
The Coq Proof Assistant

A Tutorial
December 19, 2011

Version 8.3pl3

Gérard Huet, Gilles Kahn and Christine Paulin-Mohring

The Coq Development Team

V8.3pl3, December 19, 2011

c©INRIA 1999-2004 (COQ versions 7.x)
c©INRIA 2004-2011 (COQ versions 8.x)

Getting started

COQ is a Proof Assistant for a Logical Framework known as the Calculus of Induc-
tive Constructions. It allows the interactive construction of formal proofs, and also
the manipulation of functional programs consistently with their specifications. It
runs as a computer program on many architectures. It is available with a variety of
user interfaces. The present document does not attempt to present a comprehensive
view of all the possibilities of COQ, but rather to present in the most elementary
manner a tutorial on the basic specification language, called Gallina, in which for-
mal axiomatisations may be developed, and on the main proof tools. For more
advanced information, the reader could refer to the COQ Reference Manual or the
Coq’Art, a new book by Y. Bertot and P. Castéran on practical uses of the COQ

system.
Coq can be used from a standard teletype-like shell window but preferably

through the graphical user interface CoqIde1.
Instructions on installation procedures, as well as more comprehensive docu-

mentation, may be found in the standard distribution of COQ, which may be ob-
tained from COQ web site http://coq.inria.fr.

In the following, we assume that COQ is called from a standard teletype-like
shell window. All examples preceded by the prompting sequence Coq < represent
user input, terminated by a period.

The following lines usually show COQ’s answer as it appears on the users
screen. When used from a graphical user interface such as CoqIde, the prompt is
not displayed: user input is given in one window and COQ’s answers are displayed
in a different window.

The sequence of such examples is a valid COQ session, unless otherwise spec-
ified. This version of the tutorial has been prepared on a PC workstation running
Linux. The standard invocation of COQ delivers a message such as:

unix:~> coqtop
Welcome to Coq 8.3 (October 2010)

Coq <

The first line gives a banner stating the precise version of COQ used. You

1Alternative graphical interfaces exist: Proof General and Pcoq.

3

4

should always return this banner when you report an anomaly to our bug-tracking
system http://coq.inria.fr/bugs

Chapter 1

Basic Predicate Calculus

1.1 An overview of the specification language Gallina

A formal development in Gallina consists in a sequence of declarations and defini-
tions. You may also send COQ commands which are not really part of the formal
development, but correspond to information requests, or service routine invoca-
tions. For instance, the command:

Coq < Quit.

terminates the current session.

1.1.1 Declarations

A declaration associates a name with a specification. A name corresponds roughly
to an identifier in a programming language, i.e. to a string of letters, digits, and a
few ASCII symbols like underscore (_) and prime (’), starting with a letter. We use
case distinction, so that the names A and a are distinct. Certain strings are reserved
as key-words of COQ, and thus are forbidden as user identifiers.

A specification is a formal expression which classifies the notion which is being
declared. There are basically three kinds of specifications: logical propositions,
mathematical collections, and abstract types. They are classified by the three basic
sorts of the system, called respectively Prop, Set, and Type, which are themselves
atomic abstract types.

Every valid expression e in Gallina is associated with a specification, itself a
valid expression, called its type τ(E). We write e : τ(E) for the judgment that e is
of type E. You may request COQ to return to you the type of a valid expression by
using the command Check:

Coq < Check O.
0

: nat

5

6 CHAPTER 1. BASIC PREDICATE CALCULUS

Thus we know that the identifier O (the name ‘O’, not to be confused with
the numeral ‘0’ which is not a proper identifier!) is known in the current context,
and that its type is the specification nat. This specification is itself classified as a
mathematical collection, as we may readily check:

Coq < Check nat.
nat

: Set

The specification Set is an abstract type, one of the basic sorts of the Gal-
lina language, whereas the notions nat and O are notions which are defined in the
arithmetic prelude, automatically loaded when running the COQ system.

We start by introducing a so-called section name. The role of sections is to
structure the modelisation by limiting the scope of parameters, hypotheses and
definitions. It will also give a convenient way to reset part of the development.

Coq < Section Declaration.

With what we already know, we may now enter in the system a declaration, corre-
sponding to the informal mathematics let n be a natural number.

Coq < Variable n : nat.
n is assumed

If we want to translate a more precise statement, such as let n be a positive
natural number, we have to add another declaration, which will declare explicitly
the hypothesis Pos_n, with specification the proper logical proposition:

Coq < Hypothesis Pos_n : (gt n 0).
Pos_n is assumed

Indeed we may check that the relation gt is known with the right type in the
current context:

Coq < Check gt.
gt

: nat -> nat -> Prop

which tells us that gt is a function expecting two arguments of type nat in
order to build a logical proposition. What happens here is similar to what we are
used to in a functional programming language: we may compose the (specification)
type nat with the (abstract) type Prop of logical propositions through the arrow
function constructor, in order to get a functional type nat->Prop:

Coq < Check (nat -> Prop).
nat -> Prop

: Type

1.1. AN OVERVIEW OF THE SPECIFICATION LANGUAGE GALLINA 7

which may be composed one more times with nat in order to obtain the type
nat->nat->Prop of binary relations over natural numbers. Actually the type
nat->nat->Prop is an abbreviation for nat->(nat->Prop).

Functional notions may be composed in the usual way. An expression f of
type A→ B may be applied to an expression e of type A in order to form the ex-
pression (f e) of type B. Here we get that the expression (gt n) is well-formed
of type nat->Prop, and thus that the expression (gt n O), which abbreviates
((gt n) O), is a well-formed proposition.

Coq < Check gt n O.
n > 0

: Prop

1.1.2 Definitions

The initial prelude contains a few arithmetic definitions: nat is defined as a math-
ematical collection (type Set), constants O, S, plus, are defined as objects of types
respectively nat, nat->nat, and nat->nat->nat. You may introduce new defini-
tions, which link a name to a well-typed value. For instance, we may introduce the
constant one as being defined to be equal to the successor of zero:

Coq < Definition one := (S O).
one is defined

We may optionally indicate the required type:

Coq < Definition two : nat := S one.
two is defined

Actually COQ allows several possible syntaxes:

Coq < Definition three : nat := S two.
three is defined

Here is a way to define the doubling function, which expects an argument m of
type nat in order to build its result as (plus m m):

Coq < Definition double (m:nat) := plus m m.
double is defined

This introduces the constant double defined as the expression fun m:nat =>
plus m m. The abstraction introduced by fun is explained as follows. The ex-
pression fun x:A => e is well formed of type A->B in a context whenever the
expression e is well-formed of type B in the given context to which we add the
declaration that x is of type A. Here x is a bound, or dummy variable in the ex-
pression fun x:A => e. For instance we could as well have defined double as
fun n:nat => (plus n n).

