb x y := match x, y with
Coq < | (la, ra), (lb, rb) => andb (eqb la lb) (eqb ra rb)
Coq < end }.
1 subgoal
A : Type
EA : EqDec A
B : Type
EB : EqDec B</pre>
```

376 19 Type Classes

These instances are used just as well as lemmas in the instance hint database.

19.4 Sections and contexts

To ease the parametrization of developments by type classes, we provide a new way to introduce variables into section contexts, compatible with the implicit argument mechanism. The new command works similarly to the Variables vernacular (see 1.3.1), except it accepts any binding context as argument. For example:

```
Cog < Section EqDec_defs.</pre>
       Context '{EA : EqDec A}.
A is assumed
EA is assumed
Coa <
       Global Instance option_eqb : EqDec (option A) :=
      { eqb x y := match x, y with
Coq <
      | Some x, Some |
| None, None =>
| _, _ => false |
          | Some x, Some y \Rightarrow eqb x y
Coq <
Coq <
          | None, None => true
Coq <
         end }.
Coq <
Coq < End EqDec_defs.
Coq < About option_eqb.
option_eqb : forall A : Type, EqDec A -> EqDec (option A)
Arguments A, EA are implicit and maximally inserted
Argument scopes are [type_scope _]
option_eqb is transparent
Expands to: Constant Top.option_eqb
```

Here the Global modifier redeclares the instance at the end of the section, once it has been generalized by the context variables it uses.

19.5 Building hierarchies

19.5.1 Superclasses

One can also parameterize classes by other classes, generating a hierarchy of classes and superclasses. In the same way, we give the superclasses as a binding context:

Contrary to HASKELL, we have no special syntax for superclasses, but this declaration is morally equivalent to:

```
Class '(E : EqDec A) => Ord A :=
    { le : A -> A -> bool }.
```

This declaration means that any instance of the Ord class must have an instance of EqDec. The parameters of the subclass contain at least all the parameters of its superclasses in their order of appearance (here A is the only one). As we have seen, Ord is encoded as a record type with two parameters: a type A and an E of type EqDec A. However, one can still use it as if it had a single parameter inside generalizing binders: the generalization of superclasses will be done automatically.

```
Coq < Definition le_eqb '\{Ord A\} (x y : A) := andb (le x y) (le y x).
```

In some cases, to be able to specify sharing of structures, one may want to give explicitly the superclasses. It is possible to do it directly in regular binders, and using the! modifier in class binders. For example:

```
Coq < Definition lt '{eqa : EqDec A, ! Ord eqa} (x y : A) := Coq < andb (le x y) (neqb x y).
```

The ! modifier switches the way a binder is parsed back to the regular interpretation of Coq. In particular, it uses the implicit arguments mechanism if available, as shown in the example.

19.5.2 Substructures

Substructures are components of a class which are instances of a class themselves. They often arise when using classes for logical properties, e.g.:

```
Coq < Class Reflexive (A : Type) (R : relation A) :=
Coq < reflexivity : forall x, R x x.

Coq < Class Transitive (A : Type) (R : relation A) :=
Coq < transitivity : forall x y z, R x y -> R y z -> R x z.
```

This declares singleton classes for reflexive and transitive relations, (see 1 for an explanation). These may be used as part of other classes:

```
Coq < Class PreOrder (A : Type) (R : relation A) :=
Coq < { PreOrder_Reflexive :> Reflexive A R ;
Coq < PreOrder_Transitive :> Transitive A R }.
```

The syntax :> indicates that each PreOrder can be seen as a Reflexive relation. So each time a reflexive relation is needed, a preorder can be used instead. This is very similar to the coercion mechanism of Structure declarations. The implementation simply declares each projection as an instance.

One can also declare existing objects or structure projections using the Existing Instance command to achieve the same effect.

19.6 Summary of the commands

```
19.6.1 Class ident\ binder_1\ \dots\ binder_n\ :\ sort:=\ \{\ field_1\ ;\ \dots;\ field_k\ \}.
```

The Class command is used to declare a type class with parameters $binder_1$ to $binder_n$ and fields field₁ to field_k.

Variants:

378 19 Type Classes

1. Class ident binder₁ ...binder_n: sort:= ident₁: type₁. This variant declares a singleton class whose only method is $ident_1$. This singleton class is a so-called definitional class, represented simply as a definition $ident\ binder_1$...binder_n:= type₁ and whose instances are themselves objects of this type. Definitional classes are not wrapped inside records, and the trivial projection of an instance of such a class is convertible to the instance itself. This can be useful to make instances of existing objects easily and to reduce proof size by not inserting useless projections. The class constant itself is declared rigid during resolution so that the class abstraction is maintained.

2. Existing Class *ident*. This variant declares a class a posteriori from a constant or inductive definition. No methods or instances are defined.

```
19.6.2 Instance ident binder<sub>1</sub> ...binder<sub>n</sub>: Class t_1 	ldots t_n [| priority] := { field<sub>1</sub> := b_1 ; ...; field<sub>i</sub> := b_i }
```

The Instance command is used to declare a type class instance named *ident* of the class *Class* with parameters t_1 to t_n and fields b_1 to b_i , where each field must be a declared field of the class. Missing fields must be filled in interactive proof mode.

An arbitrary context of the form $binder_1$... $binder_n$ can be put after the name of the instance and before the colon to declare a parameterized instance. An optional priority can be declared, 0 being the highest priority as for auto hints.

Variants:

- 1. Instance $ident\ binder_1\ \dots binder_n$: forall $binder_{n+1}\ \dots binder_m$, Class $t_1\ \dots t_n$ [| priority] := term This syntax is used for declaration of singleton class instances or for directly giving an explicit term of type forall $binder_{n+1}\ \dots binder_m$, Class $t_1\ \dots t_n$. One need not even mention the unique field name for singleton classes.
- 2. Global Instance One can use the Global modifier on instances declared in a section so that their generalization is automatically redeclared after the section is closed.
- 3. Program Instance Switches the type-checking to PROGRAM (chapter 23) and uses the obligation mechanism to manage missing fields.
- 4. Declare Instance In a Module Type, this command states that a corresponding concrete instance should exist in any implementation of this Module Type. This is similar to the distinction between Parameter vs. Definition, or between Declare Module and Module.

Besides the Class and Instance vernacular commands, there are a few other commands related to type classes.

19.6.3 Existing Instance ident

This commands adds an arbitrary constant whose type ends with an applied type class to the instance database. It can be used for redeclaring instances at the end of sections, or declaring structure projections as instances. This is almost equivalent to Hint Resolve *ident*: typeclass_instances.

Variants:

1. Existing Instances $ident_1$... $ident_n$ With this command, several existing instances can be declared at once.

19.6.4 Context $binder_1$... $binder_n$

Declares variables according to the given binding context, which might use implicit generalization (see 19.4).

```
19.6.5 Typeclasses Transparent, Opaque ident_1 \dots ident_n
```

This commands defines the transparency of $ident_1 \dots ident_n$ during type class resolution. It is useful when some constants prevent some unifications and make resolution fail. It is also useful to declare constants which should never be unfolded during proof-search, like fixpoints or anything which does not look like an abbreviation. This can additionally speed up proof search as the typeclass map can be indexed by such rigid constants (see 8.9.1). By default, all constants and local variables are considered transparent. One should take care not to make opaque any constant that is used to abbreviate a type, like relation $A := A \rightarrow A \rightarrow Prop$.

This is equivalent to Hint Transparent, Opaque ident: typeclass_instances.

```
19.6.6 Typeclasses eauto := [debug] [dfs | bfs] [depth]
```

This commands allows to customize the type class resolution tactic, based on a variant of eauto. The flags semantics are:

- debug In debug mode, the trace of successfully applied tactics is printed.
- dfs, bfs This sets the search strategy to depth-first search (the default) or breadth-first search.
- depth This sets the depth of the search (the default is 100).

380 **19 Type Classes**

Chapter 20

Omega: a solver of quantifier-free problems in Presburger Arithmetic

Pierre Crégut

20.1 Description of omega

omega solves a goal in Presburger arithmetic, i.e. a universally quantified formula made of equations and inequations. Equations may be specified either on the type nat of natural numbers or on the type Z of binary-encoded integer numbers. Formulas on nat are automatically injected into Z. The procedure may use any hypothesis of the current proof session to solve the goal.

Multiplication is handled by omega but only goals where at least one of the two multiplicands of products is a constant are solvable. This is the restriction meant by "Presburger arithmetic".

If the tactic cannot solve the goal, it fails with an error message. In any case, the computation eventually stops.

20.1.1 Arithmetical goals recognized by omega

omega applied only to quantifier-free formulas built from the connectors

on atomic formulas. Atomic formulas are built from the predicates

on nat or from the predicates

on Z. In expressions of type nat, omega recognizes

and in expressions of type Z, omega recognizes

```
+, -, *, Z.succ, and constants.
```

All expressions of type nat or Z not built on these operators are considered abstractly as if they were arbitrary variables of type nat or Z.

20.1.2 Messages from omega

When omega does not solve the goal, one of the following errors is generated:

Error messages:

1. omega can't solve this system

This may happen if your goal is not quantifier-free (if it is universally quantified, try intros first; if it contains existentials quantifiers too, omega is not strong enough to solve your goal). This may happen also if your goal contains arithmetical operators unknown from omega. Finally, your goal may be really wrong!

2. omega: Not a quantifier-free goal

If your goal is universally quantified, you should first apply intro as many time as needed.

- 3. omega: Unrecognized predicate or connective: ident
- 4. omega: Unrecognized atomic proposition: prop
- 5. omega: Can't solve a goal with proposition variables
- 6. omega: Unrecognized proposition
- 7. omega: Can't solve a goal with non-linear products
- 8. omega: Can't solve a goal with equality on type

20.2 Using omega

The omega tactic does not belong to the core system. It should be loaded by

```
Coq < Require Import Omega.
Coq < Open Scope Z scope.</pre>
```

Example 3:

20.3 Technical data 383

Example 4:

20.3 Technical data

20.3.1 Overview of the tactic

- The goal is negated twice and the first negation is introduced as an hypothesis.
- Hypothesis are decomposed in simple equations or inequations. Multiple goals may result from this phase.
- Equations and inequations over nat are translated over Z, multiple goals may result from the translation of substraction.
- Equations and inequations are normalized.
- Goals are solved by the *OMEGA* decision procedure.
- The script of the solution is replayed.

20.3.2 Overview of the *OMEGA* decision procedure

The *OMEGA* decision procedure involved in the omega tactic uses a small subset of the decision procedure presented in

"The Omega Test: a fast and practical integer programming algorithm for dependence analysis", William Pugh, Communication of the ACM, 1992, p 102-114.

Here is an overview, look at the original paper for more information.

- Equations and inequations are normalized by division by the GCD of their coefficients.
- Equations are eliminated, using the Banerjee test to get a coefficient equal to one.
- Note that each inequation defines a half space in the space of real value of the variables.
- Inequations are solved by projecting on the hyperspace defined by cancelling one of the variable. They are partitioned according to the sign of the coefficient of the eliminated variable. Pairs of inequations from different classes define a new edge in the projection.
- Redundant inequations are eliminated or merged in new equations that can be eliminated by the Banerjee test.

• The last two steps are iterated until a contradiction is reached (success) or there is no more variable to eliminate (failure).

It may happen that there is a real solution and no integer one. The last steps of the Omega procedure (dark shadow) are not implemented, so the decision procedure is only partial.

20.4 Bugs

- The simplification procedure is very dumb and this results in many redundant cases to explore.
- Much too slow.
- Certainly other bugs! You can report them to https://coq.inria.fr/bugs/.

Chapter 21

Micromega: tactics for solving arithmetic goals over ordered rings

Frédéric Besson and Evgeny Makarov

21.1 Short description of the tactics

The Psatz module (Require Psatz.) gives access to several tactics for solving arithmetic goals over Z^1 , Q and R:

- lia is a decision procedure for linear integer arithmetic (see Section 21.5);
- nia is an incomplete proof procedure for integer non-linear arithmetic (see Section 21.6);
- 1ra is a decision procedure for linear (real or rational) arithmetic goals (see Section 21.3);
- psatz D n where D is Z, Q or R and n is an optional integer limiting the proof search depth is is an incomplete proof procedure for non-linear arithmetic. It is based on John Harrison's Hol light driver to the external prover cspd². Note that the csdp driver is generating a *proof cache* thus allowing to rerun scripts even without csdp (see Section 21.4).

The tactics solve propositional formulas parameterised by atomic arithmetics expressions interpreted over a domain $D \in \{\mathbb{Z}, \mathbb{Q}, \mathbb{R}\}$. The syntax of the formulas is the following:

```
F ::= A \mid P \mid True \mid False \mid F_1 \land F_2 \mid F_1 \lor F_2 \mid F_1 \leftrightarrow F_2 \mid F_1 \to F_2 \mid \sim F
A ::= p_1 = p_2 \mid p_1 > p_2 \mid p_1 < p_2 \mid p_1 \ge p_2 \mid p_1 \le p_2
p ::= c \mid x \mid -p \mid p_1 - p_2 \mid p_1 + p_2 \mid p_1 \times p_2 \mid p^n
```

where c is a numeric constant, $x \in D$ is a numeric variable and the operators $-, +, \times$, are respectively subtraction, addition, product, p^n is exponentiation by a constant n, P is an arbitrary proposition. For Q, equality is not leibnitz equality = but the equality of rationals ==.

For \mathbb{Z} (resp. \mathbb{Q}), c ranges over integer constants (resp. rational constants). For \mathbb{R} , the tactic recognises as real constants the following expressions:

¹Support for nat and N is obtained by pre-processing the goal with the zify tactic.

²Sources and binaries can be found at https://projects.coin-or.org/Csdp

$$c ::= R0 \mid R1 \mid Rmul(c,c) \mid Rplus(c,c) \mid Rminus(c,c) \mid IZR z \mid IQR q \mid Rdiv(c,c)$$

where z is a constant in Z and q is a constant in Q. This includes integer constants written using the decimal notation *i.e.*, cR.

21.2 Positivstellensatz refutations

The name psatz is an abbreviation for *positivstellensatz* – literally positivity theorem – which generalises Hilbert's *nullstellensatz*. It relies on the notion of Cone. Given a (finite) set of polynomials S, Cone(S) is inductively defined as the smallest set of polynomials closed under the following rules:

$$\frac{p \in S}{p \in Cone(S)} \quad \frac{p_1 \in Cone(S) \quad p_2 \in Cone(S)}{p_1 \bowtie p_2 \in Cone(S)} \quad \bowtie \in \{+, *\}$$

The following theorem provides a proof principle for checking that a set of polynomial inequalities do not have solutions³:

Theorem 1 Let S be a set of polynomials.

If -1 belongs to Cone(S) then the conjunction $\bigwedge_{p \in S} p \ge 0$ is unsatisfiable.

A proof based on this theorem is called a *positivstellensatz* refutation. The tactics work as follows. Formulas are normalised into conjonctive normal form $\bigwedge_i C_i$ where C_i has the general form $(\bigwedge_{j \in S_i} p_j \bowtie 0) \to False)$ and $\bowtie \in \{>, \ge, =\}$ for $D \in \{\mathbb{Q}, \mathbb{R}\}$ and $\bowtie \in \{\ge, =\}$ for \mathbb{Z} . For each conjunct C_i , the tactic calls a oracle which searches for -1 within the cone. Upon success, the oracle returns a *cone expression* that is normalised by the ring tactic (see chapter 24) and checked to be -1.

21.3 lra: a decision procedure for linear real and rational arithmetic

The 1ra tactic is searching for *linear* refutations using Fourier elimination⁴. As a result, this tactic explores a subset of the Cone defined as:

$$LinCone(S) = \left\{ \sum_{p \in S} \alpha_p \times p \mid \alpha_p \text{ are positive constants} \right\}$$

The deductive power of lra is the combined deductive power of ring_simplify and fourier. There is also an overlap with the field tactic e.g., x = 10 * x / 10 is solved by lra.

21.4 psatz: a proof procedure for non-linear arithmetic

The psatz tactic explores the Cone by increasing degrees – hence the depth parameter n. In theory, such a proof search is complete – if the goal is provable the search eventually stops. Unfortunately, the external oracle is using numeric (approximate) optimisation techniques that might miss a refutation.

To illustrate the working of the tactic, consider we wish to prove the following Coq goal.

Coq < Goal forall x,
$$-x^2 >= 0 \rightarrow x - 1 >= 0 \rightarrow False$$
.

³Variants deal with equalities and strict inequalities.

⁴More efficient linear programming techniques could equally be employed

Such a goal is solved by intro x; psatz Z 2. The oracle returns the cone expression $2 \times (\mathbf{x} - \mathbf{1}) + \mathbf{x} - \mathbf{1} \times \mathbf{x} - \mathbf{1} + -\mathbf{x}^2$ (polynomial hypotheses are printed in bold). By construction, this expression belongs to $Cone(\{-x^2, x-1\})$. Moreover, by running ring we obtain -1. By Theorem 1, the goal is valid.

21.5 lia: a tactic for linear integer arithmetic

The tactic lia offers an alternative to the omega and romega tactic (see Chapter 20). Roughly speaking, the deductive power of lia is the combined deductive power of ring_simplify and omega. However, it solves linear goals that omega and romega do not solve, such as the following so-called *omega nightmare* [122].

```
Coq < Goal forall x y, 
Coq < 27 \le 11 * x + 13 * y \le 45 -> 
Coq < -10 \le 7 * x - 9 * y \le 4 -> False.
```

The estimation of the relative efficiency of lia vs omega and romega is under evaluation.

High level view of lia. Over \mathbb{R} , *positivstellensatz* refutations are a complete proof principle⁵. However, this is not the case over \mathbb{Z} . Actually, *positivstellensatz* refutations are not even sufficient to decide linear *integer* arithmetics. The canonical exemple is $2 \times x = 1 \rightarrow \text{False}$ which is a theorem of \mathbb{Z} but not a theorem of \mathbb{R} . To remedy this weakness, the lia tactic is using recursively a combination of:

- linear *positivstellensatz* refutations;
- cutting plane proofs;
- case split.

Cutting plane proofs are a way to take into account the discreetness of \mathbb{Z} by rounding up (rational) constants up-to the closest integer.

Theorem 2 Let p be an integer and c a rational constant.

$$p \ge c \Rightarrow p \ge \lceil c \rceil$$

For instance, from 2 * x = 1 we can deduce

- $x \ge 1/2$ which cut plane is $x \ge \lceil 1/2 \rceil = 1$;
- x < 1/2 which cut plane is x < |1/2| = 0.

By combining these two facts (in normal form) $x - 1 \ge 0$ and $-x \ge 0$, we conclude by exhibiting a positivstellensatz refutation $(-1 \equiv \mathbf{x} - \mathbf{1} + -\mathbf{x} \in Cone(\{x - 1, x\}))$.

Cutting plane proofs and linear *positivstellensatz* refutations are a complete proof principle for integer linear arithmetic.

⁵In practice, the oracle might fail to produce such a refutation.

Case split allow to enumerate over the possible values of an expression.

Theorem 3 Let p be an integer and c_1 and c_2 integer constants.

$$c_1 \le p \le c_2 \Rightarrow \bigvee_{x \in [c_1, c_2]} p = x$$

Our current oracle tries to find an expression e with a small range $[c_1, c_2]$. We generate $c_2 - c_1$ subgoals which contexts are enriched with an equation e = i for $i \in [c_1, c_2]$ and recursively search for a proof.

21.6 nia: a proof procedure for non-linear integer arithmetic

The nia tactic is an *experimental* proof procedure for non-linear integer arithmetic. The tactic performs a limited amount of non-linear reasoning before running the linear prover of lia. This pre-processing does the following:

- If the context contains an arithmetic expression of the form $e[x^2]$ where x is a monomial, the context is enriched with $x^2 \ge 0$;
- For all pairs of hypotheses $e_1 \ge 0$, $e_2 \ge 0$, the context is enriched with $e_1 \times e_2 \ge 0$.

After pre-processing, the linear prover of lia is searching for a proof by abstracting monomials by variables.

Chapter 22

Extraction of programs in Objective Caml and Haskell

Jean-Christophe Filliâtre and Pierre Letouzey

We present here the CoQ extraction commands, used to build certified and relatively efficient functional programs, extracting them from either CoQ functions or CoQ proofs of specifications. The functional languages available as output are currently OBJECTIVE CAML, HASKELL and SCHEME. In the following, "ML" will be used (abusively) to refer to any of the three.

Differences with old versions. The current extraction mechanism is new for version 7.0 of Coq. In particular, the F_{ω} toplevel used as an intermediate step between Coq and ML has been withdrawn. It is also not possible any more to import ML objects in this F_{ω} toplevel. The current mechanism also differs from the one in previous versions of Coq: there is no more an explicit toplevel for the language (formerly called FML).

22.1 Generating ML code

The next two commands are meant to be used for rapid preview of extraction. They both display extracted term(s) inside CoQ.

Extraction qualid.

Extracts one constant or module in the CoQ toplevel.

Recursive Extraction $qualid_1$... $qualid_n$.

Recursive extraction of all the globals (or modules) $qualid_1 \dots qualid_n$ and all their dependencies in the CoQ toplevel.

All the following commands produce real ML files. User can choose to produce one monolithic file or one file per CoQ library.

```
Extraction "file" qualid<sub>1</sub> ... qualid<sub>n</sub>.
```

Recursive extraction of all the globals (or modules) $qualid_1 \dots qualid_n$ and all their dependencies in one monolithic file *file*. Global and local identifiers are renamed according to the chosen ML language to fulfill its syntactic conventions, keeping original names as much as possible.