Bound (local) variables and free (global) variables may be mixed. For instance,
we may define the function which adds the constant n to its argument as

8 CHAPTER 1. BASIC PREDICATE CALCULUS

Coq < Definition add_n (m:nat) := plus m n.
add_n is defined

However, note that here we may not rename the formal argument m into n without
capturing the free occurrence of n, and thus changing the meaning of the defined
notion.

Binding operations are well known for instance in logic, where they are called
quantifiers. Thus we may universally quantify a proposition such as m > 0 in order
to get a universal proposition ∀m ·m > 0. Indeed this operator is available in COQ,
with the following syntax: forall m:nat, gt m O. Similarly to the case of the
functional abstraction binding, we are obliged to declare explicitly the type of the
quantified variable. We check:

Coq < Check (forall m:nat, gt m 0).
forall m : nat, m > 0

: Prop

We may clean-up the development by removing the contents of the current section:

Coq < Reset Declaration.

1.2 Introduction to the proof engine: Minimal Logic

In the following, we are going to consider various propositions, built from atomic
propositions A,B,C. This may be done easily, by introducing these atoms as global
variables declared of type Prop. It is easy to declare several names with the same
specification:

Coq < Section Minimal_Logic.

Coq < Variables A B C : Prop.
A is assumed
B is assumed
C is assumed

We shall consider simple implications, such as A→ B, read as “A implies B”.
Remark that we overload the arrow symbol, which has been used above as the
functionality type constructor, and which may be used as well as propositional
connective:

Coq < Check (A -> B).
A -> B

: Prop

Let us now embark on a simple proof. We want to prove the easy tautology
((A→ (B→C))→ (A→ B)→ (A→C). We enter the proof engine by the com-
mand Goal, followed by the conjecture we want to verify:

Coq < Goal (A -> B -> C) -> (A -> B) -> A -> C.
1 subgoal

1.2. INTRODUCTION TO THE PROOF ENGINE: MINIMAL LOGIC 9

A : Prop
B : Prop
C : Prop
============================
(A -> B -> C) -> (A -> B) -> A -> C

The system displays the current goal below a double line, local hypotheses
(there are none initially) being displayed above the line. We call the combination of
local hypotheses with a goal a judgment. We are now in an inner loop of the system,
in proof mode. New commands are available in this mode, such as tactics, which
are proof combining primitives. A tactic operates on the current goal by attempting
to construct a proof of the corresponding judgment, possibly from proofs of some
hypothetical judgments, which are then added to the current list of conjectured
judgments. For instance, the intro tactic is applicable to any judgment whose
goal is an implication, by moving the proposition to the left of the application to
the list of local hypotheses:

Coq < intro H.
1 subgoal

A : Prop
B : Prop
C : Prop
H : A -> B -> C
============================
(A -> B) -> A -> C

Several introductions may be done in one step:

Coq < intros H’ HA.
1 subgoal

A : Prop
B : Prop
C : Prop
H : A -> B -> C
H’ : A -> B
HA : A
============================
C

We notice that C, the current goal, may be obtained from hypothesis H, provided
the truth of A and B are established. The tactic apply implements this piece of
reasoning:

Coq < apply H.
2 subgoals

A : Prop
B : Prop
C : Prop

10 CHAPTER 1. BASIC PREDICATE CALCULUS

H : A -> B -> C
H’ : A -> B
HA : A
============================
A

subgoal 2 is:
B

We are now in the situation where we have two judgments as conjectures that
remain to be proved. Only the first is listed in full, for the others the system displays
only the corresponding subgoal, without its local hypotheses list. Remark that
apply has kept the local hypotheses of its father judgment, which are still available
for the judgments it generated.

In order to solve the current goal, we just have to notice that it is exactly avail-
able as hypothesis HA:

Coq < exact HA.
1 subgoal

A : Prop
B : Prop
C : Prop
H : A -> B -> C
H’ : A -> B
HA : A
============================
B

Now H ′ applies:

Coq < apply H’.
1 subgoal

A : Prop
B : Prop
C : Prop
H : A -> B -> C
H’ : A -> B
HA : A
============================
A

And we may now conclude the proof as before, with exact HA. Actually, we
may not bother with the name HA, and just state that the current goal is solvable
from the current local assumptions:

Coq < assumption.
Proof completed.

The proof is now finished. We may either discard it, by using the command
Abort which returns to the standard COQ toplevel loop without further ado, or
else save it as a lemma in the current context, under name say trivial_lemma:

1.2. INTRODUCTION TO THE PROOF ENGINE: MINIMAL LOGIC 11

Coq < Save trivial_lemma.
intro H.
intros H’ HA.
apply H.
exact HA.

apply H’.
assumption.

trivial_lemma is defined

As a comment, the system shows the proof script listing all tactic commands
used in the proof.

Let us redo the same proof with a few variations. First of all we may name the
initial goal as a conjectured lemma:

Coq < Lemma distr_impl : (A -> B -> C) -> (A -> B) -> A -> C.
1 subgoal

A : Prop
B : Prop
C : Prop
============================
(A -> B -> C) -> (A -> B) -> A -> C

Next, we may omit the names of local assumptions created by the introduction
tactics, they can be automatically created by the proof engine as new non-clashing
names.

Coq < intros.
1 subgoal

A : Prop
B : Prop
C : Prop
H : A -> B -> C
H0 : A -> B
H1 : A
============================
C

The intros tactic, with no arguments, effects as many individual applications
of intro as is legal.

Then, we may compose several tactics together in sequence, or in parallel,
through tacticals, that is tactic combinators. The main constructions are the fol-
lowing:

• T1;T2 (read T1 then T2) applies tactic T1 to the current goal, and then tactic
T2 to all the subgoals generated by T1.

12 CHAPTER 1. BASIC PREDICATE CALCULUS

• T ; [T1|T2|...|Tn] applies tactic T to the current goal, and then tactic T1 to the
first newly generated subgoal, ..., Tn to the nth.

We may thus complete the proof of distr_impl with one composite tactic:

Coq < apply H; [assumption | apply H0; assumption].
Proof completed.

Let us now save lemma distr_impl:

Coq < Save.
intros.
apply H; [assumption | apply H0; assumption].
distr_impl is defined

Here Save needs no argument, since we gave the name distr_impl in ad-
vance; it is however possible to override the given name by giving a different argu-
ment to command Save.

Actually, such an easy combination of tactics intro, apply and assumption
may be found completely automatically by an automatic tactic, called auto, with-
out user guidance:

Coq < Lemma distr_imp : (A -> B -> C) -> (A -> B) -> A -> C.
1 subgoal

A : Prop
B : Prop
C : Prop
============================
(A -> B -> C) -> (A -> B) -> A -> C

Coq < auto.
Proof completed.

This time, we do not save the proof, we just discard it with the Abort com-
mand:

Coq < Abort.
Current goal aborted

At any point during a proof, we may use Abort to exit the proof mode and go
back to Coq’s main loop. We may also use Restart to restart from scratch the
proof of the same lemma. We may also use Undo to backtrack one step, and more
generally Undo n to backtrack n steps.

We end this section by showing a useful command, Inspect n., which in-
spects the global COQ environment, showing the last n declared notions:

Coq < Inspect 3.

*** [C : Prop]
trivial_lemma : (A -> B -> C) -> (A -> B) -> A -> C
distr_impl : (A -> B -> C) -> (A -> B) -> A -> C

The declarations, whether global parameters or axioms, are shown preceded by
***; definitions and lemmas are stated with their specification, but their value (or
proof-term) is omitted.

1.3. PROPOSITIONAL CALCULUS 13

1.3 Propositional Calculus

1.3.1 Conjunction

We have seen how intro and apply tactics could be combined in order to prove
implicational statements. More generally, COQ favors a style of reasoning, called
Natural Deduction, which decomposes reasoning into so called introduction rules,
which tell how to prove a goal whose main operator is a given propositional con-
nective, and elimination rules, which tell how to use an hypothesis whose main
operator is the propositional connective. Let us show how to use these ideas for the
propositional connectives /\ and \/.

Coq < Lemma and_commutative : A /\ B -> B /\ A.
1 subgoal

A : Prop
B : Prop
C : Prop
============================
A /\ B -> B /\ A

Coq < intro.
1 subgoal

A : Prop
B : Prop
C : Prop
H : A /\ B
============================
B /\ A

We make use of the conjunctive hypothesis H with the elim tactic, which breaks
it into its components:

Coq < elim H.
1 subgoal

A : Prop
B : Prop
C : Prop
H : A /\ B
============================
A -> B -> B /\ A

We now use the conjunction introduction tactic split, which splits the con-
junctive goal into the two subgoals:

Coq < split.
2 subgoals

14 CHAPTER 1. BASIC PREDICATE CALCULUS

A : Prop
B : Prop
C : Prop
H : A /\ B
H0 : A
H1 : B
============================
B

subgoal 2 is:
A

and the proof is now trivial. Indeed, the whole proof is obtainable as follows:

Coq < Restart.
1 subgoal

A : Prop
B : Prop
C : Prop
============================
A /\ B -> B /\ A

Coq < intro H; elim H; auto.
Proof completed.

Coq < Qed.
intro H; elim H; auto.
and_commutative is defined

The tactic auto succeeded here because it knows as a hint the conjunction
introduction operator conj

Coq < Check conj.
conj

: forall A B : Prop, A -> B -> A /\ B

Actually, the tactic Split is just an abbreviation for apply conj.
What we have just seen is that the auto tactic is more powerful than just a

simple application of local hypotheses; it tries to apply as well lemmas which have
been specified as hints. A Hint Resolve command registers a lemma as a hint to
be used from now on by the auto tactic, whose power may thus be incrementally
augmented.

1.3.2 Disjunction

In a similar fashion, let us consider disjunction:

Coq < Lemma or_commutative : A \/ B -> B \/ A.
1 subgoal

A : Prop

1.3. PROPOSITIONAL CALCULUS 15

B : Prop
C : Prop
============================
A \/ B -> B \/ A

Coq < intro H; elim H.
2 subgoals

A : Prop
B : Prop
C : Prop
H : A \/ B
============================
A -> B \/ A

subgoal 2 is:
B -> B \/ A

Let us prove the first subgoal in detail. We use intro in order to be left to
prove B\/A from A:

Coq < intro HA.
2 subgoals

A : Prop
B : Prop
C : Prop
H : A \/ B
HA : A
============================
B \/ A

subgoal 2 is:
B -> B \/ A

Here the hypothesis H is not needed anymore. We could choose to actually
erase it with the tactic clear; in this simple proof it does not really matter, but in
bigger proof developments it is useful to clear away unnecessary hypotheses which
may clutter your screen.

Coq < clear H.
2 subgoals

A : Prop
B : Prop
C : Prop
HA : A
============================
B \/ A

subgoal 2 is:
B -> B \/ A

16 CHAPTER 1. BASIC PREDICATE CALCULUS

The disjunction connective has two introduction rules, since P\/Q may be ob-
tained from P or from Q; the two corresponding proof constructors are called re-
spectively or_introl and or_intror; they are applied to the current goal by tac-
tics left and right respectively. For instance:

Coq < right.
2 subgoals

A : Prop
B : Prop
C : Prop
HA : A
============================
A

subgoal 2 is:
B -> B \/ A

Coq < trivial.
1 subgoal

A : Prop
B : Prop
C : Prop
H : A \/ B
============================
B -> B \/ A

The tactic trivial works like auto with the hints database, but it only tries those
tactics that can solve the goal in one step.

As before, all these tedious elementary steps may be performed automatically,
as shown for the second symmetric case:

Coq < auto.
Proof completed.

However, auto alone does not succeed in proving the full lemma, because it
does not try any elimination step. It is a bit disappointing that auto is not able to
prove automatically such a simple tautology. The reason is that we want to keep
auto efficient, so that it is always effective to use.