```
Extraction Library ident.
```

Extraction of the whole CoQ library *ident*.v to an ML module *ident*.ml. In case of name clash, identifiers are here renamed using prefixes coq_ or Coq_ to ensure a session-independent renaming.

```
Recursive Extraction Library ident.
```

Extraction of the CoQ library ident . v and all other modules ident . v depends on.

```
Separate Extraction qualid_1 \dots qualid_n.
```

Recursive extraction of all the globals (or modules) $qualid_1 \dots qualid_n$ and all their dependencies, just as Extraction "file", but instead of producing one monolithic file, this command splits the produced code in separate ML files, one per corresponding Coq.v file. This command is hence quite similar to Recursive Extraction Library, except that only the needed parts of Coq libraries are extracted instead of the whole. The naming convention in case of name clash is the same one as Extraction Library: identifiers are here renamed using prefixes $coq_or Coq_o$.

The list of globals $qualid_i$ does not need to be exhaustive: it is automatically completed into a complete and minimal environment.

22.2 Extraction options

22.2.1 Setting the target language

The ability to fix target language is the first and more important of the extraction options. Default is Ocaml.

```
Extraction Language Ocaml.

Extraction Language Haskell.

Extraction Language Scheme.
```

22.2.2 Inlining and optimizations

Since Objective Caml is a strict language, the extracted code has to be optimized in order to be efficient (for instance, when using induction principles we do not want to compute all the recursive calls but only the needed ones). So the extraction mechanism provides an automatic optimization routine that will be called each time the user want to generate Ocaml programs. Essentially, it performs constants inlining and reductions. Therefore some constants may not appear in resulting monolithic Ocaml program. In the case of modular extraction, even if some inlining is done, the inlined constant are nevertheless printed, to ensure session-independent programs.

Concerning Haskell, such optimizations are less useful because of lazyness. We still make some optimizations, for example in order to produce more readable code.

All these optimizations are controlled by the following Coo options:

Set Extraction Optimize.

Unset Extraction Optimize.

Default is Set. This control all optimizations made on the ML terms (mostly reduction of dummy beta/iota redexes, but also simplifications on Cases, etc). Put this option to Unset if you want a ML term as close as possible to the Coq term.

Set Extraction KeepSingleton.

Unset Extraction KeepSingleton.

Default is Unset. Normaly, when the extraction of an inductive type produces a singleton type (i.e. a type with only one constructor, and only one argument to this constructor), the inductive structure is removed and this type is seen as an alias to the inner type. The typical example is sig. This option allows to disable this optimization when one wishes to preserve the inductive structure of types.

Set Extraction AutoInline.

Unset Extraction AutoInline.

Default is Set, so by default, the extraction mechanism feels free to inline the bodies of some defined constants, according to some heuristics like size of bodies, useness of some arguments, etc. Those heuristics are not always perfect, you may want to disable this feature, do it by Unset.

Extraction Inline qualid₁... qualid_n.

Extraction NoInline qualid₁... qualid_n.

In addition to the automatic inline feature, you can now tell precisely to inline some more constants by the Extraction Inline command. Conversely, you can forbid the automatic inlining of some specific constants by the Extraction NoInline command. Those two commands enable a precise control of what is inlined and what is not.

Print Extraction Inline.

Prints the current state of the table recording the custom inlinings declared by the two previous commands.

Reset Extraction Inline.

Puts the table recording the custom inlinings back to empty.

Inlining and printing of a constant declaration. A user can explicitly ask for a constant to be extracted by two means:

- by mentioning it on the extraction command line
- by extracting the whole CoQ module of this constant.

In both cases, the declaration of this constant will be present in the produced file. But this same constant may or may not be inlined in the following terms, depending on the automatic/custom inlining mechanism.

For the constants non-explicitly required but needed for dependency reasons, there are two cases:

- If an inlining decision is taken, whether automatically or not, all occurrences of this constant are replaced by its extracted body, and this constant is not declared in the generated file.
- If no inlining decision is taken, the constant is normally declared in the produced file.

22.2.3 Extra elimination of useless arguments

```
Extraction Implicit qualid [ ident_1 ... ident_n ].
```

This experimental command allows to declare some arguments of *qualid* as implicit, i.e. useless in extracted code and hence to be removed by extraction. Here *qualid* can be any function or inductive constructor, and $ident_i$ are the names of the concerned arguments. In fact, an argument can also be referred by a number indicating its position, starting from 1. When an actual extraction takes place, an error is raised if the Extraction Implicit declarations cannot be honored, that is if any of the implicited variables still occurs in the final code. This declaration of useless arguments is independent but complementary to the main elimination principles of extraction (logical parts and types).

22.2.4 Realizing axioms

Extraction will fail if it encounters an informative axiom not realized (see Section 22.2.4). A warning will be issued if it encounters an logical axiom, to remind user that inconsistent logical axioms may lead to incorrect or non-terminating extracted terms.

It is possible to assume some axioms while developing a proof. Since these axioms can be any kind of proposition or object or type, they may perfectly well have some computational content. But a program must be a closed term, and of course the system cannot guess the program which realizes an axiom. Therefore, it is possible to tell the system what ML term corresponds to a given axiom.

```
Extract Constant qualid => string.
```

Give an ML extraction for the given constant. The string may be an identifier or a quoted string.

```
Extract Inlined Constant qualid => string.
```

Same as the previous one, except that the given ML terms will be inlined everywhere instead of being declared via a let.

Note that the Extract Inlined Constant command is sugar for an Extract Constant followed by a Extraction Inline. Hence a Reset Extraction Inline will have an effect on the realized and inlined axiom.

Of course, it is the responsibility of the user to ensure that the ML terms given to realize the axioms do have the expected types. In fact, the strings containing realizing code are just copied in the extracted files. The extraction recognizes whether the realized axiom should become a ML type constant or a ML object declaration.

Example:

```
Coq < Axiom X:Set.
X is assumed
Coq < Axiom x:X.
x is assumed
Coq < Extract Constant X => "int".
Coq < Extract Constant x => "0".
```

Notice that in the case of type scheme axiom (i.e. whose type is an arity, that is a sequence of product finished by a sort), then some type variables has to be given. The syntax is then:

```
Extract Constant qualid string_1 \dots string_n \Rightarrow string.
```

The number of type variables is checked by the system.

Example:

```
Coq < Axiom Y : Set \rightarrow Set \rightarrow Set. Y is assumed Coq < Extract Constant Y "'a" "'b" \Rightarrow " 'a*'b".
```

Realizing an axiom via Extract Constant is only useful in the case of an informative axiom (of sort Type or Set). A logical axiom have no computational content and hence will not appears in extracted terms. But a warning is nonetheless issued if extraction encounters a logical axiom. This warning reminds user that inconsistent logical axioms may lead to incorrect or non-terminating extracted terms.

If an informative axiom has not been realized before an extraction, a warning is also issued and the definition of the axiom is filled with an exception labeled AXIOM TO BE REALIZED. The user must then search these exceptions inside the extracted file and replace them by real code.

The system also provides a mechanism to specify ML terms for inductive types and constructors. For instance, the user may want to use the ML native boolean type instead of CoQ one. The syntax is the following:

```
Extract Inductive qualid => string [ string ...string ] optstring.
```

Give an ML extraction for the given inductive type. You must specify extractions for the type itself (first *string*) and all its constructors (between square brackets). If given, the final optional string should contain a function emulating pattern-matching over this inductive type. If this optional string is not given, the ML extraction must be an ML inductive datatype, and the native pattern-matching of the language will be used.

For an inductive type with k constructor, the function used to emulate the match should expect (k+1) arguments, first the k branches in functional form, and then the inductive element to destruct. For instance, the match branch |S| = foo gives the functional form (fun |S| = foo). Note that a constructor with no argument is considered to have one unit argument, in order to block early evaluation of the branch: |O| = bar| bar leads to the functional form (fun |O| = bar|). For instance, when extracting nat into int, the code to provide has type: (unit->'a) -> (int->'a) -> int->'a.

As for Extract Inductive, this command should be used with care:

- The ML code provided by the user is currently *not* checked at all by extraction, even for syntax errors.
- Extracting an inductive type to a pre-existing ML inductive type is quite sound. But extracting to a general type (by providing an ad-hoc pattern-matching) will often *not* be fully rigorously correct. For instance, when extracting nat to Ocaml's int, it is theoretically possible to build nat values that are larger than Ocaml's max_int. It is the user's responsability to be sure that no overflow or other bad events occur in practice.

• Translating an inductive type to an ML type does *not* magically improve the asymptotic complexity of functions, even if the ML type is an efficient representation. For instance, when extracting nat to Ocaml's int, the function mult stays quadratic. It might be interesting to associate this translation with some specific Extract Constant when primitive counterparts exist.

Example: Typical examples are the following:

```
Coq < Extract Inductive unit => "unit" [ "()" ].
Coq < Extract Inductive bool => "bool" [ "true" "false" ].
Coq < Extract Inductive sumbool => "bool" [ "true" "false" ].
```

If an inductive constructor or type has arity 2 and the corresponding string is enclosed by parenthesis, then the rest of the string is used as infix constructor or type.

```
Coq < Extract Inductive list \Rightarrow "list" [ "[]" "(::)" ]. Coq < Extract Inductive prod \Rightarrow "(*)" [ "(,)" ].
```

As an example of translation to a non-inductive datatype, let's turn nat into Ocaml's int (see caveat above):

```
Coq < Extract Inductive nat => int [ "0" "succ" ] Coq < "(fun f0 fS n -> if n=0 then f0 () else fS (n-1))".
```

22.2.5 Avoiding conflicts with existing filenames

When using Extraction Library, the names of the extracted files directly depends from the names of the CoQ files. It may happen that these filenames are in conflict with already existing files, either in the standard library of the target language or in other code that is meant to be linked with the extracted code. For instance the module List exists both in CoQ and in Ocaml. It is possible to instruct the extraction not to use particular filenames.

```
Extraction Blacklist ident...ident.
```

Instruct the extraction to avoid using these names as filenames for extracted code.

```
Print Extraction Blacklist.
```

Show the current list of filenames the extraction should avoid.

```
Reset Extraction Blacklist.
```

Allow the extraction to use any filename.

For Ocaml, a typical use of these commands is Extraction Blacklist String List.

22.3 Differences between CoQ and ML type systems

Due to differences between COQ and ML type systems, some extracted programs are not directly typable in ML. We now solve this problem (at least in Ocaml) by adding when needed some unsafe casting Obj.magic, which give a generic type 'a to any term.

For example, here are two kinds of problem that can occur:

• If some part of the program is *very* polymorphic, there may be no ML type for it. In that case the extraction to ML works all right but the generated code may be refused by the ML type-checker. A very well known example is the *distr-pair* function:

```
Definition dp := fun (A B:Set) (x:A) (y:B) (f:forall C:Set, C->C) => (f A x, f B y).
```

In Ocaml, for instance, the direct extracted term would be:

```
let dp \times y f = Pair((f () \times), (f () y))
```

and would have type:

```
dp : 'a -> 'a -> (unit -> 'a -> 'b) -> ('b,'b) prod
```

which is not its original type, but a restriction.

We now produce the following correct version:

```
let dp \times y f = Pair ((Obj.magic f () \times), (Obj.magic f () y))
```

• Some definitions of CoQ may have no counterpart in ML. This happens when there is a quantification over types inside the type of a constructor; for example:

```
Inductive anything : Set := dummy : forall A:Set, A -> anything.
```

which corresponds to the definition of an ML dynamic type. In Ocaml, we must cast any argument of the constructor dummy.

Even with those unsafe castings, you should never get error like "segmentation fault". In fact even if your program may seem ill-typed to the Ocaml type-checker, it can't go wrong: it comes from a Coq well-typed terms, so for example inductives will always have the correct number of arguments, etc.

More details about the correctness of the extracted programs can be found in [93].

We have to say, though, that in most "realistic" programs, these problems do not occur. For example all the programs of Coq library are accepted by Caml type-checker without any Obj.magic (see examples below).

22.4 Some examples

We present here two examples of extractions, taken from the COQ Standard Library. We choose OB-JECTIVE CAML as target language, but all can be done in the other dialects with slight modifications. We then indicate where to find other examples and tests of Extraction.

22.4.1 A detailed example: Euclidean division

The file Euclid contains the proof of Euclidean division (theorem $eucl_{dev}$). The natural numbers defined in the example files are unary integers defined by two constructors O and S:

This module contains a theorem eucl_dev, whose type is:

```
forall b:nat, b > 0 -> forall a:nat, diveucl a b
```

where diveucl is a type for the pair of the quotient and the modulo, plus some logical assertions that disappear during extraction. We can now extract this program to OBJECTIVE CAML:

```
Coq < Require Import Euclid Wf_nat.
Coq < Extraction Inline gt_wf_rec lt_wf_rec induction_ltof2.</pre>
Coq < Recursive Extraction eucl_dev.</pre>
type nat =
10
| S of nat
type sumbool =
/ Left
/ Right
(** val minus : nat -> nat -> nat **)
let rec minus n m =
 match n with
  / O -> n
  / S k ->
    (match m with
     / O -> n
     | S 1 -> minus k 1)
(** val le_lt_dec : nat -> nat -> sumbool **)
let rec le_lt_dec n m =
 match n with
  / O -> Left
  / S n0 ->
    (match m with
     / 0 -> Right
     | S m0 \rightarrow le_lt_dec n0 m0)
(** val le_gt_dec : nat -> nat -> sumbool **)
let le_gt_dec n m =
 le_lt_dec n m
type diveucl =
| Divex of nat * nat
(** val eucl_dev : nat -> nat -> diveucl **)
let rec eucl_dev b a =
 match le_gt_dec b a with
  / Left ->
    let Divex (x, x0) = let y = minus a b in eucl_dev b y in
    Divex ((S x), x0)
  | Right -> Divex (O, a)
```

The inlining of gt_wf_rec and others is not mandatory. It only enhances readability of extracted code. You can then copy-paste the output to a file euclid.ml or let CoQ do it for you with the following command:

```
Extraction "euclid" eucl_dev.
```

Let us play the resulting program:

```
# #use "euclid.ml";;
type nat = 0 | S of nat
type sumbool = Left | Right
val minus : nat -> nat -> nat = <fun>
val le_lt_dec : nat -> nat -> sumbool = <fun>
val le_gt_dec : nat -> nat -> sumbool = <fun>
type diveucl = Divex of nat * nat
val eucl_dev : nat -> nat -> diveucl = <fun>
# eucl_dev (S (S O)) (S (S (S (S O)))));;
- : diveucl = Divex (S (S O), S O)
```

It is easier to test on OBJECTIVE CAML integers:

```
# let rec nat_of_int = function 0 -> 0 | n -> S (nat_of_int (n-1));;
val i2n : int -> nat = <fun>
# let rec int_of_nat = function 0 -> 0 | S p -> 1+(int_of_nat p);;
val n2i : nat -> int = <fun>
# let div a b =
    let Divex (q,r) = eucl_dev (nat_of_int b) (nat_of_int a)
    in (int_of_nat q, int_of_nat r);;
val div : int -> int -> int * int = <fun>
# div 173 15;;
- : int * int = (11, 8)
```

Note that these nat_of_int and int_of_nat are now available via a mere Require Import ExtrOcamlIntConv and then adding these functions to the list of functions to extract. This file ExtrOcamlIntConv.v and some others in plugins/extraction/ are meant to help building concrete program via extraction.

22.4.2 Extraction's horror museum

Some pathological examples of extraction are grouped in the file test-suite/success/extraction.v of the sources of CoQ.

22.4.3 Users' Contributions

Several of the CoQ Users' Contributions use extraction to produce certified programs. In particular the following ones have an automatic extraction test (just run make in those directories):

- Bordeaux/Additions
- Bordeaux/EXCEPTIONS

- Bordeaux/SearchTrees
- Dyade/BDDS
- Lannion
- Lyon/CIRCUITS
- Lyon/FIRING-SQUAD
- Marseille/CIRCUITS
- Muenchen/Higman
- Nancy/FOUnify
- Rocq/ARITH/Chinese
- Rocq/COC
- Rocq/GRAPHS
- Rocq/HIGMAN
- Sophia-Antipolis/Stalmarck
- Suresnes/BDD

Lannion, Rocq/HIGMAN and Lyon/CIRCUITS are a bit particular. They are examples of developments where Obj.magic are needed. This is probably due to an heavy use of impredicativity. After compilation those two examples run nonetheless, thanks to the correction of the extraction [93].

Chapter 23

PROGRAM

Matthieu Sozeau

We present here the PROGRAM tactic commands, used to build certified COQ programs, elaborating them from their algorithmic skeleton and a rich specification [127]. It can be sought of as a dual of extraction (see Chapter 22). The goal of PROGRAM is to program as in a regular functional programming language whilst using as rich a specification as desired and proving that the code meets the specification using the whole COQ proof apparatus. This is done using a technique originating from the "Predicate subtyping" mechanism of PVS[124], which generates type-checking conditions while typing a term constrained to a particular type. Here we insert existential variables in the term, which must be filled with proofs to get a complete COQ term. PROGRAM replaces the PROGRAM tactic by Catherine Parent [113] which had a similar goal but is no longer maintained.

The languages available as input are currently restricted to CoQ's term language, but may be extended to OBJECTIVE CAML, HASKELL and others in the future. We use the same syntax as CoQ and permit to use implicit arguments and the existing coercion mechanism. Input terms and types are typed in an extended system (RUSSELL) and interpreted into CoQ terms. The interpretation process may produce some proof obligations which need to be resolved to create the final term.

23.1 Elaborating programs

The main difference from CoQ is that an object in a type T: Set can be considered as an object of type $\{x:T\mid P\}$ for any wellformed P: Prop. If we go from T to the subset of T verifying property P, we must prove that the object under consideration verifies it. RUSSELL will generate an obligation for every such coercion. In the other direction, RUSSELL will automatically insert a projection.

Another distinction is the treatment of pattern-matching. Apart from the following differences, it is equivalent to the standard match operation (see Section 4.5.4).

• Generation of equalities. A match expression is always generalized by the corresponding equality. As an example, the expression:

```
Coq < match x with Coq < | 0 \Rightarrow t Coq < | S n \Rightarrow u Coq < end.
```

400 **23 Program**

will be first rewrote to:

```
Coq < (match x as y return (x = y \rightarrow _) with Coq < | 0 => fun H : x = 0 \rightarrow t Coq < | S n => fun H : x = S n \rightarrow u Coq < end) (eq_refl n).
```

This permits to get the proper equalities in the context of proof obligations inside clauses, without which reasoning is very limited.

- Generation of inequalities. If a pattern intersects with a previous one, an inequality is added in the context of the second branch. See for example the definition of div2 below, where the second branch is typed in a context where $\forall p, _ <> S(Sp)$.
- Coercion. If the object being matched is coercible to an inductive type, the corresponding coercion will be automatically inserted. This also works with the previous mechanism.

23.1.1 Syntactic control over equalities

To give more control over the generation of equalities, the typechecker will fall back directly to CoQ's usual typing of dependent pattern-matching if a return or in clause is specified. Likewise, the if construct is not treated specially by PROGRAM so boolean tests in the code are not automatically reflected in the obligations. One can use the dec combinator to get the correct hypotheses as in:

```
Coq < Program Definition id (n : nat) : { x : nat | x = n } := Coq < if dec (leb n 0) then 0 

Coq < else S (pred n). 

id has type-checked, generating 2 obligation(s) 

Solving obligations automatically... 

2 obligations remaining 

Obligation 1 of id: 

forall n : nat, leb n 0 = true \rightarrow 0 = n. 

Obligation 2 of id: 

forall n : nat, leb n 0 = false \rightarrow S (pred n) = n.
```

The let tupling construct let (x1, ..., xn) := t in b does not produce an equality, contrary to the let pattern construct let '(x1, ..., xn) := t in b. Also, term :> explicitly asks the system to coerce term to its support type. It can be useful in notations, for example:

```
Coq < Notation " x = y " := (@eq (x :>) (y :>)) (only parsing).
```

This notation denotes equality on subset types using equality on their support types, avoiding uses of proof-irrelevance that would come up when reasoning with equality on the subset types themselves.

The next two commands are similar to their standard counterparts Definition (see Section 1.3.2) and Fixpoint (see Section 1.3.4) in that they define constants. However, they may require the user to prove some goals to construct the final definitions.

23.1.2 Program Definition ident := term.

This command types the value *term* in RUSSELL and generate proof obligations. Once solved using the commands shown below, it binds the final COQ term to the name *ident* in the environment.

Error messages:

1. ident already exists

Variants:

Program Definition ident :term₁ := term₂.
 It interprets the type term₁, potentially generating proof obligations to be resolved. Once done with them, we have a CoQ type term'₁. It then checks that the type of the interpretation of term₂ is coercible to term'₁, and registers ident as being of type term'₁ once the set of obligations generated during the interpretation of term₂ and the aforementioned coercion derivation are solved.

```
2. Program Definition ident\ binder_1...binder_n\ :term_1\ :=\ term_2. This is equivalent to Program Definition ident\ : for all binder_1...binder_n, term_1\ :=\ fun\ binder_1...binder_n => term_2.
```

Error messages:

1. In environment ... the term: $term_2$ does not have type $term_1$. Actually, it has type $term_3$.

See also: Sections 6.11.1, 6.11.2, 8.7.5

```
23.1.3 Program Fixpoint ident params {order}: type := term
```

The structural fixpoint operator behaves just like the one of Coq (see Section 1.3.4), except it may also generate obligations. It works with mutually recursive definitions too.