1.3.3 Tauto
A complete tactic for propositional tautologies is indeed available in COQ as the
tauto tactic.

Coq < Restart.
1 subgoal

A : Prop
B : Prop

1.3. PROPOSITIONAL CALCULUS 17

C : Prop
============================
A \/ B -> B \/ A

Coq < tauto.
Proof completed.

Coq < Qed.
tauto.
or_commutative is defined

It is possible to inspect the actual proof tree constructed by tauto, using a
standard command of the system, which prints the value of any notion currently
defined in the context:

Coq < Print or_commutative.
or_commutative =
fun H : A \/ B =>
or_ind (fun H0 : A => or_intror B H0)

(fun H0 : B => or_introl A H0) H
: A \/ B -> B \/ A

It is not easy to understand the notation for proof terms without a few ex-
planations. The fun prefix, such as fun H:A\/B =>, corresponds to intro H,
whereas a subterm such as (or_intror B H0) corresponds to the sequence of tac-
tics apply or_intror; exact H0. The generic combinator or_intror needs to
be instantiated by the two properties B and A. Because A can be deduced from the
type of H0, only B is printed. The two instantiations are effected automatically by
the tactic apply when pattern-matching a goal. The specialist will of course rec-
ognize our proof term as a λ-term, used as notation for the natural deduction proof
term through the Curry-Howard isomorphism. The naive user of COQ may safely
ignore these formal details.

Let us exercise the tauto tactic on a more complex example:

Coq < Lemma distr_and : A -> B /\ C -> (A -> B) /\ (A -> C).
1 subgoal

A : Prop
B : Prop
C : Prop
============================
A -> B /\ C -> (A -> B) /\ (A -> C)

Coq < tauto.
Proof completed.

Coq < Qed.
tauto.
distr_and is defined

18 CHAPTER 1. BASIC PREDICATE CALCULUS

1.3.4 Classical reasoning
The tactic tauto always comes back with an answer. Here is an example where it
fails:

Coq < Lemma Peirce : ((A -> B) -> A) -> A.
1 subgoal

A : Prop
B : Prop
C : Prop
============================
((A -> B) -> A) -> A

Coq < try tauto.
1 subgoal

A : Prop
B : Prop
C : Prop
============================
((A -> B) -> A) -> A

Note the use of the Try tactical, which does nothing if its tactic argument fails.
This may come as a surprise to someone familiar with classical reasoning.

Peirce’s lemma is true in Boolean logic, i.e. it evaluates to true for every truth-
assignment to A and B. Indeed the double negation of Peirce’s law may be proved
in COQ using tauto:

Coq < Abort.
Current goal aborted

Coq < Lemma NNPeirce : ~ ~ (((A -> B) -> A) -> A).
1 subgoal

A : Prop
B : Prop
C : Prop
============================
~ ~ (((A -> B) -> A) -> A)

Coq < tauto.
Proof completed.

Coq < Qed.
tauto.
NNPeirce is defined

In classical logic, the double negation of a proposition is equivalent to this
proposition, but in the constructive logic of COQ this is not so. If you want to use
classical logic in COQ, you have to import explicitly the Classical module, which
will declare the axiom classic of excluded middle, and classical tautologies such
as de Morgan’s laws. The Require command is used to import a module from
COQ’s library:

1.3. PROPOSITIONAL CALCULUS 19

Coq < Require Import Classical.

Coq < Check NNPP.
NNPP

: forall p : Prop, ~ ~ p -> p

and it is now easy (although admittedly not the most direct way) to prove a
classical law such as Peirce’s:

Coq < Lemma Peirce : ((A -> B) -> A) -> A.
1 subgoal

A : Prop
B : Prop
C : Prop
============================
((A -> B) -> A) -> A

Coq < apply NNPP; tauto.
Proof completed.

Coq < Qed.
apply NNPP; tauto.
Peirce is defined

Here is one more example of propositional reasoning, in the shape of a Scottish
puzzle. A private club has the following rules:

1. Every non-scottish member wears red socks

2. Every member wears a kilt or doesn’t wear red socks

3. The married members don’t go out on Sunday

4. A member goes out on Sunday if and only if he is Scottish

5. Every member who wears a kilt is Scottish and married

6. Every scottish member wears a kilt

Now, we show that these rules are so strict that no one can be accepted.

Coq < Section club.

Coq < Variables Scottish RedSocks WearKilt Married GoOutSunday : Prop.
Scottish is assumed
RedSocks is assumed
WearKilt is assumed
Married is assumed
GoOutSunday is assumed

Coq < Hypothesis rule1 : ~ Scottish -> RedSocks.
rule1 is assumed

Coq < Hypothesis rule2 : WearKilt \/ ~ RedSocks.

20 CHAPTER 1. BASIC PREDICATE CALCULUS

rule2 is assumed

Coq < Hypothesis rule3 : Married -> ~ GoOutSunday.
rule3 is assumed

Coq < Hypothesis rule4 : GoOutSunday <-> Scottish.
rule4 is assumed

Coq < Hypothesis rule5 : WearKilt -> Scottish /\ Married.
rule5 is assumed

Coq < Hypothesis rule6 : Scottish -> WearKilt.
rule6 is assumed

Coq < Lemma NoMember : False.
1 subgoal

A : Prop
B : Prop
C : Prop
Scottish : Prop
RedSocks : Prop
WearKilt : Prop
Married : Prop
GoOutSunday : Prop
rule1 : ~ Scottish -> RedSocks
rule2 : WearKilt \/ ~ RedSocks
rule3 : Married -> ~ GoOutSunday
rule4 : GoOutSunday <-> Scottish
rule5 : WearKilt -> Scottish /\ Married
rule6 : Scottish -> WearKilt
============================
False

Coq < tauto.
Proof completed.

Coq < Qed.
tauto.
NoMember is defined

At that point NoMember is a proof of the absurdity depending on hypotheses. We
may end the section, in that case, the variables and hypotheses will be discharged,
and the type of NoMember will be generalised.

Coq < End club.

Coq < Check NoMember.
NoMember

: forall
Scottish RedSocks WearKilt Married
GoOutSunday : Prop,

(~ Scottish -> RedSocks) ->
WearKilt \/ ~ RedSocks ->

1.4. PREDICATE CALCULUS 21

(Married -> ~ GoOutSunday) ->
(GoOutSunday <-> Scottish) ->
(WearKilt -> Scottish /\ Married) ->
(Scottish -> WearKilt) -> False

1.4 Predicate Calculus

Let us now move into predicate logic, and first of all into first-order predicate cal-
culus. The essence of predicate calculus is that to try to prove theorems in the most
abstract possible way, without using the definitions of the mathematical notions,
but by formal manipulations of uninterpreted function and predicate symbols.

1.4.1 Sections and signatures
Usually one works in some domain of discourse, over which range the individual
variables and function symbols. In COQ we speak in a language with a rich va-
riety of types, so me may mix several domains of discourse, in our multi-sorted
language. For the moment, we just do a few exercises, over a domain of discourse
D axiomatised as a Set, and we consider two predicate symbols P and R over D, of
arities respectively 1 and 2. Such abstract entities may be entered in the context as
global variables. But we must be careful about the pollution of our global environ-
ment by such declarations. For instance, we have already polluted our COQ session
by declaring the variables n, Pos_n, A, B, and C. If we want to revert to the clean
state of our initial session, we may use the COQ Reset command, which returns
to the state just prior the given global notion as we did before to remove a section,
or we may return to the initial state using :

Coq < Reset Initial.

We shall now declare a new Section, which will allow us to define notions
local to a well-delimited scope. We start by assuming a domain of discourse D, and
a binary relation R over D:

Coq < Section Predicate_calculus.

Coq < Variable D : Set.
D is assumed

Coq < Variable R : D -> D -> Prop.
R is assumed

As a simple example of predicate calculus reasoning, let us assume that relation
R is symmetric and transitive, and let us show that R is reflexive in any point x which
has an R successor. Since we do not want to make the assumptions about R global
axioms of a theory, but rather local hypotheses to a theorem, we open a specific
section to this effect.

Coq < Section R_sym_trans.

Coq < Hypothesis R_symmetric : forall x y:D, R x y -> R y x.
R_symmetric is assumed

22 CHAPTER 1. BASIC PREDICATE CALCULUS

Coq < Hypothesis R_transitive : forall x y z:D, R x y -> R y z -> R x z.
R_transitive is assumed

Remark the syntax forall x:D, which stands for universal quantification ∀x :
D.

1.4.2 Existential quantification

We now state our lemma, and enter proof mode.

Coq < Lemma refl_if : forall x:D, (exists y, R x y) -> R x x.
1 subgoal

D : Set
R : D -> D -> Prop
R_symmetric : forall x y : D, R x y -> R y x
R_transitive : forall x y z : D, R x y -> R y z -> R x z
============================
forall x : D, (exists y : D, R x y) -> R x x

Remark that the hypotheses which are local to the currently opened sections are
listed as local hypotheses to the current goals. The rationale is that these hypotheses
are going to be discharged, as we shall see, when we shall close the corresponding
sections.

Note the functional syntax for existential quantification. The existential quan-
tifier is built from the operator ex, which expects a predicate as argument:

Coq < Check ex.
ex

: forall A : Type, (A -> Prop) -> Prop

and the notation (exists x:D, P x) is just concrete syntax for the expression
(ex D (fun x:D => P x)). Existential quantification is handled in COQ in a
similar fashion to the connectives /\ and \/ : it is introduced by the proof combi-
nator ex_intro, which is invoked by the specific tactic Exists, and its elimination
provides a witness a:D to P, together with an assumption h:(P a) that indeed a
verifies P. Let us see how this works on this simple example.

Coq < intros x x_Rlinked.
1 subgoal

D : Set
R : D -> D -> Prop
R_symmetric : forall x y : D, R x y -> R y x
R_transitive : forall x y z : D, R x y -> R y z -> R x z
x : D
x_Rlinked : exists y : D, R x y
============================
R x x

1.4. PREDICATE CALCULUS 23

Remark that intros treats universal quantification in the same way as the
premises of implications. Renaming of bound variables occurs when it is needed;
for instance, had we started with intro y, we would have obtained the goal:

Coq < intro y.
1 subgoal

D : Set
R : D -> D -> Prop
R_symmetric : forall x y : D, R x y -> R y x
R_transitive : forall x y z : D, R x y -> R y z -> R x z
y : D
============================
(exists y0 : D, R y y0) -> R y y

Let us now use the existential hypothesis x_Rlinked to exhibit an R-successor
y of x. This is done in two steps, first with elim, then with intros

Coq < elim x_Rlinked.
1 subgoal

D : Set
R : D -> D -> Prop
R_symmetric : forall x y : D, R x y -> R y x
R_transitive : forall x y z : D, R x y -> R y z -> R x z
x : D
x_Rlinked : exists y : D, R x y
============================
forall x0 : D, R x x0 -> R x x

Coq < intros y Rxy.
1 subgoal

D : Set
R : D -> D -> Prop
R_symmetric : forall x y : D, R x y -> R y x
R_transitive : forall x y z : D, R x y -> R y z -> R x z
x : D
x_Rlinked : exists y : D, R x y
y : D
Rxy : R x y
============================
R x x

Now we want to use R_transitive. The apply tactic will know how to match
x with x, and z with x, but needs help on how to instantiate y, which appear in the
hypotheses of R_transitive, but not in its conclusion. We give the proper hint to
apply in a with clause, as follows:

Coq < apply R_transitive with y.
2 subgoals

24 CHAPTER 1. BASIC PREDICATE CALCULUS

D : Set
R : D -> D -> Prop
R_symmetric : forall x y : D, R x y -> R y x
R_transitive : forall x y z : D, R x y -> R y z -> R x z
x : D
x_Rlinked : exists y : D, R x y
y : D
Rxy : R x y
============================
R x y

subgoal 2 is:
R y x

The rest of the proof is routine:

Coq < assumption.
1 subgoal

D : Set
R : D -> D -> Prop
R_symmetric : forall x y : D, R x y -> R y x
R_transitive : forall x y z : D, R x y -> R y z -> R x z
x : D
x_Rlinked : exists y : D, R x y
y : D
Rxy : R x y
============================
R y x

Coq < apply R_symmetric; assumption.
Proof completed.