```
Coq < Program Fixpoint div2 (n : nat) : { x : nat | n = 2 * x \/ n = 2 * x + 1 } := Coq < match n with Coq < | S (S p) => S (div2 p) Coq < | _ => O Coq < end. Solving obligations automatically... 4 obligations remaining
```

Here we have one obligation for each branch (branches for 0 and (S 0) are automatically generated by the pattern-matching compilation algorithm).

402 **23 Program**

One can use a well-founded order or a measure as termination orders using the syntax:

```
Coq < Program Fixpoint div2 (n : nat) {measure n} : Coq < { x : nat | n = 2 * x \/ n = 2 * x + 1 } := Coq < match n with Coq < | S (S p) => S (div2 p) Coq < | _ => O Coq < end.
```

The order annotation can be either:

- measure f (R)? where f is a value of type X computed on any subset of the arguments and the optional (parenthesised) term (R) is a relation on X. By default X defaults to nat and R to 1+.
- wf R x which is equivalent to measure x (R).

Caution When defining structurally recursive functions, the generated obligations should have the prototype of the currently defined functional in their context. In this case, the obligations should be transparent (e.g. defined using Defined) so that the guardedness condition on recursive calls can be checked by the kernel's type-checker. There is an optimization in the generation of obligations which gets rid of the hypothesis corresponding to the functionnal when it is not necessary, so that the obligation can be declared opaque (e.g. using Qed). However, as soon as it appears in the context, the proof of the obligation is *required* to be declared transparent.

No such problems arise when using measures or well-founded recursion.

```
23.1.4 Program Lemma ident : type.
```

The RUSSELL language can also be used to type statements of logical properties. It will generate obligations, try to solve them automatically and fail if some unsolved obligations remain. In this case, one can first define the lemma's statement using Program Definition and use it as the goal afterwards. Otherwise the proof will be started with the elobarted version as a goal. The Program prefix can similarly be used as a prefix for Variable, Hypothesis, Axiom etc...

23.2 Solving obligations

The following commands are available to manipulate obligations. The optional identifier is used when multiple functions have unsolved obligations (e.g. when defining mutually recursive blocks). The optional tactic is replaced by the default one if not specified.

- [Local|Global] Obligation Tactic := expr Sets the default obligation solving tactic applied to all obligations automatically, whether to solve them or when starting to prove one, e.g. using Next. Local makes the setting last only for the current module. Inside sections, local is the default.
- Show Obligation Tactic Displays the current default tactic.
- Obligations [of *ident*] Displays all remaining obligations.
- Obligation num [of *ident*] Start the proof of obligation num.

- Next Obligation [of *ident*] Start the proof of the next unsolved obligation.
- Solve Obligations [of *ident*] [using *expr*] Tries to solve each obligation of *ident* using the given tactic or the default one.
- Solve All Obligations [using *expr*] Tries to solve each obligation of every program using the given tactic or the default one (useful for mutually recursive definitions).
- Admit Obligations [of *ident*] Admits all obligations (does not work with structurally recursive programs).
- Preterm [of *ident*] Shows the term that will be fed to the kernel once the obligations are solved. Useful for debugging.
- Set Transparent Obligations Control whether all obligations should be declared as transparent (the default), or if the system should infer which obligations can be declared opaque.

The module Coq.Program.Tactics defines the default tactic for solving obligations called program_simpl. Importing Coq.Program.Program also adds some useful notations, as documented in the file itself.

23.3 Frequently Asked Questions

• Ill-formed recursive definitions This error can happen when one tries to define a function by structural recursion on a subset object, which means the Coq function looks like:

```
Program Fixpoint f (x : A \mid P) := match x with A b => f b end.
```

Supposing b:A, the argument at the recursive call to f is not a direct subterm of x as b is wrapped inside an exist constructor to build an object of type $\{x:A\mid P\}$. Hence the definition is rejected by the guardedness condition checker. However one can use wellfounded recursion on subset objects like this:

```
Program Fixpoint f (x : A | P) { measure (size x) } := match x with A b \Rightarrow f b end.
```

One will then just have to prove that the measure decreases at each recursive call. There are three drawbacks though:

- 1. A measure function has to be defined;
- 2. The reduction is a little more involved, although it works well using lazy evaluation;
- 3. Mutual recursion on the underlying inductive type isn't possible anymore, but nested mutual recursion is always possible.

404 **23 Program**

Chapter 24

The ring and field tactic families

Bruno Barras, Benjamin Grégoire, Assia Mahboubi, Laurent Théry¹

This chapter presents the tactics dedicated to deal with ring and field equations.

24.1 What does this tactic do?

ring does associative-commutative rewriting in ring and semi-ring structures. Assume you have two binary functions \oplus and \otimes that are associative and commutative, with \oplus distributive on \otimes , and two constants 0 and 1 that are unities for \oplus and \otimes . A *polynomial* is an expression built on variables V_0, V_1, \ldots and constants by application of \oplus and \otimes .

Let an ordered product be a product of variables $V_{i_1} \otimes \ldots \otimes V_{i_n}$ verifying $i_1 \leq i_2 \leq \cdots \leq i_n$. Let a monomial be the product of a constant and an ordered product. We can order the monomials by the lexicographic order on products of variables. Let a canonical sum be an ordered sum of monomials that are all different, i.e. each monomial in the sum is strictly less than the following monomial according to the lexicographic order. It is an easy theorem to show that every polynomial is equivalent (modulo the ring properties) to exactly one canonical sum. This canonical sum is called the normal form of the polynomial. In fact, the actual representation shares monomials with same prefixes. So what does ring? It normalizes polynomials over any ring or semi-ring structure. The basic use of ring is to simplify ring expressions, so that the user does not have to deal manually with the theorems of associativity and commutativity.

Examples:

1. In the ring of integers, the normal form of x(3+yx+25(1-z))+zx is 28x+(-24)xz+xxy.

ring is also able to compute a normal form modulo monomial equalities. For example, under the hypothesis that $2x^2 = yz + 1$, the normal form of 2(x+1)x - x - zy is x+1.

¹based on previous work from Patrick Loiseleur and Samuel Boutin

24.2 The variables map

It is frequent to have an expression built with + and \times , but rarely on variables only. Let us associate a number to each subterm of a ring expression in the GALLINA language. For example in the ring nat, consider the expression:

```
(plus (mult (plus (f (5)) x) x)

(mult (if b then (4) else (f (3))) (2)))
```

As a ring expression, it has 3 subterms. Give each subterm a number in an arbitrary order:

```
0 \mapsto \text{if b then (4) else (f (3))}

1 \mapsto \text{(f (5))}

2 \mapsto x
```

Then normalize the "abstract" polynomial

$$((V_1 \otimes V_2) \oplus V_2) \oplus (V_0 \otimes 2)$$

In our example the normal form is:

$$(2 \otimes V_0) \oplus (V_1 \otimes V_2) \oplus (V_2 \otimes V_2)$$

Then substitute the variables by their values in the variables map to get the concrete normal polynomial:

```
(plus (mult (2) (if b then (4) else (f (3))))

(plus (mult (f (5)) x) (mult x x)))
```

24.3 Is it automatic?

Yes, building the variables map and doing the substitution after normalizing is automatically done by the tactic. So you can just forget this paragraph and use the tactic according to your intuition.

24.4 Concrete usage in CoQ

The ring tactic solves equations upon polynomial expressions of a ring (or semi-ring) structure. It proceeds by normalizing both hand sides of the equation (w.r.t. associativity, commutativity and distributivity, constant propagation, rewriting of monomials) and comparing syntactically the results.

ring_simplify applies the normalization procedure described above to the terms given. The tactic then replaces all occurrences of the terms given in the conclusion of the goal by their normal forms. If no term is given, then the conclusion should be an equation and both hand sides are normalized. The tactic can also be applied in a hypothesis.

The tactic must be loaded by Require Import Ring. The ring structures must be declared with the Add Ring command (see below). The ring of booleans is predefined; if one wants to use the tactic on nat one must first require the module ArithRing (exported by Arith); for Z, do Require Import ZArithRing or simply Require Import ZArith; for N, do Require Import NArithRing or Require Import NArith.

Example:

```
Coq < Require Import ZArith.
[Loading ML file z_syntax_plugin.cmxs ... done]
[Loading ML file quote_plugin.cmxs ... done]
[Loading ML file newring_plugin.cmxs ... done]
[Loading ML file omega_plugin.cmxs ... done]
Coq < Open Scope Z_scope.
Coq < Goal forall a b c:Z,
Coq < (a + b + c)^2 =
Coq < a * a + b^2 + c * c + 2 * a * b + 2 * a * c + 2 * b * c.
1 subgoal
  ______
  forall a b c : Z,
   (a + b + c) ^2 =
  a * a + b ^ 2 + c * c + 2 * a * b + 2 * a * c + 2 * b * c
Coq < intros; ring.
No more subgoals.
Coq < Goal forall a b:\mathbb{Z}, 2*a*b = 30 ->
           (a+b)^2 = a^2 + b^2 + 30.
Coq <
1 subgoal
  _____
  forall a b : Z, 2 * a * b = 30 -> (a + b) ^ 2 = a ^ 2 + b ^ 2 + 30
Coq < intros a b H; ring [H].
No more subgoals.
```

Variants:

- 1. ring [$term_1$... $term_n$] decides the equality of two terms modulo ring operations and rewriting of the equalities defined by $term_1$... $term_n$. Each of $term_1$... $term_n$ has to be a proof of some equality m = p, where m is a monomial (after "abstraction"), p a polynomial and p the corresponding equality of the ring structure.
- 2. ring_simplify [$term_1$... $term_n$] $t_1 ... t_m$ in ident performs the simplification in the hypothesis named ident.

Warning: ring_simplify $term_1$; ring_simplify $term_2$ is not equivalent to ring_simplify $term_1$ $term_2$. In the latter case the variables map is shared between the two terms, and common subterm t of $term_1$ and $term_2$ will have the same associated variable number. So the first alternative should be avoided for terms belonging to the same ring theory.

Error messages:

- 1. not a valid ring equation The conclusion of the goal is not provable in the corresponding ring theory.
- 2. arguments of ring_simplify do not have all the same type ring_simplify cannot simplify terms of several rings at the same time. Invoke the tactic once per ring structure.

- 3. cannot find a declared ring structure over term No ring has been declared for the type of the terms to be simplified. Use Add Ring first.
- 4. cannot find a declared ring structure for equality term Same as above is the case of the ring tactic.

24.5 Adding a ring structure

Declaring a new ring consists in proving that a ring signature (a carrier set, an equality, and ring operations: Ring_theory.ring_theory and Ring_theory.semi_ring_theory) satisfies the ring axioms. Semi-rings (rings without + inverse) are also supported. The equality can be either Leibniz equality, or any relation declared as a setoid (see 26.7). The definition of ring and semi-rings (see module Ring_theory) is:

```
Record ring theory : Prop := mk rt {
    Radd_0_1 : forall x, 0 + x == x;
    Radd_sym : forall x y, x + y == y + x;
    Radd_assoc : forall x y z, x + (y + z) == (x + y) + z;
    Rmul_1_l : forall x, 1 * x == x;
    Rmul_sym
                : forall x y, x * y == y * x;
    Rmul_assoc : forall x y z, x * (y * z) == (x * y) * z;
    Rdistr_l : forall x y z, (x + y) * z == (x * z) + (y * z);
Rsub_def : forall x y, x - y == x + -y;
               : forall x y, x - y == x + -y;
    Ropp def
               : forall x, x + (-x) == 0
 } .
Record semi_ring_theory : Prop := mk_srt {
    SRadd_0_1 : forall n, 0 + n == n;
    SRadd_sym: forall n m, n + m == m + n;
    SRadd_assoc : forall n m p, n + (m + p) == (n + m) + p;
    SRmul_1_1: forall n, 1*n == n;
    SRmul_0_l
               : forall n, 0*n == 0;
    SRmul_sym : forall n m, n*m == m*n;
    SRmul_assoc : forall n m p, n*(m*p) == (n*m)*p;
    SRdistr_l : forall n m p, (n + m)*p == n*p + m*p
  } .
```

This implementation of ring also features a notion of constant that can be parameterized. This can be used to improve the handling of closed expressions when operations are effective. It consists in introducing a type of *coefficients* and an implementation of the ring operations, and a morphism from the coefficient type to the ring carrier type. The morphism needs not be injective, nor surjective.

As an example, one can consider the real numbers. The set of coefficients could be the rational numbers, upon which the ring operations can be implemented. The fact that there exists a morphism is defined by the following properties:

```
morph_add : forall x y, [x +! y] == [x]+[y];
morph_sub : forall x y, [x -! y] == [x]-[y];
morph_mul : forall x y, [x *! y] == [x]*[y];
morph_opp : forall x, [-!x] == -[x];
morph_eq : forall x y, x?=!y = true -> [x] == [y]
}.

Record semi_morph : Prop := mkRmorph {
    Smorph0 : [c0] == 0;
    Smorph1 : [cI] == 1;
    Smorph_add : forall x y, [x +! y] == [x]+[y];
    Smorph_mul : forall x y, [x *! y] == [x]*[y];
    Smorph_eq : forall x y, x?=!y = true -> [x] == [y]
}.
```

where c0 and cI denote the 0 and 1 of the coefficient set, +!, *!, -! are the implementations of the ring operations, == is the equality of the coefficients, ?+! is an implementation of this equality, and [x] is a notation for the image of x by the ring morphism. Moreover, the term [c0] (resp. [c1]), image by the morphism of the 0 (resp. the 1) of the coefficient set, should be *convertible* to the term 0 (resp. the term 1) of the ring structure. This requirement is not enforced by the command registering a new ring but the tactic is otherwise very much incomplete.

Since Z is an initial ring (and N is an initial semi-ring), it can always be considered as a set of coefficients. There are basically three kinds of (semi-)rings:

abstract rings to be used when operations are not effective. The set of coefficients is \mathbb{Z} (or \mathbb{N} for semirings).

computational rings to be used when operations are effective. The set of coefficients is the ring itself. The user only has to provide an implementation for the equality.

customized ring for other cases. The user has to provide the coefficient set and the morphism.

This implementation of ring can also recognize simple power expressions as ring expressions. A power function is specified by the following property:

```
Section POWER.
Variable Cpow : Set.
Variable Cp_phi : N -> Cpow.
Variable rpow : R -> Cpow -> R.

Record power_theory : Prop := mkpow_th {
   rpow_pow_N : forall r n, req (rpow r (Cp_phi n)) (pow_N rI rmul r n)
}.

End POWER.
```

The syntax for adding a new ring is Add Ring $name: ring (mod_1, \ldots, mod_2)$. The name is not relevent. It is just used for error messages. The term ring is a proof that the ring signature satisfies the (semi-)ring axioms. The optional list of modifiers is used to tailor the behavior of the tactic. The following list describes their syntax and effects:

- **abstract** declares the ring as abstract. This is the default.
- **decidable** *term* declares the ring as computational. The expression *term* is the correctness proof of an equality test ?=! (which should be evaluable). Its type should be of the form forall x y, x?=!y = true $\rightarrow x$ == y.
- morphism term declares the ring as a customized one. The expression term is a proof that there exists a morphism between a set of coefficient and the ring carrier (see Ring_theory.ring_morph and Ring_theory.semi_morph).
- setoid $term_1$ $term_2$ forces the use of given setoid. The expression $term_1$ is a proof that the equality is indeed a setoid (see Setoid.Setoid_Theory), and $term_2$ a proof that the ring operations are morphisms (see Ring_theory.ring_eq_ext and Ring_theory.sring_eq_ext). This modifier needs not be used if the setoid and morphisms have been declared.
- constants [\mathcal{L}_{tac}] specifies a tactic expression that, given a term, returns either an object of the coefficient set that is mapped to the expression via the morphism, or returns InitialRing.NotConstant. The default behaviour is to map only 0 and 1 to their counterpart in the coefficient set. This is generally not desirable for non trivial computational rings.
- **preprocess** [\mathcal{L}_{tac}] specifies a tactic that is applied as a preliminary step for ring and ring_simplify. It can be used to transform a goal so that it is better recognized. For instance, S n can be changed to plus 1 n.
- **postprocess** [\mathcal{L}_{tac}] specifies a tactic that is applied as a final step for ring_simplify. For instance, it can be used to undo modifications of the preprocessor.
- power_tac term [\mathcal{L}_{tac}] allows ring and ring_simplify to recognize power expressions with a constant positive integer exponent (example: x^2). The term term is a proof that a given power function satisfies the specification of a power function (term has to be a proof of Ring_theory.power_theory) and \mathcal{L}_{tac} specifies a tactic expression that, given a term, "abstracts" it into an object of type N whose interpretation via Cp_phi (the evaluation function of power coefficient) is the original term, or returns InitialRing.NotConstant if not a constant coefficient (i.e. \mathcal{L}_{tac} is the inverse function of Cp_phi). See files plugins/setoid_ring/ZArithRing.v and plugins/setoid_ring/RealField.v for examples. By default the tactic does not recognize power expressions as ring expressions.
- **sign term** allows ring_simplify to use a minus operation when outputing its normal form, i.e writing x y instead of x + (-y). The term term is a proof that a given sign function indicates expressions that are signed (term has to be a proof of Ring_theory.get_sign). See plugins/setoid_ring/IntialRing.v for examples of sign function.
- div term allows ring and ring_simplify to use moniomals with coefficient other than 1 in the rewriting. The term term is a proof that a given division function satisfies the specification of an euclidean division function (term has to be a proof of Ring_theory.div_theory). For example, this function is called when trying to rewrite 7x by 2x = z to tell that 7 = 3*2+1. See plugins/setoid_ring/IntialRing.v for examples of div function.

Error messages:

24.6 How does it work?

- 1. bad ring structure The proof of the ring structure provided is not of the expected type.
- 2. bad lemma for decidability of equality The equality function provided in the case of a computational ring has not the expected type.

3. ring *operation* should be declared as a morphism A setoid associated to the carrier of the ring structure as been found, but the ring operation should be declared as morphism. See 26.7.

24.6 How does it work?

The code of ring is a good example of tactic written using *reflection*. What is reflection? Basically, it is writing CoQ tactics in CoQ, rather than in OBJECTIVE CAML. From the philosophical point of view, it is using the ability of the Calculus of Constructions to speak and reason about itself. For the ring tactic we used CoQ as a programming language and also as a proof environment to build a tactic and to prove it correctness.

The interested reader is strongly advised to have a look at the file Ring_polynom.v. Here a type for polynomials is defined:

```
Inductive PExpr : Type :=
    | PEc : C -> PExpr
    | PEX : positive -> PExpr
    | PEadd : PExpr -> PExpr -> PExpr
    | PEsub : PExpr -> PExpr -> PExpr
    | PEmul : PExpr -> PExpr -> PExpr
    | Peopp : PExpr -> PExpr
    | Pepow : PExpr -> N -> PExpr.
```

Polynomials in normal form are defined as:

```
Inductive Pol : Type :=
    | Pc : C -> Pol
    | Pinj : positive -> Pol -> Pol
    | PX : Pol -> positive -> Pol -> Pol.
```

where Pinj n P denotes P in which V_i is replaced by V_{i+n} , and PX P n Q denotes $P \otimes V_1^n \oplus Q'$, Q' being Q where V_i is replaced by V_{i+1} .

Variables maps are represented by list of ring elements, and two interpretation functions, one that maps a variables map and a polynomial to an element of the concrete ring, and the second one that does the same for normal forms:

```
Definition PEeval : list R \rightarrow PExpr \rightarrow R := [...]. Definition Pphi_dev : list R \rightarrow Pol \rightarrow R := [...].
```

A function to normalize polynomials is defined, and the big theorem is its correctness w.r.t interpretation, that is:

```
Definition norm : PExpr -> Pol := [...].
Lemma Pphi_dev_ok :
   forall l pe npe, norm pe = npe -> PEeval l pe == Pphi dev l npe.
```

So now, what is the scheme for a normalization proof? Let p be the polynomial expression that the user wants to normalize. First a little piece of ML code guesses the type of p, the ring theory T to use, an abstract polynomial ap and a variables map v such that p is $\beta\delta\iota$ -equivalent to (PEeval v ap). Then we replace it by (Pphi_dev v (norm ap)), using the main correctness theorem and we reduce it to a concrete expression p', which is the concrete normal form of p. This is summarized in this diagram:

```
p \rightarrow_{\beta\delta\iota} (PEeval v ap)
=(by the main correctness theorem)
p' \leftarrow_{\beta\delta\iota} (Pphi_dev v (norm ap))
```

The user do not see the right part of the diagram. From outside, the tactic behaves like a $\beta\delta\iota$ simplification extended with AC rewriting rules. Basically, the proof is only the application of the main correctness theorem to well-chosen arguments.

24.7 Dealing with fields

The field tactic is an extension of the ring to deal with rational expression. Given a rational expression F=0. It first reduces the expression F to a common denominator N/D=0 where N and D are two ring expressions. For example, if we take F=(1-1/x)x-x+1, this gives $N=(x-1)x-x^2+x$ and D=x. It then calls ring to solve N=0. Note that field also generates non-zero conditions for all the denominators it encounters in the reduction. In our example, it generates the condition $x\neq 0$. These conditions appear as one subgoal which is a conjunction if there are several denominators. Non-zero conditions are always polynomial expressions. For example when reducing the expression 1/(1+1/x), two side conditions are generated: $x\neq 0$ and $x+1\neq 0$. Factorized expressions are broken since a field is an integral domain, and when the equality test on coefficients is complete w.r.t. the equality of the target field, constants can be proven different from zero automatically.

The tactic must be loaded by Require Import Field. New field structures can be declared to the system with the Add Field command (see below). The field of real numbers is defined in module RealField (in textttplugins/setoid_ring). It is exported by module Rbase, so that requiring Rbase or Reals is enough to use the field tactics on real numbers. Rational numbers in canonical form are also declared as a field in module Qcanon.

Example:

Variants:

- 1. field [$term_1$... $term_n$] decides the equality of two terms modulo field operations and rewriting of the equalities defined by $term_1$... $term_n$. Each of $term_1$... $term_n$ has to be a proof of some equality m = p, where m is a monomial (after "abstraction"), p a polynomial and p the corresponding equality of the field structure. Beware that rewriting works with the equality p is a polynomial since rewriting is handled by the underlying ring tactic.
- 2. field_simplify performs the simplification in the conclusion of the goal, $F_1 = F_2$ becomes $N_1/D_1 = N_2/D_2$. A normalization step (the same as the one for rings) is then applied to N_1 , D_1 , N_2 and D_2 . This way, polynomials remain in factorized form during the fraction simplifications. This yields smaller expressions when reducing to the same denominator since common factors can be cancelled.
- 3. field_simplify [$term_1$... $term_n$] performs the simplification in the conclusion of the goal using the equalities defined by $term_1$... $term_n$.
- 4. field_simplify [$term_1 \ldots term_n$] $t_1 \ldots t_m$ performs the simplification in the terms $t_1 \ldots t_m$ of the conclusion of the goal using the equalities defined by $term_1 \ldots term_n$.
- 5. field_simplify in H performs the simplification in the assumption H.
- 6. field_simplify [$term_1$... $term_n$] in H performs the simplification in the assumption H using the equalities defined by $term_1$... $term_n$.
- 7. field_simplify [$term_1$... $term_n$] t_1 ... t_m in H performs the simplification in the terms $t_1 \ldots t_n$ of the assumption H using the equalities defined by $term_1 \ldots term_m$.
- 8. field_simplify_eq performs the simplification in the conclusion of the goal removing the denominator. $F_1 = F_2$ becomes $N_1D_2 = N_2D_1$.
- 9. field_simplify_eq [$term_1$... $term_n$] performs the simplification in the conclusion of the goal using the equalities defined by $term_1$... $term_n$.
- 10. field_simplify_eq in H performs the simplification in the assumption H.
- 11. field_simplify_eq [$term_1$... $term_n$] in H performs the simplification in the assumption H using the equalities defined by $term_1$... $term_n$.

24.8 Adding a new field structure

Declaring a new field consists in proving that a field signature (a carrier set, an equality, and field operations: Field_theory.field_theory and Field_theory.semi_field_theory) satisfies the field axioms. Semi-fields (fields without + inverse) are also supported. The equality can be either Leibniz equality, or any relation declared as a setoid (see 26.7). The definition of fields and semi-fields is:

```
Record field_theory : Prop := mk_field {
    F_R : ring_theory rO rI radd rmul rsub ropp req;
    F_l_neq_0 : ~ 1 == 0;
    Fdiv_def : forall p q, p / q == p * / q;
    Finv_l : forall p, ~ p == 0 -> / p * p == 1
}.