Coq < Qed.

Let us now close the current section.

Coq < End R_sym_trans.

Here COQ’s printout is a warning that all local hypotheses have been dis-
charged in the statement of refl_if, which now becomes a general theorem in
the first-order language declared in section Predicate_calculus. In this par-
ticular example, the use of section R_sym_trans has not been really significant,
since we could have instead stated theorem refl_if in its general form, and done
basically the same proof, obtaining R_symmetric and R_transitive as local hy-
potheses by initial intros rather than as global hypotheses in the context. But if
we had pursued the theory by proving more theorems about relation R, we would
have obtained all general statements at the closing of the section, with minimal
dependencies on the hypotheses of symmetry and transitivity.

1.4. PREDICATE CALCULUS 25

1.4.3 Paradoxes of classical predicate calculus

Let us illustrate this feature by pursuing our Predicate_calculus section with
an enrichment of our language: we declare a unary predicate P and a constant d:

Coq < Variable P : D -> Prop.
P is assumed

Coq < Variable d : D.
d is assumed

We shall now prove a well-known fact from first-order logic: a universal pred-
icate is non-empty, or in other terms existential quantification follows from univer-
sal quantification.

Coq < Lemma weird : (forall x:D, P x) -> exists a, P a.
1 subgoal

D : Set
R : D -> D -> Prop
P : D -> Prop
d : D
============================
(forall x : D, P x) -> exists a : D, P a

Coq < intro UnivP.
1 subgoal

D : Set
R : D -> D -> Prop
P : D -> Prop
d : D
UnivP : forall x : D, P x
============================
exists a : D, P a

First of all, notice the pair of parentheses around forall x:D, P x in the
statement of lemma weird. If we had omitted them, COQ’s parser would have
interpreted the statement as a truly trivial fact, since we would postulate an x ver-
ifying (P x). Here the situation is indeed more problematic. If we have some
element in Set D, we may apply UnivP to it and conclude, otherwise we are stuck.
Indeed such an element d exists, but this is just by virtue of our new signature.
This points out a subtle difference between standard predicate calculus and COQ.
In standard first-order logic, the equivalent of lemma weird always holds, because
such a rule is wired in the inference rules for quantifiers, the semantic justifica-
tion being that the interpretation domain is assumed to be non-empty. Whereas in
COQ, where types are not assumed to be systematically inhabited, lemma weird
only holds in signatures which allow the explicit construction of an element in the
domain of the predicate.

Let us conclude the proof, in order to show the use of the Exists tactic:

26 CHAPTER 1. BASIC PREDICATE CALCULUS

Coq < exists d; trivial.
Proof completed.

Coq < Qed.
intro UnivP.
exists d; trivial.
weird is defined

Another fact which illustrates the sometimes disconcerting rules of classical
predicate calculus is Smullyan’s drinkers’ paradox: “In any non-empty bar, there
is a person such that if she drinks, then everyone drinks”. We modelize the bar
by Set D, drinking by predicate P. We shall need classical reasoning. Instead of
loading the Classical module as we did above, we just state the law of excluded
middle as a local hypothesis schema at this point:

Coq < Hypothesis EM : forall A:Prop, A \/ ~ A.
EM is assumed

Coq < Lemma drinker : exists x:D, P x -> forall x:D, P x.
1 subgoal

D : Set
R : D -> D -> Prop
P : D -> Prop
d : D
EM : forall A : Prop, A \/ ~ A
============================
exists x : D, P x -> forall x0 : D, P x0

The proof goes by cases on whether or not there is someone who does not drink.
Such reasoning by cases proceeds by invoking the excluded middle principle, via
elim of the proper instance of EM:

Coq < elim (EM (exists x, ~ P x)).
2 subgoals

D : Set
R : D -> D -> Prop
P : D -> Prop
d : D
EM : forall A : Prop, A \/ ~ A
============================
(exists x : D, ~ P x) ->
exists x : D, P x -> forall x0 : D, P x0

subgoal 2 is:
~ (exists x : D, ~ P x) ->
exists x : D, P x -> forall x0 : D, P x0

We first look at the first case. Let Tom be the non-drinker:

Coq < intro Non_drinker; elim Non_drinker;
Coq < intros Tom Tom_does_not_drink.

1.4. PREDICATE CALCULUS 27

2 subgoals

D : Set
R : D -> D -> Prop
P : D -> Prop
d : D
EM : forall A : Prop, A \/ ~ A
Non_drinker : exists x : D, ~ P x
Tom : D
Tom_does_not_drink : ~ P Tom
============================
exists x : D, P x -> forall x0 : D, P x0

subgoal 2 is:
~ (exists x : D, ~ P x) ->
exists x : D, P x -> forall x0 : D, P x0

We conclude in that case by considering Tom, since his drinking leads to a
contradiction:

Coq < exists Tom; intro Tom_drinks.
2 subgoals

D : Set
R : D -> D -> Prop
P : D -> Prop
d : D
EM : forall A : Prop, A \/ ~ A
Non_drinker : exists x : D, ~ P x
Tom : D
Tom_does_not_drink : ~ P Tom
Tom_drinks : P Tom
============================
forall x : D, P x

subgoal 2 is:
~ (exists x : D, ~ P x) ->
exists x : D, P x -> forall x0 : D, P x0

There are several ways in which we may eliminate a contradictory case; a sim-
ple one is to use the absurd tactic as follows:

Coq < absurd (P Tom); trivial.
1 subgoal

D : Set
R : D -> D -> Prop
P : D -> Prop
d : D
EM : forall A : Prop, A \/ ~ A
============================
~ (exists x : D, ~ P x) ->
exists x : D, P x -> forall x0 : D, P x0

28 CHAPTER 1. BASIC PREDICATE CALCULUS

We now proceed with the second case, in which actually any person will do;
such a John Doe is given by the non-emptiness witness d:

Coq < intro No_nondrinker; exists d; intro d_drinks.
1 subgoal

D : Set
R : D -> D -> Prop
P : D -> Prop
d : D
EM : forall A : Prop, A \/ ~ A
No_nondrinker : ~ (exists x : D, ~ P x)
d_drinks : P d
============================
forall x : D, P x

Now we consider any Dick in the bar, and reason by cases according to its
drinking or not:

Coq < intro Dick; elim (EM (P Dick)); trivial.
1 subgoal

D : Set
R : D -> D -> Prop
P : D -> Prop
d : D
EM : forall A : Prop, A \/ ~ A
No_nondrinker : ~ (exists x : D, ~ P x)
d_drinks : P d
Dick : D
============================
~ P Dick -> P Dick

The only non-trivial case is again treated by contradiction:

Coq < intro Dick_does_not_drink; absurd (exists x, ~ P x); trivial.
1 subgoal

D : Set
R : D -> D -> Prop
P : D -> Prop
d : D
EM : forall A : Prop, A \/ ~ A
No_nondrinker : ~ (exists x : D, ~ P x)
d_drinks : P d
Dick : D
Dick_does_not_drink : ~ P Dick
============================
exists x : D, ~ P x

Coq < exists Dick; trivial.
Proof completed.

1.4. PREDICATE CALCULUS 29

Coq < Qed.
elim (EM (exists x : _, ~ P x)).
intro Non_drinker; elim Non_drinker;
intros Tom Tom_does_not_drink.

exists Tom; intro Tom_drinks.
absurd (P Tom); trivial.

intro No_nondrinker; exists d; intro d_drinks.
intro Dick; elim (EM (P Dick)); trivial.
intro Dick_does_not_drink; absurd (exists x : _, ~ P x);
trivial.

exists Dick; trivial.

drinker is defined

Now, let us close the main section and look at the complete statements we
proved:

Coq < End Predicate_calculus.

Coq < Check refl_if.
refl_if

: forall (D : Set) (R : D -> D -> Prop),
(forall x y : D, R x y -> R y x) ->
(forall x y z : D, R x y -> R y z -> R x z) ->
forall x : D, (exists y : D, R x y) -> R x x

Coq < Check weird.
weird

: forall (D : Set) (P : D -> Prop),
D -> (forall x : D, P x) -> exists a : D, P a

Coq < Check drinker.
drinker

: forall (D : Set) (P : D -> Prop),
D ->
(forall A : Prop, A \/ ~ A) ->
exists x : D, P x -> forall x0 : D, P x0

Remark how the three theorems are completely generic in the most general
fashion; the domain D is discharged in all of them, R is discharged in refl_if only,
P is discharged only in weird and drinker, along with the hypothesis that D is
inhabited. Finally, the excluded middle hypothesis is discharged only in drinker.

Note that the name d has vanished as well from the statements of weird and
drinker, since COQ’s pretty-printer replaces systematically a quantification such
as forall d:D, E, where d does not occur in E, by the functional notation D->E.
Similarly the name EM does not appear in drinker.

Actually, universal quantification, implication, as well as function formation,
are all special cases of one general construct of type theory called dependent prod-
uct. This is the mathematical construction corresponding to an indexed family of

30 CHAPTER 1. BASIC PREDICATE CALCULUS

functions. A function f ∈Πx : D ·Cx maps an element x of its domain D to its (in-
dexed) codomain Cx. Thus a proof of ∀x : D ·Px is a function mapping an element
x of D to a proof of proposition Px.

1.4.4 Flexible use of local assumptions

Very often during the course of a proof we want to retrieve a local assumption
and reintroduce it explicitly in the goal, for instance in order to get a more general
induction hypothesis. The tactic generalize is what is needed here:

Coq < Section Predicate_Calculus.

Coq < Variables P Q : nat -> Prop.
P is assumed
Q is assumed

Coq < Variable R : nat -> nat -> Prop.
R is assumed

Coq < Lemma PQR :
Coq < forall x y:nat, (R x x -> P x -> Q x) -> P x -> R x y -> Q x.
1 subgoal

P : nat -> Prop
Q : nat -> Prop
R : nat -> nat -> Prop
============================
forall x y : nat,
(R x x -> P x -> Q x) -> P x -> R x y -> Q x

Coq < intros.
1 subgoal

P : nat -> Prop
Q : nat -> Prop
R : nat -> nat -> Prop
x : nat
y : nat
H : R x x -> P x -> Q x
H0 : P x
H1 : R x y
============================
Q x

Coq < generalize H0.
1 subgoal

P : nat -> Prop
Q : nat -> Prop
R : nat -> nat -> Prop
x : nat

1.4. PREDICATE CALCULUS 31

y : nat
H : R x x -> P x -> Q x
H0 : P x
H1 : R x y
============================
P x -> Q x

Sometimes it may be convenient to use a lemma, although we do not have a
direct way to appeal to such an already proven fact. The tactic cut permits to
use the lemma at this point, keeping the corresponding proof obligation as a new
subgoal:

Coq < cut (R x x); trivial.
1 subgoal

P : nat -> Prop
Q : nat -> Prop
R : nat -> nat -> Prop
x : nat
y : nat
H : R x x -> P x -> Q x
H0 : P x
H1 : R x y
============================
R x x

We clean the goal by doing an Abort command.

Coq < Abort.

1.4.5 Equality

The basic equality provided in COQ is Leibniz equality, noted infix like x=y, when
x and y are two expressions of type the same Set. The replacement of x by y in any
term is effected by a variety of tactics, such as rewrite and replace.

Let us give a few examples of equality replacement. Let us assume that some
arithmetic function f is null in zero:

Coq < Variable f : nat -> nat.
f is assumed

Coq < Hypothesis foo : f 0 = 0.
foo is assumed

We want to prove the following conditional equality:

Coq < Lemma L1 : forall k:nat, k = 0 -> f k = k.

As usual, we first get rid of local assumptions with intro:

32 CHAPTER 1. BASIC PREDICATE CALCULUS

Coq < intros k E.
1 subgoal

P : nat -> Prop
Q : nat -> Prop
R : nat -> nat -> Prop
f : nat -> nat
foo : f 0 = 0
k : nat
E : k = 0
============================
f k = k

Let us now use equation E as a left-to-right rewriting:

Coq < rewrite E.
1 subgoal

P : nat -> Prop
Q : nat -> Prop
R : nat -> nat -> Prop
f : nat -> nat
foo : f 0 = 0
k : nat
E : k = 0
============================
f 0 = 0

This replaced both occurrences of k by O.
Now apply foo will finish the proof:

Coq < apply foo.
Proof completed.