Record semi_field_theory : Prop := mk_sfield {
    SF_SR : semi_ring_theory rO rI radd rmul req;
    SF_l_neq_0 : ~ 1 == 0;
    SFdiv_def : forall p q, p / q == p * / q;
    SFinv_l : forall p, ~ p == 0 -> / p * p == 1
}.
```

The result of the normalization process is a fraction represented by the following type:

```
Record linear : Type := mk_linear {
  num : PExpr C;
  denum : PExpr C;
  condition : list (PExpr C) }.
```

where num and denum are the numerator and denominator; condition is a list of expressions that have appeared as a denominator during the normalization process. These expressions must be proven different from zero for the correctness of the algorithm.

The syntax for adding a new field is Add Field $name: field (mod_1, \ldots, mod_2)$. The name is not relevent. It is just used for error messages. field is a proof that the field signature satisfies the (semi-)field axioms. The optional list of modifiers is used to tailor the behaviour of the tactic. Since field tactics are built upon ring tactics, all mofifiers of the Add Ring apply. There is only one specific modifier:

completeness *term* allows the field tactic to prove automatically that the image of non-zero coefficients are mapped to non-zero elements of the field. *term* is a proof of forall x y, [x] == [y] -> x?=!y = true, which is the completeness of equality on coefficients w.r.t. the field equality.

24.9 Legacy implementation

Warning: This tactic is the ring tactic of previous versions of CoQ and it should be considered as deprecated. It will probably be removed in future releases. It has been kept only for compatibility reasons and in order to help moving existing code to the newer implementation described above. For more details, please refer to the Coq Reference Manual, version 8.0.

24.9.1 legacy ring $term_1$... $term_n$

This tactic, written by Samuel Boutin and Patrick Loiseleur, applies associative commutative rewriting on every ring. The tactic must be loaded by Require Import LegacyRing. The ring must be declared in the Add Ring command. The ring of booleans (with andb as multiplication and xorb as addition) is predefined; if one wants to use the tactic on nat one must first require the module LegacyArithRing; for Z, do Require Import LegacyZArithRing; for N, do Require Import LegacyNArithRing.

The terms $term_1, \ldots, term_n$ must be subterms of the goal conclusion. The tactic ring normalizes these terms w.r.t. associativity and commutativity and replace them by their normal form.

Variants:

- 1. legacy ring When the goal is an equality $t_1 = t_2$, it acts like ring_simplify t_1 t_2 and then solves the equality by reflexivity.
- 2. ring_nat is a tactic macro for repeat rewrite S_to_plus_one; ring. The theorem S_to_plus_one is a proof that forall (n:nat), S n = plus (S O) n.

You can have a look at the files LegacyRing.v, ArithRing.v, ZArithRing.v to see examples of the Add Ring command.

24.9.2 Add a ring structure

It can be done in the CoQtoplevel (No ML file to edit and to link with CoQ). First, ring can handle two kinds of structure: rings and semi-rings. Semi-rings are like rings without an opposite to addition. Their precise specification (in GALLINA) can be found in the file

```
plugins/ring/Ring_theory.v
```

The typical example of ring is Z, the typical example of semi-ring is nat.

The specification of a ring is divided in two parts: first the record of constants $(\oplus, \otimes, 1, 0, \ominus)$ and then the theorems (associativity, commutativity, etc.).

```
Section Theory_of_semi_rings.

Variable A : Type.
Variable Aplus : A -> A -> A.
Variable Amult : A -> A -> A.
Variable Aone : A.
Variable Azero : A.
(* There is also a "weakly decidable" equality on A. That means that if (A_eq x y)=true then x=y but x=y can arise when (A_eq x y)=false. On an abstract ring the function [x,y:A]false is a good choice. The proof of A_eq_prop is in this case easy. *)
Variable Aeq : A -> A -> bool.

Record Semi_Ring_Theory : Prop :=
{ SR_plus_sym : (n,m:A)[| n + m == m + n |];
    SR_plus_assoc : (n,m,p:A)[| n + (m + p) == (n + m) + p |];
    SR_mult_sym : (n,m:A)[| n*m == m*n |];
```

```
SR_mult_assoc : (n, m, p:A)[| n*(m*p) == (n*m)*p |];
  SR_plus_zero_left : (n:A)[| 0 + n == n|];
  SR_mult_one_left : (n:A)[| 1*n == n |];
  SR_mult_zero_left : (n:A)[| 0*n == 0 |];
  SR_distr_left : (n, m, p:A) [| (n + m)*p == n*p + m*p |];
  SR_plus_req_left : (n, m, p:A)[| n + m == n + p |] -> m == p;
 SR_eq_prop : (x,y:A) (Is_true (Aeq x y)) -> x==y
} .
Section Theory_of_rings.
Variable A : Type.
Variable Aplus : A -> A -> A.
Variable Amult : A -> A -> A.
Variable Aone : A.
Variable Azero : A.
Variable Aopp : A -> A.
Variable Aeq : A -> A -> bool.
Record Ring_Theory : Prop :=
{ Th_plus_sym : (n,m:A)[| n + m == m + n |];
  Th_plus_assoc : (n, m, p:A)[| n + (m + p) == (n + m) + p |];
  Th_mult_sym : (n,m:A)[|n*m| == m*n|];
  Th_mult_assoc : (n,m,p:A)[| n*(m*p) == (n*m)*p |];
  Th_plus_zero_left : (n:A)[| 0 + n == n|];
  Th_mult_one_left : (n:A)[| 1*n == n |];
  Th_{opp}def : (n:A) [| n + (-n) == 0 |];
  Th_distr_left : (n, m, p:A) [| (n + m)*p == n*p + m*p |];
  Th_eq_prop : (x,y:A) (Is_true (Aeq x y)) -> x==y
} .
```

To define a ring structure on A, you must provide an addition, a multiplication, an opposite function and two unities 0 and 1.

You must then prove all theorems that make (A,Aplus,Amult,Aone,Azero,Aeq) a ring structure, and pack them with the <code>Build_Ring_Theory</code> constructor.

Finally to register a ring the syntax is:

```
Add Legacy Ring A Aplus Amult Aone Azero Ainv Aeq T [c1...cn].
```

where A is a term of type Set, Aplus is a term of type A->A->A, Amult is a term of type A->A->A, Aone is a term of type A, Azero is a term of type A, Ainv is a term of type A->A, Aeq is a term of type A->bool, T is a term of type (Ring_Theory A Aplus Amult Aone Azero Ainv Aeq). The arguments $c1 \dots cn$, are the names of constructors which define closed terms: a subterm will be considered as a constant if it is either one of the terms $c1 \dots cn$ or the application of one of these terms to closed terms. For nat, the given constructors are S and O, and the closed terms are O, (S O), (S (S O)), ...

Variants:

1. Add Legacy Semi Ring A Aplus Amult Aone Azero Aeg T [c1 ... cn].

There are two differences with the Add Ring command: there is no inverse function and the term T must be of type (Semi_Ring_Theory A Aplus Amult Aone Azero Aeq).

2. Add Legacy Abstract Ring A Aplus Amult Aone Azero Ainv Aeq T.

This command should be used for when the operations of rings are not computable; for example the real numbers of theories/REALS/. Here 0+1 is not beta-reduced to 1 but you still may want to *rewrite* it to 1 using the ring axioms. The argument Aeq is not used; a good choice for that function is [x:Alfalse.

3. Add Legacy Abstract Semi Ring A Aplus Amult Aone Azero Aeq T.

Error messages:

1. Not a valid (semi)ring theory.

That happens when the typing condition does not hold.

Currently, the hypothesis is made than no more than one ring structure may be declared for a given type in Set or Type. This allows automatic detection of the theory used to achieve the normalization. On popular demand, we can change that and allow several ring structures on the same set.

The table of ring theories is compatible with the COQ sectioning mechanism. If you declare a ring inside a section, the declaration will be thrown away when closing the section. And when you load a compiled file, all the Add Ring commands of this file that are not inside a section will be loaded.

The typical example of ring is Z, and the typical example of semi-ring is nat. Another ring structure is defined on the booleans.

Warning: Only the ring of booleans is loaded by default with the Ring module. To load the ring structure for nat, load the module ArithRing, and for Z, load the module ZArithRing.

24.9.3 legacy field

This tactic written by David Delahaye and Micaela Mayero solves equalities using commutative field theory. Denominators have to be non equal to zero and, as this is not decidable in general, this tactic may generate side conditions requiring some expressions to be non equal to zero. This tactic must be loaded by Require Import LegacyField. Field theories are declared (as for legacy ring) with the Add Legacy Field command.

24.9.4 Add Legacy Field

This vernacular command adds a commutative field theory to the database for the tactic field. You must provide this theory as follows:

Add Legacy Field A Aplus Amult Aone Azero Aopp Aeq Ainv Rth Tinvl

where A is a term of type Type, Aplus is a term of type A->A->A, Amult is a term of type A->A->A, Aone is a term of type A, Azero is a term of type A, Aopp is a term of type A->A, Aeq is a term of type A->A, Rth is a term of type (Ring_Theory A Aplus Amult Aone Azero Ainv Aeq), and Tinvl is a term of type forall n:A, (n=Azero)-> (Amult (Ainv n) n) = Aone. To build a ring theory, refer to Chapter 24 for more details.

This command adds also an entry in the ring theory table if this theory is not already declared. So, it is useless to keep, for a given type, the Add Ring command if you declare a theory with Add Field, except if you plan to use specific features of ring (see Chapter 24). However, the module ring is not loaded by Add Field and you have to make a Require Import Ring if you want to call the ring tactic.

Variants:

1. Add Legacy Field *A Aplus Amult Aone Azero Aopp Aeq Ainv Rth Tinvl* with minus:=Aminus

Adds also the term *Aminus* which must be a constant expressed by means of *Aopp*.

2. Add Legacy Field *A Aplus Amult Aone Azero Aopp Aeq Ainv Rth Tinvl* with div:=Adiv

Adds also the term *Adiv* which must be a constant expressed by means of *Ainv*.

See also: [42] for more details regarding the implementation of legacy field.

24.10 History of ring

First Samuel Boutin designed the tactic ACDSimpl. This tactic did lot of rewriting. But the proofs terms generated by rewriting were too big for CoQ's type-checker. Let us see why:

At each step of rewriting, the whole context is duplicated in the proof term. Then, a tactic that does hundreds of rewriting generates huge proof terms. Since ACDSimpl was too slow, Samuel Boutin rewrote it using reflection (see his article in TACS'97 [18]). Later, the stuff was rewritten by Patrick Loiseleur: the new tactic does not any more require ACDSimpl to compile and it makes use of $\beta\delta\iota$ -reduction not only to replace the rewriting steps, but also to achieve the interleaving of computation and reasoning (see 24.11). He also wrote a few ML code for the Add Ring command, that allow to register new rings dynamically.

Proofs terms generated by ring are quite small, they are linear in the number of \oplus and \otimes operations in the normalized terms. Type-checking those terms requires some time because it makes a large use of the conversion rule, but memory requirements are much smaller.

24.11 Discussion

Efficiency is not the only motivation to use reflection here. ring also deals with constants, it rewrites for example the expression 34+2*x-x+12 to the expected result x+46. For the tactic ACDSimpl, the only constants were 0 and 1. So the expression 34+2*(x-1)+12 is interpreted as $V_0 \oplus V_1 \otimes (V_2 \oplus 1) \oplus V_3$, with the variables mapping $\{V_0 \mapsto 34; V_1 \mapsto 2; V_2 \mapsto x; V_3 \mapsto 12\}$. Then it is rewritten to 34-x+2*x+12,

24.11 Discussion 419

very far from the expected result. Here rewriting is not sufficient: you have to do some kind of reduction (some kind of *computation*) to achieve the normalization.

The tactic ring is not only faster than a classical one: using reflection, we get for free integration of computation and reasoning that would be very complex to implement in the classic fashion.

Is it the ultimate way to write tactics? The answer is: yes and no. The ring tactic uses intensively the conversion rule of pCIC, that is replaces proof by computation the most as it is possible. It can be useful in all situations where a classical tactic generates huge proof terms. Symbolic Processing and Tautologies are in that case. But there are also tactics like auto or linear that do many complex computations, using side-effects and backtracking, and generate a small proof term. Clearly, it would be significantly less efficient to replace them by tactics using reflection.

Another idea suggested by Benjamin Werner: reflection could be used to couple an external tool (a rewriting program or a model checker) with CoQ. We define (in CoQ) a type of terms, a type of *traces*, and prove a correction theorem that states that *replaying traces* is safe w.r.t some interpretation. Then we let the external tool do every computation (using side-effects, backtracking, exception, or others features that are not available in pure lambda calculus) to produce the trace: now we can check in Coq that the trace has the expected semantic by applying the correction lemma.

Chapter 25

Nsatz: tactics for proving equalities in integral domains

Loïc Pottier

The tactic nsatz proves goals of the form

$$\forall X_1, \dots, X_n \in A, P_1(X_1, \dots, X_n) = Q_1(X_1, \dots, X_n), \dots, P_s(X_1, \dots, X_n) = Q_s(X_1, \dots, X_n) \vdash P(X_1, \dots, X_n) = Q(X_1, \dots, X_n)$$

where $P, Q, P_1, Q_1, \ldots, P_s, Q_s$ are polynomials and A is an integral domain, i.e. a commutative ring with no zero divisor. For example, A can be \mathbb{R}, \mathbb{Z} , of \mathbb{Q} . Note that the equality = used in these goals can be any setoid equality (see 26.7), not only Leibnitz equality.

It also proves formulas

$$\forall X_1, ..., X_n \in A, P_1(X_1, ..., X_n) = Q_1(X_1, ..., X_n) \wedge ... \wedge P_s(X_1, ..., X_n) = Q_s(X_1, ..., X_n) \rightarrow P(X_1, ..., X_n) = Q(X_1, ..., X_n)$$

doing automatic introductions.

25.1 Using the basic tactic nsatz

Load the Nsatz module: Require Import Nsatz. and use the tactic nsatz.

25.2 More about nsatz

Hilbert's Nullstellensatz theorem shows how to reduce proofs of equalities on polynomials on a commutative ring A with no zero divisor to algebraic computations: it is easy to see that if a polynomial P in $A[X_1, \ldots, X_n]$ verifies $cP^r = \sum_{i=1}^s S_i P_i$, with $c \in A$, $c \neq 0$, r a positive integer, and the S_i s in $A[X_1, \ldots, X_n]$, then P is zero whenever polynomials P_1, \ldots, P_s are zero (the converse is also true when A is an algebraic closed field: the method is complete).

So, proving our initial problem can reduce into finding S_1, \ldots, S_s , c and r such that $c(P-Q)^r = \sum_i S_i(P_i - Q_i)$, which will be proved by the tactic ring.

This is achieved by the computation of a Groebner basis of the ideal generated by $P_1 - Q_1, ..., P_s - Q_s$, with an adapted version of the Buchberger algorithm.

This computation is done after a step of reification, which is performed using Type Classes (see 19)

The \mathtt{Nsatz} module defines the tactic \mathtt{nsatz} , which can be used without arguments: \mathtt{nsatz}

or with the syntax:

nsatz with radicalmax:=number%N strategy:=number%Z parameters:=list of variables variables:=list of variables where:

- radicalmax is a bound when for searching r s.t. $c(P-Q)^r = \sum_{i=1}^{r} S_i(P_i-Q_i)$
- strategy gives the order on variables $X_1, ... X_n$ and the strategy used in Buchberger algorithm (see [69] for details):
 - strategy = 0: reverse lexicographic order and newest s-polynomial.
 - strategy = 1: reverse lexicographic order and sugar strategy.
 - strategy = 2: pure lexicographic order and newest s-polynomial.
 - strategy = 3: pure lexicographic order and sugar strategy.
- parameters is the list of variables X_{i_1}, \ldots, X_{i_k} among X_1, \ldots, X_n which are considered as parameters: computation will be performed with rational fractions in these variables, i.e. polynomials are considered with coefficients in $R(X_{i_1}, \ldots, X_{i_k})$. In this case, the coefficient c can be a non constant polynomial in X_{i_1}, \ldots, X_{i_k} , and the tactic produces a goal which states that c is not zero.
- variables is the list of the variables in the decreasing order in which they will be used in Buchberger algorithm. If variables = (@nil R), then lvar is replaced by all the variables which are not in parameters.

See file Nsatz.v for many examples, specially in geometry.

Chapter 26

User defined equalities and relations

Matthieu Sozeau

This chapter presents the extension of several equality related tactics to work over user-defined structures (called setoids) that are equipped with ad-hoc equivalence relations meant to behave as equalities. Actually, the tactics have also been generalized to relations weaker then equivalences (e.g. rewriting systems).

This documentation is adapted from the previous setoid documentation by Claudio Sacerdoti Coen (based on previous work by Clément Renard). The new implementation is a drop-in replacement for the old one ¹, hence most of the documentation still applies.

The work is a complete rewrite of the previous implementation, based on the type class infrastructure. It also improves on and generalizes the previous implementation in several ways:

- User-extensible algorithm. The algorithm is separated in two parts: generations of the rewriting constraints (done in ML) and solving of these constraints using type class resolution. As type class resolution is extensible using tactics, this allows users to define general ways to solve morphism constraints.
- Sub-relations. An example extension to the base algorithm is the ability to define one relation as a subrelation of another so that morphism declarations on one relation can be used automatically for the other. This is done purely using tactics and type class search.
- Rewriting under binders. It is possible to rewrite under binders in the new implementation, if one provides the proper morphisms. Again, most of the work is handled in the tactics.
- First-class morphisms and signatures. Signatures and morphisms are ordinary Coq terms, hence they can be manipulated inside Coq, put inside structures and lemmas about them can be proved inside the system. Higher-order morphisms are also allowed.
- Performance. The implementation is based on a depth-first search for the first solution to a set of constraints which can be as fast as linear in the size of the term, and the size of the proof term is linear in the size of the original term. Besides, the extensibility allows the user to customize the proof-search if necessary.

¹Nicolas Tabareau helped with the gluing

26.1 Relations and morphisms

A parametric relation \mathbb{R} is any term of type forall $(x_1:T_1)$... $(x_n:T_n)$, relation A. The expression A, which depends on $x_1 \ldots x_n$, is called the *carrier* of the relation and \mathbb{R} is said to be a relation over \mathbb{A} ; the list x_1, \ldots, x_n is the (possibly empty) list of parameters of the relation.

Example 1 (Parametric relation) It is possible to implement finite sets of elements of type A as unordered list of elements of type A. The function set_eq : for all (A: Type), relation (list A) satisfied by two lists with the same elements is a parametric relation over (list A) with one parameter A. The type of set_eq is convertible with for all (A: Type), list A -> list A -> Prop.

An *instance* of a parametric relation R with n parameters is any term $(R \ t_1 \ ... t_n)$.

Let R be a relation over A with n parameters. A term is a parametric proof of reflexivity for R if it has type forall $(x_1:T_1)$... $(x_n:T_n)$, reflexive $(R x_1 ... x_n)$. Similar definitions are given for parametric proofs of symmetry and transitivity.

Example 2 (Parametric relation (cont.)) The set_eq relation of the previous example can be proved to be reflexive, symmetric and transitive.

A parametric unary function f of type forall $(x_1:T_1)$... $(x_n:T_n)$, $A_1 \to A_2$ covariantly respects two parametric relation instances R_1 and R_2 if, whenever x,y satisfy R_1 x y, their images $(f \ x)$ and $(f \ y)$ satisfy R_2 $(f \ x)$ $(f \ y)$. An f that respects its input and output relations will be called a unary covariant *morphism*. We can also say that f is a monotone function with respect to R_1 and R_2 . The sequence $x_1, \ldots x_n$ represents the parameters of the morphism.

Let R_1 and R_2 be two parametric relations. The *signature* of a parametric morphism of type forall $(x_1:T_1)$... $(x_n:T_n)$, $A_1 \rightarrow A_2$ that covariantly respects two instances I_{R_1} and I_{R_2} of R_1 and R_2 is written $I_{R_1}++>I_{R_2}$. Notice that the special arrow ++>, which reminds the reader of covariance, is placed between the two relation instances, not between the two carriers. The signature relation instances and morphism will be typed in a context introducing variables for the parameters.

The previous definitions are extended straightforwardly to n-ary morphisms, that are required to be simultaneously monotone on every argument.

Morphisms can also be contravariant in one or more of their arguments. A morphism is contravariant on an argument associated to the relation instance R if it is covariant on the same argument when the inverse relation R^{-1} (inverse R in Coq) is considered. The special arrow --> is used in signatures for contravariant morphisms.

Functions having arguments related by symmetric relations instances are both covariant and contravariant in those arguments. The special arrow ==> is used in signatures for morphisms that are both covariant and contravariant.

An instance of a parametric morphism f with n parameters is any term f t_1 ... t_n .

Example 3 (Morphisms) Continuing the previous example, let union: forall (A: Type), list A -> list A -> list A perform the union of two sets by appending one list to the other. union is a binary morphism parametric over A that respects the relation instance (set_eq A). The latter condition is proved by showing forall (A: Type) (S1 S1' S2 S2': list A), set_eq A S1 S1' -> set_eq A S2 S2' -> set_eq A (union A S1 S2) (union A S1' S2').

The signature of the function union A is $set_eq A ==> set_eq A ==> set_eq A$ for all A.

Example 4 (Contravariant morphism) The division function $Rdiv: R \rightarrow R \rightarrow R$ is a morphism of signature 1e ++> 1e --> 1e where 1e is the usual order relation over real numbers. Notice that division is covariant in its first argument and contravariant in its second argument.

Leibniz equality is a relation and every function is a morphism that respects Leibniz equality. Unfortunately, Leibniz equality is not always the intended equality for a given structure.

In the next section we will describe the commands to register terms as parametric relations and morphisms. Several tactics that deal with equality in CoQ can also work with the registered relations. The exact list of tactic will be given in Sect. 26.7. For instance, the tactic reflexivity can be used to close a goal R n n whenever R is an instance of a registered reflexive relation. However, the tactics that replace in a context C[] one term with another one related by R must verify that C[] is a morphism that respects the intended relation. Currently the verification consists in checking whether C[] is a syntactic composition of morphism instances that respects some obvious compatibility constraints.

Example 5 (Rewriting) Continuing the previous examples, suppose that the user must prove set_eq int (union int (union int S1 S2) S2) (f S1 S2) under the hypothesis H: set_eq int S2 (nil int). It is possible to use the rewrite tactic to replace the first two occurrences of S2 with nil int in the goal since the context set_eq int (union int (union int S1 nil) nil) (f S1 S2), being a composition of morphisms instances, is a morphism. However the tactic will fail replacing the third occurrence of S2 unless f has also been declared as a morphism.

26.2 Adding new relations and morphisms

A parametric relation Aeq: forall $(y_1:\beta_!\ldots y_m:\beta_m)$, relation (A $t_1\ldots t_n$) over $(A:\alpha_i\rightarrow\ldots\alpha_n\rightarrow$ Type) can be declared with the following command:

```
Add Parametric Relation (x_1:T_1)...(x_n:T_k):(A\ t_1...t_n)\ (Aeq\ t_1'...t_m') [reflexivity proved by refl] [symmetry proved by sym] [transitivity proved by trans] as id.
```

after having required the Setoid module with the Require Setoid command.

The identifier *id* gives a unique name to the morphism and it is used by the command to generate fresh names for automatically provided lemmas used internally.

Notice that the carrier and relation parameters may refer to the context of variables introduced at the beginning of the declaration, but the instances need not be made only of variables. Also notice that *A* is *not* required to be a term having the same parameters as *Aeq*, although that is often the case in practice (this departs from the previous implementation).

In case the carrier and relations are not parametric, one can use the command Add Relation instead, whose syntax is the same except there is no local context.

The proofs of reflexivity, symmetry and transitivity can be omitted if the relation is not an equivalence relation. The proofs must be instances of the corresponding relation definitions: e.g. the proof of reflexivity must have a type convertible to reflexive $(A \ t_1 \ \ldots t_n)$ $(Aeq \ t'_1 \ \ldots t'_n)$. Each proof may refer to the introduced variables as well.

```
Example 6 (Parametric relation) For Leibniz equality, we may declare: Add Parametric Relation (A: Type): A (@eq A)

[reflexivity proved by @refl_equal A]
```

Some tactics (reflexivity, symmetry, transitivity) work only on relations that respect the expected properties. The remaining tactics (replace, rewrite and derived tactics such as autorewrite) do not require any properties over the relation. However, they are able to replace terms with related ones only in contexts that are syntactic compositions of parametric morphism instances declared with the following command.

```
Add Parametric Morphism (x_1: \mathbf{T}_!)\dots(x_k: \mathbf{T}_k) (ft_1\dots t_n) with signature sig as id. Proof ... Qed
```

The command declares f as a parametric morphism of signature sig. The identifier id gives a unique name to the morphism and it is used as the base name of the type class instance definition and as the name of the lemma that proves the well-definedness of the morphism. The parameters of the morphism as well as the signature may refer to the context of variables. The command asks the user to prove interactively that f respects the relations identified from the signature.

Example 7 We start the example by assuming a small theory over homogeneous sets and we declare set equality as a parametric equivalence relation and union of two sets as a parametric morphism.

```
Cog < Require Export Setoid.
Cog < Require Export Relation_Definitions.
Cog < Set Implicit Arguments.
Coq < Parameter set: Type -> Type.
Cog < Parameter empty: forall A, set A.
Coq < Parameter eq_set: forall A, set A -> set A -> Prop.
Cog < Parameter union: forall A, set A -> set A -> set A.
Coq < Axiom eq_set_refl: forall A, reflexive _ (eq_set (A:=A)).
Coq < Axiom eq_set_sym: forall A, symmetric _ (eq_set (A:=A)).
Coq < Axiom eq_set_trans: forall A, transitive _ (eq_set (A:=A)).
Coq < Axiom empty_neutral: forall A (S: set A), eq_set (union S (empty A)) S.
Cog < Axiom union_compat:
Coq < forall (A : Type),
      forall x x' : set A, eq_set x x' ->
Cog <
      forall y y' : set A, eq_set y y' ->
Coa <
        eq_set (union x y) (union x' y').
Coq < Add Parametric Relation A : (set A) (@eq_set A)</pre>
```

```
Coq < reflexivity proved by (eq_set_refl (A:=A))
Coq < symmetry proved by (eq_set_sym (A:=A))
Coq < transitivity proved by (eq_set_trans (A:=A))
Coq < as eq_set_rel.

Coq < Add Parametric Morphism A : (@union A) with
Coq < signature (@eq_set A) ==> (@eq_set A) ==> (@eq_set A) as union_mor.
Coq < Proof. exact (@union_compat A). Qed.</pre>
```

Is is possible to reduce the burden of specifying parameters using (maximally inserted) implicit arguments. If A is always set as maximally implicit in the previous example, one can write:

```
Coq < Add Parametric Relation A : (set A) eq_set
Coq < reflexivity proved by eq_set_refl
Coq < symmetry proved by eq_set_sym
Coq < transitivity proved by eq_set_trans
Coq < as eq_set_rel.
Coq < Add Parametric Morphism A : (@union A) with
Coq < signature eq_set ==> eq_set ==> eq_set as union_mor.
Coq < Proof. exact (@union_compat A). Qed.</pre>
```

We proceed now by proving a simple lemma performing a rewrite step and then applying reflexivity, as we would do working with Leibniz equality. Both tactic applications are accepted since the required properties over eq_set and union can be established from the two declarations above.

```
Coq < Goal forall (S: set nat),
Coq < eq_set (union (union S empty) S) (union S S).
Coq < Proof. intros. rewrite empty_neutral. reflexivity. Qed.</pre>
```

The tables of relations and morphisms are managed by the type class instance mechanism. The behavior on section close is to generalize the instances by the variables of the section (and possibly hypotheses used in the proofs of instance declarations) but not to export them in the rest of the development for proof search. One can use the <code>Existing Instance</code> command to do so outside the section, using the name of the declared morphism suffixed by <code>_Morphism</code>, or use the <code>Global</code> modifier for the corresponding class instance declaration (see §26.6) at definition time. When loading a compiled file or importing a module, all the declarations of this module will be loaded.

26.3 Rewriting and non reflexive relations

To replace only one argument of an n-ary morphism it is necessary to prove that all the other arguments are related to themselves by the respective relation instances.

Example 8 To replace (union S empty) with S in (union (union S empty) S) (union S S) the rewrite tactic must exploit the monotony of union (axiom union_compat in the previous example). Applying union_compat by hand we are left with the goal eq_set (union S S) (union S S).

When the relations associated to some arguments are not reflexive, the tactic cannot automatically prove the reflexivity goals, that are left to the user.

Setoids whose relation are partial equivalence relations (PER) are useful to deal with partial functions. Let \mathbb{R} be a PER. We say that an element \mathbb{X} is defined if $\mathbb{R} \times \mathbb{X}$. A partial function whose domain comprises all the defined elements only is declared as a morphism that respects \mathbb{R} . Every time a rewriting step is performed the user must prove that the argument of the morphism is defined.

Example 9 Let eq0 be fun $x y => x = y \land x \neq 0$ (the smaller PER over non zero elements). Division can be declared as a morphism of signature eq ==> eq0 ==> eq. Replace x with y in div x n = div y n opens the additional goal eq0 n n that is equivalent to $n=n \land n \neq 0$.

26.4 Rewriting and non symmetric relations

When the user works up to relations that are not symmetric, it is no longer the case that any covariant morphism argument is also contravariant. As a result it is no longer possible to replace a term with a related one in every context, since the obtained goal implies the previous one if and only if the replacement has been performed in a contravariant position. In a similar way, replacement in an hypothesis can be performed only if the replaced term occurs in a covariant position.

Example 10 (Covariance and contravariance) Suppose that division over real numbers has been defined as a morphism of signature Z. div: Z. lt ++> Z. lt --> Z. lt (i.e. Z. div is increasing in its first argument, but decreasing on the second one). Let < denotes Z. lt. Under the hypothesis H: x < y we have k < x / y -> k < x / x, but not k < y / x -> k < x / x. Dually, under the same hypothesis k < x / y -> k < y / y holds, but k < y / x -> k < y / y does not. Thus, if the current goal is k < x / x, it is possible to replace only the second occurrence of x (in contravariant position) with y since the obtained goal must imply the current one. On the contrary, if k < x / x is an hypothesis, it is possible to replace only the first occurrence of x (in covariant position) with y since the current hypothesis must imply the obtained one.

Contrary to the previous implementation, no specific error message will be raised when trying to replace a term that occurs in the wrong position. It will only fail because the rewriting constraints are not satisfiable. However it is possible to use the at modifier to specify which occurrences should be rewritten.

As expected, composing morphisms together propagates the variance annotations by switching the variance every time a contravariant position is traversed.

Example 11 Let us continue the previous example and let us consider the goal x / (x / x) < k. The first and third occurrences of x are in a contravariant position, while the second one is in covariant position. More in detail, the second occurrence of x occurs covariantly in (x / x) (since division is covariant in its first argument), and thus contravariantly in x / (x / x) (since division is contravariant in its second argument), and finally covariantly in x / (x / x) < k (since x < x < x) every transitive relation, is contravariant in its first argument with respect to the relation itself).

26.5 Rewriting in ambiguous setoid contexts

One function can respect several different relations and thus it can be declared as a morphism having multiple signatures.

Example 12 Union over homogeneous lists can be given all the following signatures: eq ==> eq ==> eq (eq being the equality over ordered lists) set_eq ==> set_eq ==> set_eq (set_eq being the equality over unordered lists up to duplicates), multiset_eq ==> multiset_eq ==> multiset_eq (multiset_eq being the equality over unordered lists).

To declare multiple signatures for a morphism, repeat the Add Morphism command.

When morphisms have multiple signatures it can be the case that a rewrite request is ambiguous, since it is unclear what relations should be used to perform the rewriting. Contrary to the previous implementation, the tactic will always choose the first possible solution to the set of constraints generated by a rewrite and will not try to find *all* possible solutions to warn the user about.

26.6 First class setoids and morphisms

The implementation is based on a first-class representation of properties of relations and morphisms as type classes. That is, the various combinations of properties on relations and morphisms are represented as records and instances of theses classes are put in a hint database. For example, the declaration:

```
Add Parametric Relation (x_1:T_1)\dots(x_n:T_k):(A\ t_1\dots t_n)\ (Aeq\ t_1'\dots t_m') [reflexivity proved by refl] [symmetry proved by sym] [transitivity proved by trans] as id.
```

is equivalent to an instance declaration:

```
Instance (x_1:T_1)\dots(x_n:T_k)=>id: @Equivalence (A\ t_1\dots t_n)\ (Aeq\ t_1'\dots t_m'):= [Equivalence_Reflexive :=refl] [Equivalence_Symmetric :=sym] [Equivalence_Transitive :=trans].
```

The declaration itself amounts to the definition of an object of the record type <code>Coq.Classes.RelationClasses.Equivalence</code> and a hint added to the <code>typeclass_instances</code> hint database. Morphism declarations are also instances of a type class defined in <code>Classes.Morphisms</code>. See the documentation on type classes 19 and the theories files in <code>Classes</code> for further explanations.

One can inform the rewrite tactic about morphisms and relations just by using the typeclass mechanism to declare them using Instance and Context vernacular commands. Any object of type Proper (the type of morphism declarations) in the local context will also be automatically used by the rewriting tactic to solve constraints.

Other representations of first class setoids and morphisms can also be handled by encoding them as records. In the following example, the projections of the setoid relation and of the morphism function can be registered as parametric relations and morphisms.

Example 13 (First class setoids) Coq < Require Import Relation_Definitions Setoid.

```
Coq < Record Setoid: Type :=
Coq < { car:Type;
Coq < eq:car->car->Prop;
Coq < refl: reflexive _ eq;</pre>
```

```
Coa <
        sym: symmetric _ eq;
Coq < trans: transitive _ eq
Coq < \}.
Coq < Add Parametric Relation (s : Setoid) : (@car s) (@eq s)
Coq < reflexivity proved by (refl s)
Coq < symmetry proved by (sym s)
Coq < transitivity proved by (trans s) as eq_rel.
Coq < Record Morphism (S1 S2:Setoid): Type :=
Coq < { f:car S1 ->car S2;
        compat: forall (x1 x2: car S1), eq S1 x1 x2 \rightarrow eq S2 (f x1) (f x2) }.
Coq < Add Parametric Morphism (S1 S2 : Setoid) (M : Morphism S1 S2) :
Coq < (@f S1 S2 M) with signature (@eq S1 ==> @eq S2) as apply_mor.
Coq < Proof. apply (compat S1 S2 M). Qed.
Coq < Lemma test: forall (S1 S2:Setoid) (m: Morphism S1 S2)
Coq < (x y: car S1), eq S1 x y -> eq S2 (f <math>\_ m x) (f <math>\_ m y).
Cog < Proof. intros. rewrite H. reflexivity. Qed.
```

26.7 Tactics enabled on user provided relations

The following tactics, all prefixed by setoid_, deal with arbitrary registered relations and morphisms. Moreover, all the corresponding unprefixed tactics (i.e. reflexivity, symmetry, transitivity, replace, rewrite) have been extended to fall back to their prefixed counterparts when the relation involved is not Leibniz equality. Notice, however, that using the prefixed tactics it is possible to pass additional arguments such as using relation.

```
setoid_reflexivity
setoid_symmetry [in ident]
setoid_transitivity
setoid_rewrite [orientation] term [at occs] [in ident]
setoid_replace term with term [in ident] [using relation term] [by tactic]
```

The using relation arguments cannot be passed to the unprefixed form. The latter argument tells the tactic what parametric relation should be used to replace the first tactic argument with the second one. If omitted, it defaults to the DefaultRelation instance on the type of the objects. By default, it means the most recent Equivalence instance in the environment, but it can be customized by declaring new DefaultRelation instances. As Leibniz equality is a declared equivalence, it will fall back to it if no other relation is declared on a given type.

Every derived tactic that is based on the unprefixed forms of the tactics considered above will also work up to user defined relations. For instance, it is possible to register hints for autorewrite that are not proof of Leibniz equalities. In particular it is possible to exploit autorewrite to simulate normalization in a term rewriting system up to user defined equalities.

26.8 Printing relations and morphisms

The Print Instances command can be used to show the list of currently registered Reflexive (using Print Instances Reflexive), Symmetric or Transitive relations, Equivalences, PreOrders, PERs, and Morphisms (implemented as Proper instances). When the

rewriting tactics refuse to replace a term in a context because the latter is not a composition of morphisms, the Print Instances commands can be useful to understand what additional morphisms should be registered.

26.9 Deprecated syntax and backward incompatibilities

Due to backward compatibility reasons, the following syntax for the declaration of setoids and morphisms is also accepted.

```
Add Setoid A Aeq ST as ident
```

where Aeq is a congruence relation without parameters, A is its carrier and ST is an object of type (Setoid_Theory A Aeq) (i.e. a record packing together the reflexivity, symmetry and transitivity lemmas). Notice that the syntax is not completely backward compatible since the identifier was not required.

```
Add Morphism f:ident. Proof. ... Qed.
```

The latter command also is restricted to the declaration of morphisms without parameters. It is not fully backward compatible since the property the user is asked to prove is slightly different: for n-ary morphisms the hypotheses of the property are permuted; moreover, when the morphism returns a proposition, the property is now stated using a bi-implication in place of a simple implication. In practice, porting an old development to the new semantics is usually quite simple.

Notice that several limitations of the old implementation have been lifted. In particular, it is now possible to declare several relations with the same carrier and several signatures for the same morphism. Moreover, it is now also possible to declare several morphisms having the same signature. Finally, the replace and rewrite tactics can be used to replace terms in contexts that were refused by the old implementation. As discussed in the next section, the semantics of the new setoid_rewrite command differs slightly from the old one and rewrite.

26.10 Rewriting under binders

Warning: Due to compatibility issues, this feature is enabled only when calling the setoid_rewrite tactics directly and not rewrite.

To be able to rewrite under binding constructs, one must declare morphisms with respect to pointwise (setoid) equivalence of functions. Example of such morphisms are the standard all and ex combinators for universal and existential quantification respectively. They are declared as morphisms in the Classes.Morphisms_Prop module. For example, to declare that universal quantification is a morphism for logical equivalence:

```
Coq < Instance all_iff_morphism (A : Type) :
Coq < Proper (pointwise_relation A iff ==> iff) (@all A).
1 subgoal
A : Type
```

One then has to show that if two predicates are equivalent at every point, their universal quantifications are equivalent. Once we have declared such a morphism, it will be used by the setoid rewriting tactic each time we try to rewrite under an all application (products in Prop are implicitly translated to such applications).

Indeed, when rewriting under a lambda, binding variable x, say from P x to Q x using the relation iff, the tactic will generate a proof of pointwise_relation A iff (fun $x \Rightarrow P$ x) (fun $x \Rightarrow Q$ x) from the proof of iff (P x) (Q x) and a constraint of the form Proper (pointwise_relation A iff ==> ?) m will be generated for the surrounding morphism m.

Hence, one can add higher-order combinators as morphisms by providing signatures using pointwise extension for the relations on the functional arguments (or whatever subrelation of the pointwise extension). For example, one could declare the map combinator on lists as a morphism:

```
Coq < Instance map_morphism '{Equivalence A eqA, Equivalence B eqB} :
Coq < Proper ((eqA ==> eqB) ==> list_equiv eqA ==> list_equiv eqB)
Coq < (@map A B).</pre>
```

where list_equiv implements an equivalence on lists parameterized by an equivalence on the

Note that when one does rewriting with a lemma under a binder using <code>setoid_rewrite</code>, the application of the lemma may capture the bound variable, as the semantics are different from rewrite where the lemma is first matched on the whole term. With the new <code>setoid_rewrite</code>, matching is done on each subterm separately and in its local environment, and all matches are rewritten <code>simultaneously</code> by default. The semantics of the previous <code>setoid_rewrite</code> implementation can almost be recovered using the <code>at 1</code> modifier.

26.11 Sub-relations

Sub-relations can be used to specify that one relation is included in another, so that morphisms signatures for one can be used for the other. If a signature mentions a relation R on the left of an arrow ==>, then the signature also applies for any relation S that is smaller than R, and the inverse applies on the right of an arrow. One can then declare only a few morphisms instances that generate the complete set of signatures for a particular constant. By default, the only declared subrelation is iff, which is a subrelation of impl and inverse impl (the dual of implication). That's why we can declare only two morphisms

for conjunction: Proper (impl ==> impl ==> impl) and and Proper (iff ==> iff ==> iff) and. This is sufficient to satisfy any rewriting constraints arising from a rewrite using iff, impl or inverse impl through and.

Sub-relations are implemented in Classes. Morphisms and are a prime example of a mostly user-space extension of the algorithm.

26.12 Constant unfolding

The resolution tactic is based on type classes and hence regards user-defined constants as transparent by default. This may slow down the resolution due to a lot of unifications (all the declared Proper instances are tried at each node of the search tree). To speed it up, declare your constant as rigid for proof search using the command Typeclasses Opaque (see §19.6.5).

- [1] David Aspinall. Proof general. http://proofgeneral.inf.ed.ac.uk/.
- [2] Ph. Audebaud. Partial Objects in the Calculus of Constructions. In *Proceedings of the sixth Conf. on Logic in Computer Science*. IEEE, 1991.
- [3] Ph. Audebaud. CC+: an extension of the Calculus of Constructions with fixpoints. In B. Nordström and K. Petersson and G. Plotkin, editor, *Proceedings of the 1992 Workshop on Types for Proofs and Programs*, pages 21–34, 1992. Also Research Report LIP-ENS-Lyon.
- [4] Ph. Audebaud. Extension du Calcul des Constructions par Points fixes. PhD thesis, Université Bordeaux I, 1992.
- [5] L. Augustsson. Compiling Pattern Matching. In *Conference Functional Programming and Computer Architecture*, 1985.
- [6] H. Barendregt. Lambda Calculi with Types. Technical Report 91-19, Catholic University Nijmegen, 1991. In Handbook of Logic in Computer Science, Vol II.
- [7] H. Barendregt and T. Nipkow, editors. *Types for Proofs and Programs*, volume 806 of *Lecture Notes in Computer Science*. Sprin-ger-Verlag, 1994.
- [8] H.P. Barendregt. The Lambda Calculus its Syntax and Semantics. North-Holland, 1981.
- [9] B. Barras. *Auto-validation d'un système de preuves avec familles inductives*. Thèse de doctorat, Université Paris 7, 1999.
- [10] J.L. Bates and R.L. Constable. Proofs as Programs. ACM transactions on Programming Languages and Systems, 7, 1985.
- [11] M.J. Beeson. Foundations of Constructive Mathematics, Metamathematical Studies. Sprin-ger-Verlag, 1985.
- [12] G. Bellin and J. Ketonen. A decision procedure revisited: Notes on direct logic, linear logic and its implementation. *Theoretical Computer Science*, 95:115–142, 1992.
- [13] Stefano Berardi and Mario Coppo, editors. *Types for Proofs and Programs, International Workshop TYPES*'95, *Torino, Italy, June 5-8, 1995, Selected Papers*, volume 1158 of *Lecture Notes in Computer Science*. Springer, 1996.
- [14] Yves Bertot and Pierre Castéran. *Interactive Theorem Proving and Program Development.* Coq'Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer Science. An EATCS series. Springer Verlag, 2004.

- [15] E. Bishop. Foundations of Constructive Analysis. McGraw-Hill, 1967.
- [16] S. Boutin. Certification d'un compilateur ML en Coq. Master's thesis, Université Paris 7, September 1992.
- [17] S. Boutin. Réflexions sur les quotients. thèse d'université, Paris 7, April 1997.
- [18] S. Boutin. Using reflection to build efficient and certified decision procedure s. In Martin Abadi and Takahashi Ito, editors, *TACS'97*, volume 1281 of *Lecture Notes in Computer Science*. Springer-Verlag, 1997.
- [19] R.S. Boyer and J.S. Moore. A computational logic. ACM Monograph. Academic Press, 1979.
- [20] Paul Callaghan, Zhaohui Luo, James McKinna, and Robert Pollack, editors. *Types for Proofs and Programs, International Workshop, TYPES 2000, Durham, UK, December 8-12, 2000, Selected Papers*, volume 2277 of *Lecture Notes in Computer Science*. Springer, 2002.
- [21] Laurent Chicli, Loïc Pottier, and Carlos Simpson. Mathematical quotients and quotient types in coq. In Geuvers and Wiedijk [64].
- [22] R.L. Constable et al. *Implementing Mathematics with the Nuprl Proof Development System*. Prentice-Hall, 1986.
- [23] Th. Coquand. Une Théorie des Constructions. PhD thesis, Université Paris 7, January 1985.
- [24] Th. Coquand. An Analysis of Girard's Paradox. In *Symposium on Logic in Computer Science*, Cambridge, MA, 1986. IEEE Computer Society Press.
- [25] Th. Coquand. Metamathematical Investigations of a Calculus of Constructions. In P. Oddifredi, editor, *Logic and Computer Science*. Academic Press, 1990. INRIA Research Report 1088, also in [62].
- [26] Th. Coquand. A New Paradox in Type Theory. In *Proceedings 9th Int. Congress of Logic, Methodology and Philosophy of Science*, August 1991.
- [27] Th. Coquand. Pattern Matching with Dependent Types. In Nordström et al. [108].
- [28] Th. Coquand. Infinite Objects in Type Theory. In Barendregt and Nipkow [7].
- [29] Th. Coquand and G. Huet. Constructions: A Higher Order Proof System for Mechanizing Mathematics. In EUROCAL'85, volume 203 of Lecture Notes in Computer Science, Linz, 1985. Springer-Verlag.
- [30] Th. Coquand and G. Huet. Concepts Mathématiques et Informatiques formalisés dans le Calcul des Constructions. In The Paris Logic Group, editor, *Logic Colloquium*'85. North-Holland, 1987.
- [31] Th. Coquand and G. Huet. The Calculus of Constructions. *Information and Computation*, 76(2/3), 1988.
- [32] Th. Coquand and C. Paulin-Mohring. Inductively defined types. In P. Martin-Löf and G. Mints, editors, *Proceedings of Colog'88*, volume 417 of *Lecture Notes in Computer Science*. Sprin-ger-Verlag, 1990.

[33] P. Corbineau. A declarative language for the coq proof assistant. In M. Miculan, I. Scagnetto, and F. Honsell, editors, *TYPES '07*, *Cividale del Friuli, Revised Selected Papers*, volume 4941 of *Lecture Notes in Computer Science*, pages 69–84. Springer, 2007.

- [34] C. Cornes. *Conception d'un langage de haut niveau de représentation de preuves*. Thèse de doctorat, Université Paris 7, November 1997.
- [35] Cristina Cornes and Delphine Terrasse. Automating inversion of inductive predicates in coq. In Berardi and Coppo [13], pages 85–104.
- [36] J. Courant. Explicitation de preuves par récurrence implicite. Master's thesis, DEA d'Informatique, ENS Lyon, September 1994.
- [37] N.J. de Bruijn. Lambda-Calculus Notation with Nameless Dummies, a Tool for Automatic Formula Manipulation, with Application to the Church-Rosser Theorem. *Indag. Math.*, 34, 1972.
- [38] N.J. de Bruijn. A survey of the project Automath. In J.P. Seldin and J.R. Hindley, editors, to H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism. Academic Press, 1980.
- [39] D. de Rauglaudre. Camlp4 version 1.07.2. In Camlp4 distribution, 1998.
- [40] D. Delahaye. Information retrieval in a coq proof library using type isomorphisms. In *Proceedings* of TYPES '99, Lökeberg, Lecture Notes in Computer Science. Sprin-ger-Verlag, 1999.
- [41] D. Delahaye. A Tactic Language for the System Coq. In *Proceedings of Logic for Programming and Automated Reasoning (LPAR), Reunion Island*, volume 1955 of *Lecture Notes in Computer Science*, pages 85–95. Sprin-ger-Verlag, November 2000.
- [42] D. Delahaye and M. Mayero. Field: une procédure de décision pour les nombres réels en CoQ. In *Journées Francophones des Langages Applicatifs, Pontarlier*. INRIA, Janvier 2001.
- [43] R. di Cosmo. Isomorphisms of Types: from λ -calculus to information retrieval and language design. Progress in Theoretical Computer Science. Birkhauser, 1995. ISBN-0-8176-3763-X.
- [44] G. Dowek. Naming and scoping in a mathematical vernacular. Research Report 1283, INRIA, 1990.
- [45] G. Dowek. *Démonstration automatique dans le Calcul des Constructions*. PhD thesis, Université Paris 7, December 1991.
- [46] G. Dowek. L'indécidabilité du filtrage du troisième ordre dans les calculs avec types dépendants ou constructeurs de types. Compte-Rendus de l'Académie des Sciences, I, 312(12):951–956, 1991. The undecidability of Third Order Pattern Matching in Calculi with Dependent Types or Type Constructors.
- [47] G. Dowek. A second order pattern matching algorithm in the cube of typed λ-calculi. In *Proceedings of Mathematical Foundation of Computer Science*, volume 520 of *Lecture Notes in Computer Science*, pages 151–160. Sprin-ger-Verlag, 1991. Also INRIA Research Report.
- [48] G. Dowek. A Complete Proof Synthesis Method for the Cube of Type Systems. *Journal Logic Computation*, 3(3):287–315, June 1993.

[49] G. Dowek. The undecidability of pattern matching in calculi where primitive recursive functions are representable. *Theoretical Computer Science*, 107(2):349–356, 1993.

- [50] G. Dowek. Third order matching is decidable. *Annals of Pure and Applied Logic*, 69:135–155, 1994.
- [51] G. Dowek. Lambda-calculus, combinators and the comprehension schema. In *Proceedings of the second international conference on typed lambda calculus and applications*, 1995.
- [52] G. Dowek, A. Felty, H. Herbelin, G. Huet, C. Murthy, C. Parent, C. Paulin-Mohring, and B. Werner. The Coq Proof Assistant User's Guide Version 5.8. Technical Report 154, INRIA, May 1993.
- [53] P. Dybjer. Inductive sets and families in Martin-Löf's type theory and their set-theoretic semantics: An inversion principle for Martin-Löf's type theory. In G. Huet and G. Plotkin, editors, *Logical Frameworks*, volume 14, pages 59–79. Cambridge University Press, 1991.
- [54] Roy Dyckhoff. Contraction-free sequent calculi for intuitionistic logic. *The Journal of Symbolic Logic*, 57(3), September 1992.
- [55] J.-C. Filliâtre. Une procédure de décision pour le calcul des prédicats direct. Étude et implémentation dans le système CoQ. Master's thesis, DEA d'Informatique, ENS Lyon, September 1994.
- [56] J.-C. Filliâtre. A decision procedure for direct predicate calculus. Research report 96–25, LIP-ENS-Lyon, 1995.
- [57] J.-C. Filliâtre. *Preuve de programmes impératifs en théorie des types*. Thèse de doctorat, Université Paris-Sud, July 1999.
- [58] J.-C. Filliâtre. Formal Proof of a Program: Find. Submitted to *Science of Computer Programming*, January 2000.
- [59] J.-C. Filliâtre and N. Magaud. Certification of sorting algorithms in the system CoQ. In *Theorem Proving in Higher Order Logics: Emerging Trends*, 1999.
- [60] J.-C. Filliâtre. Verification of non-functional programs using interpretations in type theory. *Journal of Functional Programming*, 13(4):709–745, July 2003. [English translation of [57]].
- [61] E. Fleury. Implantation des algorithmes de Floyd et de Dijkstra dans le Calcul des Constructions. Rapport de Stage, July 1990.
- [62] Projet Formel. The Calculus of Constructions. Documentation and user's guide, Version 4.10. Technical Report 110, INRIA, 1989.
- [63] Jean-Baptiste-Joseph Fourier. Fourier's method to solve linear inequations/equations systems. Gauthier-Villars, 1890.
- [64] H. Geuvers and F. Wiedijk, editors. *Types for Proofs and Programs, Second International Workshop, TYPES 2002, Berg en Dal, The Netherlands, April 24-28, 2002, Selected Papers*, volume 2646 of *Lecture Notes in Computer Science*. Sprin-ger-Verlag, 2003.

[65] E. Giménez. Codifying guarded definitions with recursive schemes. In *Types'94: Types for Proofs and Programs*, volume 996 of *Lecture Notes in Computer Science*. Sprin-ger-Verlag, 1994. Extended version in LIP research report 95-07, ENS Lyon.

- [66] E. Giménez. An application of co-inductive types in coq: verification of the alternating bit protocol. In *Workshop on Types for Proofs and Programs*, number 1158 in Lecture Notes in Computer Science, pages 135–152. Sprin-ger-Verlag, 1995.
- [67] E. Giménez. A tutorial on recursive types in coq. Technical report, INRIA, March 1998.
- [68] E. Giménez and P. Castéran. A tutorial on [co-]inductive types in coq. available at http://coq.inria.fr/doc, January 2005.
- [69] Alessandro Giovini, Teo Mora, Gianfranco Niesi, Lorenzo Robbiano, and Carlo Traverso. "one sugar cube, please" or selection strategies in the buchberger algorithm. In *Proceedings of the ISSAC'91*, *ACM Press*, pages 5–4, 1991.
- [70] J.-Y. Girard. Une extension de l'interprétation de Gödel à l'analyse, et son application à l'élimination des coupures dans l'analyse et la théorie des types. In *Proceedings of the 2nd Scandinavian Logic Symposium*. North-Holland, 1970.
- [71] J.-Y. Girard. *Interprétation fonctionnelle et élimination des coupures de l'arithmétique d'ordre supérieur*. PhD thesis, Université Paris 7, 1972.
- [72] J.-Y. Girard, Y. Lafont, and P. Taylor. *Proofs and Types*. Cambridge Tracts in Theoretical Computer Science 7. Cambridge University Press, 1989.
- [73] John Harrison. Metatheory and reflection in theorem proving: A survey and critique. Technical Report CRC-053, SRI International Cambridge Computer Science Research Centre,, 1995.
- [74] D. Hirschkoff. Écriture d'une tactique arithmétique pour le système Coq. Master's thesis, DEA IARFA, Ecole des Ponts et Chaussées, Paris, September 1994.
- [75] Martin Hofmann and Thomas Streicher. The groupoid interpretation of type theory. In *Proceedings of the meeting Twenty-five years of constructive type theory*. Oxford University Press, 1998.
- [76] W.A. Howard. The formulae-as-types notion of constructions. In J.P. Seldin and J.R. Hindley, editors, *to H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism.* Academic Press, 1980. Unpublished 1969 Manuscript.
- [77] G. Huet. Programming of future generation computers. In *Proceedings of TAPSOFT87*, volume 249 of *Lecture Notes in Computer Science*, pages 276–286. Sprin-ger-Verlag, 1987.
- [78] G. Huet. Induction principles formalized in the Calculus of Constructions. In K. Fuchi and M. Nivat, editors, *Programming of Future Generation Computers*. Elsevier Science, 1988. Also in [77].
- [79] G. Huet, editor. *Logical Foundations of Functional Programming*. The UT Year of Programming Series. Addison-Wesley, 1989.

[80] G. Huet. The Constructive Engine. In R. Narasimhan, editor, *A perspective in Theoretical Computer Science. Commemorative Volume for Gift Siromoney*. World Scientific Publishing, 1989. Also in [62].

- [81] G. Huet. The gallina specification language: A case study. In *Proceedings of 12th FST/TCS Conference*, New Delhi, volume 652 of Lecture Notes in Computer Science, pages 229–240. Springer-Verlag, 1992.
- [82] G. Huet. Residual theory in λ -calculus: a formal development. *J. Functional Programming*, 4.3:371–394, 1994.
- [83] G. Huet and J.-J. Lévy. Call by need computations in non-ambigous linear term rewriting systems. In J.-L. Lassez and G. Plotkin, editors, *Computational Logic, Essays in Honor of Alan Robinson*. The MIT press, 1991. Also research report 359, INRIA, 1979.
- [84] G. Huet and G. Plotkin, editors. Logical Frameworks. Cambridge University Press, 1991.
- [85] G. Huet and G. Plotkin, editors. Logical Environments. Cambridge University Press, 1992.
- [86] J. Ketonen and R. Weyhrauch. A decidable fragment of Predicate Calculus. *Theoretical Computer Science*, 32:297–307, 1984.
- [87] S.C. Kleene. *Introduction to Metamathematics*. Bibliotheca Mathematica. North-Holland, 1952.
- [88] J.-L. Krivine. *Lambda-calcul types et modèles*. Etudes et recherche en informatique. Masson, 1990.
- [89] A. Laville. Comparison of priority rules in pattern matching and term rewriting. *Journal of Symbolic Computation*, 11:321–347, 1991.
- [90] F. Leclerc and C. Paulin-Mohring. Programming with Streams in Coq. A case study: The Sieve of Eratosthenes. In H. Barendregt and T. Nipkow, editors, *Types for Proofs and Programs, Types'* 93, volume 806 of *LNCS*. Sprin-ger-Verlag, 1994.
- [91] Gyesik Lee and Benjamin Werner. Proof-irrelevant model of CC with predicative induction and judgmental equality. *Logical Methods in Computer Science*, 7(4), 2011.
- [92] X. Leroy. The ZINC experiment: an economical implementation of the ML language. Technical Report 117, INRIA, 1990.
- [93] P. Letouzey. A new extraction for coq. In Geuvers and Wiedijk [64].
- [94] L.Puel and A. Suárez. Compiling Pattern Matching by Term Decomposition. In *Conference Lisp and Functional Programming*, ACM. Sprin-ger-Verlag, 1990.
- [95] Z. Luo. An Extended Calculus of Constructions. PhD thesis, University of Edinburgh, 1990.
- [96] P. Manoury. A User's Friendly Syntax to Define Recursive Functions as Typed λ -Terms. In *Types for Proofs and Programs, TYPES'94*, volume 996 of *LNCS*, June 1994.
- [97] P. Manoury and M. Simonot. Automatizing termination proofs of recursively defined functions. *TCS*, 135(2):319–343, 1994.

[98] L. Maranget. Two Techniques for Compiling Lazy Pattern Matching. Technical Report 2385, INRIA, 1994.

- [99] Conor McBride. Elimination with a motive. In Callaghan et al. [20], pages 197–216.
- [100] A. Miquel. A model for impredicative type systems with universes, intersection types and subtyping. In *Proceedings of the 15th Annual IEEE Symposium on Logic in Computer Science* (*LICS'00*). IEEE Computer Society Press, 2000.
- [101] A. Miquel. The implicit calculus of constructions: Extending pure type systems with an intersection type binder and subtyping. In *Proceedings of the fifth International Conference on Typed Lambda Calculi and Applications (TLCA01), Krakow, Poland*, number 2044 in LNCS. Sprin-ger-Verlag, 2001.
- [102] A. Miquel. *Le Calcul des Constructions implicite: syntaxe et sémantique*. PhD thesis, Université Paris 7, dec 2001.
- [103] A. Miquel and B. Werner. The not so simple proof-irrelevant model of cc. In Geuvers and Wiedijk [64], pages 240–258.
- [104] C. Muñoz. Un calcul de substitutions pour la représentation de preuves partielles en théorie de types. Thèse de doctorat, Université Paris 7, 1997. Version en anglais disponible comme rapport de recherche INRIA RR-3309.
- [105] C. Muñoz. Démonstration automatique dans la logique propositionnelle intuitionniste. Master's thesis, DEA d'Informatique Fondamentale, Université Paris 7, September 1994.
- [106] B. Nordström. Terminating general recursion. BIT, 28, 1988.
- [107] B. Nordström, K. Peterson, and J. Smith. *Programming in Martin-Löf's Type Theory*. International Series of Monographs on Computer Science. Oxford Science Publications, 1990.
- [108] B. Nordström, K. Petersson, and G. Plotkin, editors. *Proceedings of the 1992 Workshop on Types for Proofs and Programs*. Available by ftp at site ftp.inria.fr, 1992.
- [109] P. Odifreddi, editor. Logic and Computer Science. Academic Press, 1990.
- [110] P. Martin-Löf. *Intuitionistic Type Theory*. Studies in Proof Theory. Bibliopolis, 1984.
- [111] C. Parent. Developing certified programs in the system Coq- The Program tactic. Technical Report 93-29, Ecole Normale Supérieure de Lyon, October 1993. Also in [7].
- [112] C. Parent. Synthèse de preuves de programmes dans le Calcul des Constructions Inductives. PhD thesis, Ecole Normale Supérieure de Lyon, 1995.
- [113] C. Parent. Synthesizing proofs from programs in the Calculus of Inductive Constructions. In *Mathematics of Program Construction'95*, volume 947 of *LNCS*. Sprin-ger-Verlag, 1995.
- [114] M. Parigot. Recursive Programming with Proofs. *Theoretical Computer Science*, 94(2):335–356, 1992.
- [115] M. Parigot, P. Manoury, and M. Simonot. ProPre: A Programming language with proofs. In A. Voronkov, editor, *Logic Programming and automated reasoning*, number 624 in LNCS, St. Petersburg, Russia, July 1992. Sprin-ger-Verlag.

[116] C. Paulin-Mohring. Extracting F_{ω} 's programs from proofs in the Calculus of Constructions. In Sixteenth Annual ACM Symposium on Principles of Programming Languages, Austin, January 1989. ACM.

- [117] C. Paulin-Mohring. *Extraction de programmes dans le Calcul des Constructions*. PhD thesis, Université Paris 7, January 1989.
- [118] C. Paulin-Mohring. Inductive Definitions in the System Coq Rules and Properties. In M. Bezem and J.-F. Groote, editors, *Proceedings of the conference Typed Lambda Calculi and Applications*, number 664 in LNCS. Sprin-ger-Verlag, 1993. Also LIP research report 92-49, ENS Lyon.
- [119] C. Paulin-Mohring. Le système Coq. Thèse d'habilitation. ENS Lyon, January 1997.
- [120] C. Paulin-Mohring and B. Werner. Synthesis of ML programs in the system Coq. *Journal of Symbolic Computation*, 15:607–640, 1993.
- [121] K.V. Prasad. Programming with broadcasts. In *Proceedings of CONCUR'93*, volume 715 of *LNCS*. Sprin-ger-Verlag, 1993.
- [122] W. Pugh. The omega test: a fast and practical integer programming algorithm for dependence analysis. *Communication of the ACM*, pages 102–114, 1992.
- [123] J. Rouyer. Développement de l'Algorithme d'Unification dans le Calcul des Constructions. Technical Report 1795, INRIA, November 1992.
- [124] John Rushby, Sam Owre, and N. Shankar. Subtypes for specifications: Predicate subtyping in PVS. *IEEE Transactions on Software Engineering*, 24(9):709–720, September 1998.
- [125] A. Saïbi. Axiomatization of a lambda-calculus with explicit-substitutions in the Coq System. Technical Report 2345, INRIA, December 1994.
- [126] H. Saidi. Résolution d'équations dans le système t de gödel. Master's thesis, DEA d'Informatique Fondamentale, Université Paris 7, September 1994.
- [127] Matthieu Sozeau. Subset coercions in Coq. In *TYPES'06*, volume 4502 of *LNCS*, pages 237–252. Springer, 2007.
- [128] Matthieu Sozeau and Nicolas Oury. First-Class Type Classes. In TPHOLs'08, 2008.
- [129] T. Streicher. Semantical investigations into intensional type theory, 1993. Habilitationsschrift, LMU Munchen.
- [130] Lemme Team. Pcoq a graphical user-interface for Coq. http://www-sop.inria.fr/lemme/pcoq/.
- [131] The Coq Development Team. The Coq Proof Assistant Reference Manual Version 7.2. Technical Report 255, INRIA, February 2002.
- [132] D. Terrasse. Traduction de TYPOL en COQ. Application à Mini ML. Master's thesis, IARFA, September 1992.
- [133] L. Théry, Y. Bertot, and G. Kahn. Real theorem provers deserve real user-interfaces. Research Report 1684, INRIA Sophia, May 1992.

[134] A.S. Troelstra and D. van Dalen. *Constructivism in Mathematics, an introduction*. Studies in Logic and the foundations of Mathematics, volumes 121 and 123. North-Holland, 1988.

- [135] P. Wadler. Efficient compilation of pattern matching. In S.L. Peyton Jones, editor, *The Implementation of Functional Programming Languages*. Prentice-Hall, 1987.
- [136] P. Weis and X. Leroy. Le langage Caml. InterEditions, 1993.
- [137] B. Werner. Une théorie des constructions inductives. Thèse de doctorat, Université Paris 7, 1994.

W 222	400
, 239	Acc, 103
*, 99, 105	Acc_inv, 103
* (command), 167	Acc_rect, 103
+, 99, 105	Add Field, 233, 414
+ (command), 167	Add Legacy Abstract Ring, 417
-, 105	Add Legacy Abstract Semi Ring,
- (command), 167	417
/, 105	Add Legacy Field, 417
;, 236	Add Legacy Ring, 415, 416
$; [\ldots \ldots \ldots], 236$	Add Legacy Semi Ring,415,416
<, 105	Add LoadPath, 154
<=, 105	Add ML Path, 155
>, 105	Add Morphism, 431
>=, 105	Add Parametric Morphism,426
?, 173	Add Parametric Relation, 425
?=, 105	Add Printing If <i>ident</i> , 66
%, 301	Add Printing Let <i>ident</i> , 66
&, 100	Add Rec LoadPath, 155
_, 40	Add Rec ML Path, 155
@, <mark>86</mark>	Add Relation, 425
{, 166	Add Ring, 233, 408
$\{A\} + \{B\}, 100$	Add Setoid, 431
$\{x:A \mid (P x)\}, 100$	admit, <mark>191</mark>
$\{x: A \& (P x)\}, 100$	Admit Obligations, 403
}, 166	Admitted, 57, 164
2-level approach, 232	all, <mark>97</mark>
	and, <mark>97</mark>
A*B, <mark>99</mark>	and_rect, 101
$A+\{B\}, \frac{100}{}$	app, 108
A+B, 99	appcontext
Abbreviations, 305	in pattern, 243
Abort, 165	applications, 40
About, 143	apply, <mark>174</mark>
Absolute names, 78	apply in, <mark>177</mark>
abstract, 245	apply with, 175
abstractions, 40	Arguments, 81, 83, 84, 86, 214, 301
absurd, <mark>98</mark> , <mark>191</mark>	Arithmetical notations, 105
absurd_set, 101	Arity, 122

assert, <mark>188</mark>	Coercions, 91
assert as, <mark>188</mark>	and modules, 368
assert by, 188	and records, 368
Associativity, 292	and sections, 368
assumption, 173	classes, 363
auto, <mark>217</mark>	Funclass, 364
autorewrite, 218	identity, 364
autounfold, 218	inheritance graph, 365
Axiom, 44	presentation, 363
Axiom (and coercions), 366	Sortclass, 364
	cofix, 207
Back, 156	CoFixpoint, 54, 56
BackTo, 157	CoFixpoint where, 296
Backtrack, <mark>157</mark>	CoInductive, 51, 59
Bad Magic Number, <mark>153</mark>	CoInductive (and coercions), 366
β -reduction, 116, 117	Combined Scheme, 311
Bind Scope, 302	Comments, 35
binders, 39	compare, 230
Binding list, 171	Compiled files, 152
BNF metasyntax, 35	Compute, 145
bool, <mark>99</mark>	
bool_choice, <mark>100</mark>	compute, 212, 213
Bullets, 167	congruence, 228
byte-code, 319	conj, 97
	Conjecture, 44
Calculus of (Co)Inductive Constructions, 111	Connectives, 97
Canonical Structure, 88	Constant, 45
case, 193	constr_eq, 229
case_eq, <mark>193</mark>	constructor, 179
Cases, 353	Context, 114
Cast, 40	Context, 379
cbv, 212	context
Cd, 154	in expression, 244
change, <mark>211</mark>	in pattern, 242
change in, <mark>211</mark>	contradict, <mark>191</mark>
Check, 145	contradiction, 191
Choice, 100	Contributions, 109
Choice2, 100	Conversion rules, 116
CIC, 111	Conversion tactics, 212
Class, 377	coqc, 319
classical_left, 232	coqdep, <mark>326</mark>
classical_right, 232	coqdoc, 327
Clauses, 212	coqide, 341
clear, 184	coq_Makefile, 326
clear dependent, 185	cogmktop, 325
clearbody, 185	coq-tex, 338
Close Scope, 300	cogtop, 319
Coercion, 91, 365, 366	Corollary, 55

CreateHintDb, 219	discrR, 107
cut, 188	Disjunctive/conjunctive introduction patterns,
cutrewrite, 209	181
	do, 238
Datatypes, 99	double induction, 197
Debugger, 325	DPL, 267
decide equality, 230	Drop, 158
Declarations, 44	
Declare Implicit Tactic, 225	eapply, <mark>175</mark>
Declare Instance, 378	eapply in, 178
Declare Left Step, 210	eassumption, 173
Declare ML Module, 153	eauto, 218
Declare Right Step, <mark>211</mark>	ecase, 193
decompose, 187	econstructor, 180
decompose record, 188	edestruct, <mark>192</mark>
decompose sum, 188	ediscriminate, 200
Defined, 57, 164	eelim, <mark>196</mark>
Definition, 45	eexact, 173
Definitions, 45	eexists, 180
Delimit Scope, 301	einduction, 195
δ -reduction, 45, 116, 117	einjection, <mark>202</mark>
Dependencies, 326	eleft, <mark>180</mark>
dependent destruction, 198	elim using, <mark>196</mark>
dependent induction, 197	Elimination
dependent induction	Empty elimination, 128
generalizing, <mark>198</mark>	Singleton elimination, 128
dependent inversion, 204	Elimination sorts, 127
dependent inversion \dots as $,204$	elimtype, <mark>196</mark>
dependent inversion as	Emacs, 339
with, 204	End, 70, 72, 73
dependent inversion \dots with, 204	Environment, 44, 45, 114
dependent inversion_clear, 204	Environment variables, 320
dependent inversion_clear	eq, <mark>98</mark>
as, <mark>204</mark>	eq_add_S, <mark>101</mark>
dependent inversion_clear	eq_ind_r, 98
as with, 205	eq_rec_r, <mark>98</mark>
dependent inversion_clear	eq_rect, 98, 101
with, 204	eq_rect_r, 98
dependent rewrite ->, 231	eq_refl, 98
dependent rewrite <-, 231	eq_S, 101
Derive Dependent Inversion, 315	eq_sym, 98
Derive Dependent	eq_trans, 98
Inversion_clear, 315	Equality, 98
Derive Inversion, 315	erewrite, 209
Derive Inversion_clear, 315	eright, 180
destruct, 192	error, 101
discriminate, 200	esimplify_eq,231

esplit, 180	field_simplify_eq, 233, 412
η -conversion, 117	first, 239
Eval, 145	firstorder, 227
eval	firstorder using, <mark>227</mark>
in Ltac, 245	firstorder with, 227
evar, 190	firstorder <i>tactic</i> , 227
ex, 97	Fix, 130
ex2, 97	fix, 207
ex_intro, 97	fix $ident_i\{\ldots\}$, 42
ex_intro2,97	fix_eq, 103
exact, 173	Fix_F, 103
Example, 45	Fix_F_eq, 103
Exc, 101	Fix_F_inv, 103
exfalso, 191	Fixpoint, 51, 56
exist, 100	Fixpoint where, $\frac{296}{}$
exist2, 100	flat_map, 108
Existential, 165	Focus, 166
Existing Class, 378	fold, 216
Existing Instance, 378	fold_left, 108
Existing Instances, 378	fold_right, 108
exists, 97, 179	form, 37
exists2,97	fourier, 234
existT, 100	fresh
existT2, 100	in Ltac, 244
Explicitly given implicit arguments, 86	fst, 99
Export, 77	fun
Extract Constant, 392	in Ltac, 241
Extract Inductive, 393	Function, 67
Extraction, 389	functional induction, 198, 313
Extraction, 146, 389	functional inversion, 231
Extraction Blacklist, 394	Functional Scheme, 312
Extraction Implicit, 392	
Extraction Inline, 391	Gallina, 35, 59
Extraction Language, 390	gallina, 339
Extraction Library, 389	ge, 102
Extraction NoInline, 391	Generalizable Variables, 90
	generalize, <mark>189</mark>
f_equal, 98, 230	generalize dependent, 190
f_equali, 98	Global, 161
Fact, 55	Global Arguments, 82, 83
fail, 240	Global Set, 144
False, 97	Global Unset, 144, 145
false, 99	Goal, 163
False_rec, 101	goal, 171
False_rect, 101	Goal clauses, 212
field, 233, 412	Grab Existential Variables, 165
field_simplify, 233, 412	gt, 102
	

Guarded, 168	instantiate, 190
	integer, 36
has_evar, 230	Interpretation scopes, 300
head, 108	intro, 180
Head normal form, 117	intro after, 181
Hint, 219	intro at bottom, 181
Hint Constructors, 221	intro at top, 181
Hint Extern, 222	intro before, 181
Hint Immediate, 220	Introduction patterns, 181
Hint Opaque, 221	intros, 180
Hint Resolve, 220	intros intro_pattern, 181
Hint Rewrite, 224	intros until, 181
Hint Transparent, 221	intuition, 226
Hint Unfold, 221	inversion, 202
Hints databases, 219	inversion \dots as, $\frac{203}{}$
hnf, 213	inversion as in, $\frac{204}{}$
Hypotheses, 45	inversion in, 204
Hypothesis, 45	inversion using, 205 , 315
Hypothesis (and coercions), 366	inversion using in, 205
I, 97	inversion_clear, 203
ident, 35	inversion_clear as, 204
identity, 99	inversion_clear as in,
Identity Coercion, 366	204
idtac, 240	inversion_clear in, 204
if then else, 63	<i>ι</i> -reduction, 116, 117, 129, 132
IF_then_else, 97	is_evar, 230
iff, 97	is_var, 230
Implicit Arguments, 87	IsSucc, 101
Implicit arguments, 79	100000, 101
Implicit Types, 89	λ -calculus, 113
Import, 76	lapply, 175
Include, 72, 73	LATEX, 338
induction, 194	lazy, <mark>212</mark>
Inductive, 46, 49, 59	lazymatch
Inductive (and coercions), 366	in Ltac, 242
Inductive definitions, 46	lazymatch goal
Inductive where, 296	in Ltac, 243
Infix, 295	lazymatch reverse goal
injection, 201	in Ltac, 243
injection as, 202	le, 102
inl, 99	le_n, 102
inleft, 100	le_S, 102
Inline, 73	left, 100, 179
inr, 99	legacy field, 417
inright, 100	legacy ring, 415
Inspect, 143	Lemma, 55
Instance, 378	length, 108

Let, 46	map, 108
let	match
in Ltac, 240	in Ltac, 241
	matchwithend, 41, 63, 126
let ' in, 64	
let in, 63	match goal
let rec	in Ltac, 243
in Ltac, 240	match reverse goal
let-in, 40	in Ltac, 243
Lexical conventions, 35	ML-like patterns, 63, 353
lia, <mark>387</mark>	mod, 105
Libraries, 78	Module, 71, 72
Load, 151	Module Type, 73
Load Verbose, 152	Modules, 71
Loadpath, 154	move, 185
Local, 161	mult, 101
Local Arguments, 82, 83	mult_n_0, 101
Local Coercion, 365, 366	mult_n_Sm, 101
local context, 163	2 101
Local definitions, 40	n_Sn, 101
Local Set, 144	Naming introduction patterns, 181
Local Strategy, 160	nat, 99
Local Unset, 144, 145	nat_case, 103
Locate, 150, 296	nat_double_ind, 103
Locate File, 156	nat_scope, 106
Locate Library, 156	native code, 319
Locate Module, 77	Next Obligation, 403
Logical paths, 78	nia, <mark>388</mark>
lra, 385	None, <mark>99</mark>
1t, 102	Normal form, 117
Ltac	not, <mark>97</mark>
eval, 245	not_eq_S, 101
	Notation, 291, 305
external, 245	Notations for lists, 108
fresh, 244	Notations for real numbers, 107
fun, 241	notT, 104
lazymatch, 242	nsatz, <mark>421</mark>
lazymatch goal, 243	nth, 108
lazymatch reverse goal, 243	num, <mark>36</mark>
let, 240	
let rec, 240	0, 99
match, 241	o_s, 101
match goal, 243	Obligation, 402
match reverse goal, 243	Obligation Tactic, 402
type of, 245	Obligations, 402
Ltac, 246	Occurrences clauses, 172
	omega, 233, 381
Makefile, 326	Opaque, 159
Man pages, 339	Open Scope, 300

option, 99	Print Module Type, 77
Options of the command line, 320	Print Opaque Dependencies, 146
or, 97	Print Options, 145
or_introl, 97	Print Scope, 305
or_intror, 97	Print Scopes, 305
	Print Section, 143
pair, 99	Print Sorted Universes, 92
pairT, 104	Print Table Printing If, 66
Parameter, 44	Print Table Printing Let, 66
Parameter (and coercions), 366	Print Tables, 145
Parameters, 44	Print Term, 143
pattern, 216	Print Universes, 92
pCIC, 111	Print Visibility, 304
Peano's arithmetic, 106	Print XML, 336
Physical paths, 78	prod, <mark>99</mark>
plus, 101	prodT, 104
plus_n_0, 101	products, 40
plus_n_Sm, 101	Program, 399
pose, 187	Program Definition, 401
pose proof, 189	Program Fixpoint, 401
Positivity, 122	Program Instance, 374, 378
Precedences, 292	Program Lemma, 402
pred, 101	Programming, 99
pred_Sn, 101	progress, 239
Predicative Calculus of (Co)Inductive Construc-	proj1, <mark>97</mark>
tions, 111	proj2, <mark>97</mark>
Preterm, 403	projT1, <mark>100</mark>
Print, 143	projT2, <mark>100</mark>
Print All, 143	Prompt, 163
Print Assumptions, 146	Proof, 56, 164
Print Canonical Projections, 89	Proof editing, 163
Print Classes, 367	Proof General, 339
Print Coercion Paths, 367	Proof rendering, 334
Print Coercions, 367	Proof term, 163
Print Extraction Inline, 391	Proof using, 165
Print Grammar constr, 293	Proof with, 224
Print Grammar pattern, 293	Prop, 37, 112
Print Graph, 367	Proposition, 55
Print Hint, 223	psatz, 385
Print HintDb, 223	Pwd, 154
Print Implicit, 87	
Print Libraries, 153	Qed, <mark>56</mark> , 164
Print LoadPath, 155	qualid, <mark>86</mark>
Print Ltac, 246	Qualified identifiers, 78
Print ML Modules, 154	Quantifiers, 97
Print ML Path, 155	Quit, 157
Print Module, 77	quote, <mark>232, 256</mark>

Record, 59	SearchAbout, 147
Recursion, 103	SearchPattern, 148
Recursive arguments, 131	SearchRewrite, 149
Recursive Extraction, 389	Section, 70
Recursive Extraction Library, 389	Sections, 70
red, 213	Separate Extraction, 389
refine, 173	Set, 144
refl_identity, 99	Set, 37, 112
reflexivity, 210	set, <mark>186</mark>
Remark, 55	Set Automatic Coercions Import,
remember, 187	368
Remove LoadPath, 155	Set Automatic Introduction, 169
Remove Printing If <i>ident</i> , 66	Set Boolean Equality Schemes, 311
Remove Printing Let <i>ident</i> , 66	Set Contextual Implicit, 85
rename, 186	Set Decidable Equality Schemes,
repeat, 238	311
replace with, 209	Set Default Timeout, 158
Require, 152	Set Elimination Schemes, 311
Require Export, 152	Set Extraction AutoInline, 391
Reserved Notation, 295	Set Extraction KeepSingleton, 391
Reset, 156	Set Extraction Optimize, 391
Reset Extraction Inline, 391	Set Firstorder Depth, 227
Reset Initial, 156	Set Hyps Limit, <mark>169</mark>
Resource file, 320	Set Implicit Arguments, 85
Restart, 166	Set Ltac Debug, 247
Restore State, 157	Set Maximal Implicit Insertion,
rev, 108	86
revert, 185	Set Parsing Explicit, 88
revert dependent, 185	Set Printing All, 92
rewrite, 208	Set Printing Coercion, 367
rewrite ->, 208	Set Printing Coercions, 367
rewrite <-, 208	Set Printing Depth, 159
rewrite at, 208	Set Printing Existential
rewrite by, 208	Instances, <mark>93</mark>
rewrite in, 208	Set Printing Implicit, 87
right, 100, 179	Set Printing Implicit Defensive,
ring, 233, 405, 406	87
ring_simplify, 233, 406	Set Printing Matching,65
rtauto, 227	Set Printing Notations, 296
	Set Printing Synth,65
S, 99	Set Printing Universes, 92
Save, 164	Set Printing Width, 159
Scheme, 309	Set Printing Wildcard, 65
Scheme Equality, 309	Set Reversible Pattern Implicit,
Schemes, 309	85
Script file, 151	Set Silent, 158
Search, 146	Set Strict Implicit, 85

Set Strongly Strict Implicit, 85	split_Rmult, 108
Set Transparent Obligations, 403	stepl, 210
Set Virtual Machine, 161	stepr, 211
Set Whelp Getter, 150	Strategy, 160
Set Whelp Server, 150	string, 36
setoid_reflexivity, 430	Structure, 368
setoid_replace, 423, 430	SubClass, 367
setoid_rewrite, 430	subgoal, 171
setoid_symmetry, 430	subst, 210
setoid_transitivity,430	Substitution, 114
Show, 167	sum, <mark>99</mark>
Show Conjectures, 168	sumbool, 100
Show Existentials, 168	sumor, 100
Show Implicits, 168	sym_not_eq,98
Show Intro, 168	symmetry, 210
Show Intros, 168	symmetry in, 210
Show Obligation Tactic, 402	
Show Proof, 168	tactic, 171
Show Script, 168	Tactic Definition, 234
Show Tree, 168	Tactic macros, 234
Show XML Proof, 336	Tactic Notation, 306
sig, <mark>100</mark>	Tacticals, 236
sig2, 100	$tactic_1$; $tactic_2$, 236
sigT, 100	$tactic_0$; [$tactic_1$] $tactic_n$] , 236
sigT2, 100	abstract, 245
Silent mode, 158	do, <mark>238</mark>
simpl, 214	fail, <mark>240</mark>
simpl in, 215	first, 239
simple apply, 175	idtac, <mark>240</mark>
simple apply in, 178	, 239
simple destruct, 193	repeat, 238
simple eapply in, 178	solve, <mark>239</mark>
simple induction, 196	timeout, 240
simple inversion, 205	try, <mark>239</mark>
simple inversion \dots as, $\frac{205}{}$	Tactics, 171
simplify_eq, 231	tail, <mark>108</mark>
snd, <mark>99</mark>	tauto, <mark>225</mark>
solve, <mark>239</mark>	term, 38
Solve Obligations, 403	Terms, 37
Some, 99	Test, 144, 145
sort, 38	Test Default Timeout, 158
Sort-polymorphism of inductive families, 123	Test Ltac Debug, 247
Sorts, 37, 112	Test Printing Depth, 159
specialize, 189	Test Printing If for <i>ident</i> , 66
specif, 37	Test Printing Let for <i>ident</i> , 66
split, 179	Test Printing Matching, 65
split_Rabs, 108	Test Printing Synth, 65

Test Printing Width, 159	Unset Automatic Coercions
Test Printing Wildcard, 65	Import, 368
Test Virtual Machine, 161	Unset Automatic Introduction, 169
Test Whelp Getter, 150	Unset Contextual Implicit, 85
Test Whelp Server, 150	Unset Default Timeout, 158
Theorem, 55, 163	Unset Extraction AutoInline, 391
Theories, 95	Unset Extraction KeepSingleton,
Time, 158	391
Timeout, 158	Unset Extraction Optimize, 391
timeout, 240	Unset Hyps Limit, 169
transitivity, 210	Unset Implicit Arguments, 85
Transparent, 160	Unset Ltac Debug, 247
trivial, 217	Unset Maximal Implicit
True, 97	Insertion, 86
true, 99	Unset Parsing Explicit, 88
try, 239	Unset Printing All, 92
tt, 99	Unset Printing Coercion, 367
Type, 37, 112	Unset Printing Coercions, 367
type, 37	Unset Printing Depth, 159
type of	Unset Printing Existential
in Ltac, 245	Instances, 93
Type of constructor, 122	Unset Printing Implicit, 87
type_scope, 303	Unset Printing Implicit
Typeclasses eauto, 379	Defensive, 87
Typeclasses Opaque, 379	Unset Printing Matching, 65
Typeclasses Transparent, 379	Unset Printing Notations, 296
Typing rules, 115	Unset Printing Synth, 65
App, 116, 188	Unset Printing Universes, 92
Ax, 115	Unset Printing Width, 159
Const, 115	Unset Printing Wildcard, 65
Conv, 117, 180, 211	Unset Reversible Pattern
Fix, 130	Implicit, 85
Lam, 116, 180	Unset Silent, 159
Let, 116, 180	Unset Strict Implicit, 85
match, 129	Unset Strongly Strict Implicit,
Prod, 115	85
Prod (impredicative Set), 134	Unset Virtual Machine, 161
Var, 115	
vai, 113	value, <mark>101</mark>
Undo, 165	Variable, <mark>44</mark>
Unfocus, 166	Variable (and coercions), 366
Unfocused, 166	Variables,44
unfold, 215	vm_compute, 212, 213
unfold in, 215	Well founded induction, 103
unify, 229	Well foundedness, 103
-	
unit, 99	well_founded, 103
Unset, 144, 145	Whelp Elim, 151

```
Whelp Hint, 151 Whelp Instance, 151 Whelp Locate, 151 Whelp Match, 151 Write State, 157 XML exportation, 334 \zeta-reduction, 116, 117
```

Tactics Index

W. and	
, 239	decide equality, 230
;,236	decompose, 187
$; [\ldots \ldots \ldots], 236$	decompose record, 188
	decompose sum, 188
abstract, 245	dependent destruction, 198
absurd, <mark>191</mark>	dependent induction, 197
admit, 191	dependent induction
apply, 174	generalizing, <mark>198</mark>
apply in, 177	dependent inversion, 204
apply with, 175	dependent inversion \dots as $,204$
assert, 188	dependent inversion as
assert as, 188	with, <mark>204</mark>
assert by, 188	dependent inversion \dots with, 204
assumption, 173	dependent inversion_clear, 204
auto, 217	dependent inversion_clear
autorewrite, 218	as, <mark>204</mark>
autounfold, 218	dependent inversion_clear
	as with, <mark>205</mark>
case, 193	dependent inversion_clear
case_eq, 193	with, <mark>204</mark>
cbv, 212	dependent rewrite ->, 231
change, 211	dependent rewrite <-,231
change in, 211	destruct, 192
classical_left, 232	discriminate, 200
classical_right, 232	discrR, 107
clear, 184	do, 238
clear dependent, 185	double induction, 197
clearbody, 185	
cofix, 207	eapply, 175
compare, 230	eapply in, 178
compute, 212, 213	eassumption, 173
congruence, 228	eauto, 218
constr_eq, 229	ecase, 193
constructor, 179	econstructor, 180
contradict, 191	edestruct, 192
contradiction, 191	ediscriminate, 200
cut, 188	eelim, 196
cutrewrite, 209	eexact, 173

456 Tactics Index

100	101
eexists, 180	intros intro_pattern, 181
einduction, 195	intros until, 181
einjection, 202	intuition, 226
eleft, 180	inversion, 202
elim using, 196	inversion as, 203
elimtype, 196	inversion as in, $\frac{204}{}$
erewrite, 209	inversion in, 204
eright, <mark>180</mark>	inversion \dots using, $205, 315$
esimplify_eq, 231	inversion using in, 205
esplit, 180	inversion_clear, 203
evar, 190	inversion_clear as, 204
exact, 173	inversion_clear as in,
exfalso, 191	204
exists, 179	inversion_clear in, 204
	is_evar, 230
f_equal, 230	is_var, 230
fail, 240	15_var, 250
field, 233, 412	lapply, <mark>175</mark>
field_simplify, 233, 412	lazy, 212
field_simplify_eq, 233, 412	left, 179
	legacy field, 417
first, 239	legacy ring, 415
firstorder, 227	
firstorder using, 227	lia, 387
firstorder with, 227	lra,385
firstorder <i>tactic</i> , 227	move, 185
fix, 207	110Ve, 165
fold, 216	nia, 388
fourier, 234	nsatz, 421
functional induction, 198, 313	113462, 721
functional inversion, 231	omega, 233, 381
	5 - 7 7
generalize, 189	pattern, 216
generalize dependent, 190	pose, 187
	pose proof, 189
has_evar, 230	progress, 239
hnf, 213	psatz, 385
	psac2, 505
idtac, <mark>240</mark>	quote, 232, 256
induction, 194	1, - ,
injection, 201	red, 213
injection as, 202	refine, 173
instantiate, 190	reflexivity, 210
intro, 180	remember, 187
intro after, 181	rename, 186
intro at bottom, 181	repeat, 238
intro at top, 181	replace with, 209
-	_
intro before, 181	revert, 185
intros, 180	revert dependent, 185

Tactics Index 457

```
rewrite, 208
rewrite ->, 208
rewrite <-, 208
rewrite ... at, 208
rewrite \dots by, 208
rewrite \dots in, 208
right, 179
ring, 233, 405, 406
ring_simplify, 233, 406
rtauto, 227
set, 186
setoid_replace, 423
simpl, 214
simpl \dots in, 215
simple apply, 175
simple apply \dots in, 178
simple destruct, 193
simple eapply \dots in, 178
simple induction, 196
simple inversion, 205
simple inversion \dots as, 205
simplify_eq, 231
solve, 239
specialize, 189
split, 179
split_Rabs, 108
split_Rmult, 108
step1, 210
stepr, 211
subst, 210
symmetry, 210
symmetry in, 210
tauto, 225
timeout, 240
transitivity, 210
trivial, 217
try, 239
unfold, 215
unfold ... in, 215
unify, 229
vm_compute, 212, 213
```

Vernacular Commands Index

Cd, 154 Check, 145 Class, 377 Close Scope, 300 Coercion, 91, 365, 366
CoFixpoint, 54, 56 CoFixpoint where, 296 CoInductive, 51, 59 CoInductive (and coercions), 366 Combined Scheme, 311 Compute, 145 Conjecture, 44 Context, 379
Corollary, 55 CreateHintDb, 219
Declare Implicit Tactic, 225 Declare Instance, 378 Declare Left Step, 210 Declare ML Module, 153 Declare Right Step, 211 Defined, 57, 164 Definition, 45 Delimit Scope, 301 Derive Dependent Inversion, 315 Derive Dependent Inversion_clear, 315 Derive Inversion, 315 Derive Inversion_clear, 315 Drop, 158
End, 70, 72, 73 Eval, 145
Example, 45 Existential, 165 Existing Class, 378 Existing Instance, 378 Existing Instances, 378 Export, 77

Extract Constant, 392	Inline, 73
Extract Inductive, 393	Inspect, 143
Extraction, 146, 389	Instance, 378
Extraction Blacklist, 394	
Extraction Implicit, 392	Lemma, 55
Extraction Inline, 391	Let, 46
Extraction Language, 390	Load, 151
Extraction Library, 389	Load Verbose, 152
Extraction NoInline, 391	Local, 161
	Local Arguments, 82, 83
Fact, 55	Local Coercion, 365, 366
Fixpoint, 51 , 56	Local Set, 144
Fixpoint where, 296	Local Strategy, 160
Focus, 166	Local Unset, 144, 145
Function, 67	Locate, 150, 296
Functional Scheme, 312	Locate File, 156
	Locate Library, 156
Generalizable Variables, 90	Locate Module, 77
Global, 161	Ltac, 246
Global Arguments, 82, 83	
Global Set, 144	Module, 71, 72
Global Unset, 144, 145	Module Type, 73
Goal, 163	402
Grab Existential Variables, 165	Next Obligation, 403
Guarded, 168	Notation, 291, 305
Hint, 219	Obligation, 402
Hint Constructors, 221	Obligation Tactic, 402
Hint Extern, 222	Obligations, 402
Hint Immediate, 220	Opaque, 159
Hint Opaque, 221	Open Scope, 300
Hint Resolve, 220	
Hint Rewrite, 224	Parameter, 44
Hint Transparent, 221	Parameter (and coercions), 366
Hint Unfold, 221	Parameters, 44
Hypotheses, 45	Preterm, 403
Hypothesis, 45	Print, 143
Hypothesis (and coercions), 366	Print All, 143
in products (with testistic), test	Print Assumptions, 146
Identity Coercion, 366	Print Canonical Projections, 89
Implicit Arguments, 87	Print Classes, 367
Implicit Types, 89	Print Coercion Paths, 367
Import, 76	Print Coercions, 367
Include, 72, 73	Print Extraction Inline, 391
Inductive, 46, 49, 59	Print Grammar constr, 293
Inductive (and coercions), 366	Print Grammar pattern, 293
Inductive \dots where $\dots, 296$	Print Graph, 367
Infix, 295	Print Hint, 223

Print HintDb, 223	Restart, 166
Print Implicit, 87	Restore State, 157
Print Libraries, 153	
Print LoadPath, 155	Save, 164
Print Ltac, 246	Scheme, 309
Print ML Modules, 154	Scheme Equality, 309
Print ML Path, 155	Search, 146
Print Module, 77	SearchAbout, 147
Print Module Type, 77	SearchPattern, 148
Print Opaque Dependencies, 146	SearchRewrite, 149
Print Options, 145	Section, 70
Print Scope, 305	Separate Extraction, 389
Print Scopes, 305	Set, 144
Print Section, 143	Set Automatic Coercions Import,
Print Sorted Universes, 92	368
Print Table Printing If, 66	Set Automatic Introduction, 169
Print Table Printing Let, 66	Set Boolean Equality Schemes, 311
Print Tables, 145	Set Contextual Implicit, 85
Print Term, 143	Set Decidable Equality Schemes,
Print Universes, 92	311
Print Visibility, 304	Set Default Timeout, 158
Print XML, 336	Set Elimination Schemes, 311
Program Definition, 401	Set Extraction AutoInline, 391
Program Fixpoint, 401	Set Extraction KeepSingleton, 391
Program Instance, 374, 378	Set Extraction Optimize, 391
Program Lemma, 402	Set Firstorder Depth, 227
Proof, 56, 164	Set Hyps Limit, 169
Proof using, 165	Set Implicit Arguments, 85
Proof with, 224	Set Ltac Debug, 247
Proposition, 55	Set Maximal Implicit Insertion,
Pwd, 154	86
Qed, 56, 164	Set Parsing Explicit, 88
Quit, 157	Set Printing All, 92
Quit, 137	Set Printing Coercion, 367
Record, 59	Set Printing Coercions, 367
Recursive Extraction, 389	Set Printing Depth, 159
Recursive Extraction Library, 389	Set Printing Existential
Remark, 55	Instances, 93
Remove LoadPath, 155	Set Printing Implicit, 87
Remove Printing If <i>ident</i> , 66	Set Printing Implicit Defensive,
Remove Printing Let <i>ident</i> , 66	87
Require, 152	Set Printing Matching, 65
Require Export, 152	Set Printing Notations, 296
Reserved Notation, 295	Set Printing Synth, 65
Reset, 156	Set Printing Universes, 92
Reset Extraction Inline, 391	Set Printing Width, 159
Reset Initial 156	Set Printing Wildcard 65

Set Reversible Pattern Implicit,	Timeout, 158
85	Transparent, 160
Set Silent, 158	Typeclasses eauto, 379
Set Strict Implicit, 85	Typeclasses Opaque, 379
Set Strongly Strict Implicit, 85	Typeclasses Transparent, 379
Set Transparent Obligations, 403	
Set Virtual Machine, 161	Undo, 165
Set Whelp Getter, 150	Unfocus, 166
Set Whelp Server, 150	Unfocused, 166
setoid_reflexivity, 430	Unset, 144, 145
setoid_replace, 430	Unset Automatic Coercions
setoid_rewrite, 430	Import, 368
setoid_symmetry, 430	Unset Automatic Introduction, 169
setoid_transitivity, 430	Unset Contextual Implicit, 85
Show, 167	Unset Default Timeout, 158
Show Conjectures, 168	Unset Extraction AutoInline, 391
Show Existentials, 168	Unset Extraction KeepSingleton,
Show Implicits, 168	391
Show Intro, 168	Unset Extraction Optimize, 391
Show Intros, 168	Unset Hyps Limit, <mark>169</mark>
Show Obligation Tactic, 402	Unset Implicit Arguments, 85
Show Proof, 168	Unset Ltac Debug, <mark>247</mark>
Show Script, 168	Unset Maximal Implicit
Show Tree, 168	Insertion, <mark>86</mark>
Show XML Proof, 336	Unset Parsing Explicit, 88
Solve Obligations, 403	Unset Printing All, 92
Strategy, 160	Unset Printing Coercion, 367
Structure, 368	Unset Printing Coercions, 367
SubClass, 367	Unset Printing Depth, 159
	Unset Printing Existential
Tactic Definition, 234	Instances, 93
Tactic Notation, 306	Unset Printing Implicit, 87
Test, 144, 145	Unset Printing Implicit
Test Default Timeout, 158	Defensive, <mark>87</mark>
Test Ltac Debug, 247	Unset Printing Matching, 65
Test Printing Depth, 159	Unset Printing Notations, 296
Test Printing If for ident, 66	Unset Printing Synth, 65
Test Printing Let for ident, 66	Unset Printing Universes, 92
Test Printing Matching, 65	Unset Printing Width, 159
Test Printing Synth, 65	Unset Printing Wildcard, 65
Test Printing Width, 159	Unset Reversible Pattern
Test Printing Wildcard, 65	Implicit, 85
Test Virtual Machine, 161	Unset Silent, 159
Test Whelp Getter, 150	Unset Strict Implicit, 85
Test Whelp Server, 150	Unset Strongly Strict Implicit,
Theorem, 55, 163	85
Time, 158	Unset Virtual Machine, <mark>161</mark>

```
Variable, 44
Variable (and coercions), 366
Variables, 44
Whelp Elim, 151
Whelp Hint, 151
Whelp Instance, 151
Whelp Locate, 151
Whelp Match, 151
Write State, 157
```

Index of Error Messages

ident already exists, 44–46, 56, 401	Cannot recognize <i>class</i> ₁ as a source class of <i>qualid</i> , 365
already exists, 55	Cannot solve the goal, 239
Argument of match does not evaluate to a term, 242	Cannot use mutual definition with well-founded recursion or measure, 68
arguments of ring_simplify do not have all the same type, 407	Compiled library <i>ident</i> .vo makes inconsistent assumptions over library <i>qualid</i> , 153
Attempt to save an incomplete proof, 164	does not denote an evaluable constant, 215
bad lemma for decidability of equality, 411 Bad magic number, 153	does not respect the uniform inheritance condition, 365
bad ring structure, 411	D N 1 1 1 1 1 7
Bound head variable, 220, 221	Error: No such unproven subgoal, 167 Error: The term term has type type while it is
Can't find file <i>ident</i> on loadpath, 152 cannot be used as a hint, 220, 221	expected to have type <i>type</i> , 45 Error: This proof is focused, but cannot be un-
Cannot build functional inversion principle, 68	focused this way, 166, 167
Cannot define graph for <i>ident</i> , 68	Failed to progress, 239
Cannot define principle(s) for <i>ident</i> , 68	File not found on loadpath: string, 154
cannot find a declared ring structure for equality term, 408	Found target class <i>class</i> instead of <i>class</i> ₂ , 365 Funclass cannot be a source class, 365
cannot find a declared ring structure over term, 408	goal does not satisfy the expected preconditions,
Cannot find induction information on qualid,	202
199	Goal is solvable by congruence but some ar-
Cannot find inversion information for hypothesis <i>ident</i> , 232	guments are missing. Try congruence with, replacing metavariables by
Cannot find library foo in loadpath, 153	arbitrary terms., 229
Cannot find the source class of qualid, 365	Hypothesis ident must contain at least one
Cannot handle mutually (co)inductive records., 61	Function, 231
Cannot infer a term for this placeholder, 81, 174	I couldn't solve goal, 229
Cannot load <i>qualid</i> : no physical path bound to <i>dirpath</i> , 153	I don't know how to handle dependent equality, 229
Cannot move $ident_1$ after $ident_2$: it depends on $ident_2$, 186	Impossible to unify with, 174 Impossible to unify with, 210
Cannot move $ident_1$ after $ident_2$: it occurs in $ident_2$, 186	In environment the term: $term_2$ does not have type $term_1$, 401

invalid argument, 174	Not a proposition or a type, 188
Invalid backtrack, 156, 157	Not a valid (semi)ring theory, 417
is already a coercion, 365	not a valid ring equation, 407
is already used, 180, 186	Not a variable or hypothesis, 230
is not a function, 365	Not an evar, 230
is not a local definition, 185	Not an exact proof, 173
is not a module, 77	Not an inductive goal with 1 constructor, 179
is not an inductive type, 221	Not an inductive goal with 2 constructors, 179
is used in conclusion, 189	Not an inductive product, 179, 194
is used in hypothesis, 189	Not convertible, 211
is used in the conclusion, 184	not declared, 221, 365
is used in the hypothesis, 184, 185	Not enough constructors, 179
is used in the hypothesis, to i, too	Not equal, 229
Loading of ML object file forbidden in a native	Not reducible, 213
Coq, 154	Not the right number of induction arguments,
•	199
Module/section <i>module</i> not found, 146	Not the right number of missing arguments,
must be a transparent constant, 366	172, 175
	•
name ident is already used, 180	Not unifiable, 229
No applicable tactic, 239	Nothing to do, it is an equality between convert-
No argument name <i>ident</i> , 68	ible terms, 202
No discriminable equalities, 200	omega can't solve this system, 382
No evars, 230	•
No focused proof, 163, 168	omega: Can't solve a goal with equality on <i>type</i> , 382
No focused proof (No proof-editing in	
progress), 165, 166	omega: Can't solve a goal with non-linear prod-
No focused proof to restart, 166	ucts, 382
No matching clauses for match, 242	omega: Can't solve a goal with proposition vari-
No matching clauses for match goal, 243	ables, 382
No primitive equality found, 200	omega: Not a quantifier-free goal, 382
No product even after head-reduction, 180	omega: Unrecognized atomic proposition:
No such assumption, 173, 191	prop, 382
No such binder, 172	omega: Unrecognized predicate or connective:
no such entry, 156	ident, 382
No such goal, 168	omega: Unrecognized proposition, 382
No such hypothesis, 181, 184–186, 217	Description of a second state 100, 245
No such hypothesis in current goal, 181	Proof is not complete, 188, 245
No such label <i>ident</i> , 72	quote: not a simple fixpoint, 232, 257
Non exhaustive pattern-matching, 362	quote. not a simple hypoint, 232, 237
Non strictly positive occurrence of ident in	Records declared with the keyword Record or
type, 48	Structure cannot be recursive., 61
not a context variable, 244	ring <i>operation</i> should be declared as a mor-
not a defined object, 143	phism, 411
Not a discriminable equality, 200	pinoni, III
Not a primitive equality, 202	Signature components for label ident do not
Not a projectable equality but a discriminable	match, 72
one, 202	Sortclass cannot be a source class, 365

Statement without assumptions, 177 Tactic Failure message (level n), 240 Tactic generated a subgoal identical to the original goal, 208 terms do not have convertible types, 209 The conclusion is not a substitutive equation, 210 The conclusion of type is not valid; it must be built from ident, 48 The file ident.vo contains library dirpath and not library dirpath', 153 The recursive argument must be specified, 68 The reference qualid was not found in the current environment, 147, 160 The term provided does not end with an equation, 208 The term form has type ... which should be Set, Prop or Type, 55 The variable *ident* is already defined, 186 The numth argument of ident must be ident' in type, 48This is not the last opened module, 72 This is not the last opened module type, 73 This is not the last opened section, 70 Unable to apply, 178 Unable to find an instance for the variables ident ... ident, 174 Unable to find an instance for the variables ident ... ident, 194

Universe inconsistency, 112

Variable ident is already declared, 188

List of Figures

1.1 1.2 1.3	Syntax of terms38Syntax of terms (continued)39Syntax of sentences43
2.1 2.2	Syntax for the definition of Record
2.32.4	Syntax of modules
3.1 3.2	Notations in the initial state
3.3	Syntax of data-types and specifications
3.4 3.5	Definition of the scope for integer arithmetics (Z_scope)
3.6	Definition of the scope for real arithmetics (R_scope)
3.7	Definition of the scope for lists (list_scope)
9.1	Syntax of the tactic language
9.29.3	Syntax of the tactic language (continued)
	Definition of the permutation predicate
	Permutation tactic
	Deciding intuitionistic propositions (2)
	Type isomorphism axioms
	Type isomorphism tactic (1)
	Syntax of mathematical proof commands
	Correspondence between basic forward steps and conclusion steps
12.1	Syntax of the variants of Notation
	CoQIDE main screen
16.2	CoQIDE: the query window
18.1	Syntax of classes