Coq < Qed.
intros k E.
rewrite E.
apply foo.
L1 is defined

When one wants to rewrite an equality in a right to left fashion, we should
use rewrite <- E rather than rewrite E or the equivalent rewrite -> E. Let
us now illustrate the tactic replace.

Coq < Hypothesis f10 : f 1 = f 0.
f10 is assumed

Coq < Lemma L2 : f (f 1) = 0.
1 subgoal

P : nat -> Prop
Q : nat -> Prop

1.4. PREDICATE CALCULUS 33

R : nat -> nat -> Prop
f : nat -> nat
foo : f 0 = 0
f10 : f 1 = f 0
============================
f (f 1) = 0

Coq < replace (f 1) with 0.
2 subgoals

P : nat -> Prop
Q : nat -> Prop
R : nat -> nat -> Prop
f : nat -> nat
foo : f 0 = 0
f10 : f 1 = f 0
============================
f 0 = 0

subgoal 2 is:
0 = f 1

What happened here is that the replacement left the first subgoal to be proved,
but another proof obligation was generated by the replace tactic, as the second
subgoal. The first subgoal is solved immediately by applying lemma foo; the
second one transitivity and then symmetry of equality, for instance with tactics
transitivity and symmetry:

Coq < apply foo.
1 subgoal

P : nat -> Prop
Q : nat -> Prop
R : nat -> nat -> Prop
f : nat -> nat
foo : f 0 = 0
f10 : f 1 = f 0
============================
0 = f 1

Coq < transitivity (f 0); symmetry; trivial.
Proof completed.

In case the equality t = u generated by replace u with t is an assumption (possibly
modulo symmetry), it will be automatically proved and the corresponding goal will
not appear. For instance:

Coq < Restart.
1 subgoal

P : nat -> Prop
Q : nat -> Prop
R : nat -> nat -> Prop

34 CHAPTER 1. BASIC PREDICATE CALCULUS

f : nat -> nat
foo : f 0 = 0
f10 : f 1 = f 0
============================
f (f 1) = 0

Coq < replace (f 0) with 0.
1 subgoal

P : nat -> Prop
Q : nat -> Prop
R : nat -> nat -> Prop
f : nat -> nat
foo : f 0 = 0
f10 : f 1 = f 0
============================
f (f 1) = 0

Coq < rewrite f10; rewrite foo; trivial.
Proof completed.

Coq < Qed.
replace (f 0) with 0 .
rewrite f10; rewrite foo; trivial.
L2 is defined

1.5 Using definitions

The development of mathematics does not simply proceed by logical argumen-
tation from first principles: definitions are used in an essential way. A formal
development proceeds by a dual process of abstraction, where one proves abstract
statements in predicate calculus, and use of definitions, which in the contrary one
instantiates general statements with particular notions in order to use the structure
of mathematical values for the proof of more specialised properties.

1.5.1 Unfolding definitions
Assume that we want to develop the theory of sets represented as characteristic
predicates over some universe U. For instance:

Coq < Variable U : Type.
U is assumed

Coq < Definition set := U -> Prop.
set is defined

Coq < Definition element (x:U) (S:set) := S x.
element is defined

Coq < Definition subset (A B:set) :=
Coq < forall x:U, element x A -> element x B.
subset is defined

1.5. USING DEFINITIONS 35

Now, assume that we have loaded a module of general properties about rela-
tions over some abstract type T, such as transitivity:

Coq < Definition transitive (T:Type) (R:T -> T -> Prop) :=
Coq < forall x y z:T, R x y -> R y z -> R x z.
transitive is defined

Now, assume that we want to prove that subset is a transitive relation.

Coq < Lemma subset_transitive : transitive set subset.
1 subgoal

P : nat -> Prop
Q : nat -> Prop
R : nat -> nat -> Prop
f : nat -> nat
foo : f 0 = 0
f10 : f 1 = f 0
U : Type
============================
transitive set subset

In order to make any progress, one needs to use the definition of transitive.
The unfold tactic, which replaces all occurrences of a defined notion by its defi-
nition in the current goal, may be used here.

Coq < unfold transitive.
1 subgoal

P : nat -> Prop
Q : nat -> Prop
R : nat -> nat -> Prop
f : nat -> nat
foo : f 0 = 0
f10 : f 1 = f 0
U : Type
============================
forall x y z : set,
subset x y -> subset y z -> subset x z

Now, we must unfold subset:

Coq < unfold subset.
1 subgoal

P : nat -> Prop
Q : nat -> Prop
R : nat -> nat -> Prop
f : nat -> nat
foo : f 0 = 0
f10 : f 1 = f 0

36 CHAPTER 1. BASIC PREDICATE CALCULUS

U : Type
============================
forall x y z : set,
(forall x0 : U, element x0 x -> element x0 y) ->
(forall x0 : U, element x0 y -> element x0 z) ->
forall x0 : U, element x0 x -> element x0 z

Now, unfolding element would be a mistake, because indeed a simple proof can
be found by auto, keeping element an abstract predicate:

Coq < auto.
Proof completed.

Many variations on unfold are provided in COQ. For instance, we may selec-
tively unfold one designated occurrence:

Coq < Undo 2.
1 subgoal

P : nat -> Prop
Q : nat -> Prop
R : nat -> nat -> Prop
f : nat -> nat
foo : f 0 = 0
f10 : f 1 = f 0
U : Type
============================
forall x y z : set,
subset x y -> subset y z -> subset x z

Coq < unfold subset at 2.
1 subgoal

P : nat -> Prop
Q : nat -> Prop
R : nat -> nat -> Prop
f : nat -> nat
foo : f 0 = 0
f10 : f 1 = f 0
U : Type
============================
forall x y z : set,
subset x y ->
(forall x0 : U, element x0 y -> element x0 z) ->
subset x z

One may also unfold a definition in a given local hypothesis, using the in
notation:

Coq < intros.
1 subgoal

1.5. USING DEFINITIONS 37

P : nat -> Prop
Q : nat -> Prop
R : nat -> nat -> Prop
f : nat -> nat
foo : f 0 = 0
f10 : f 1 = f 0
U : Type
x : set
y : set
z : set
H : subset x y
H0 : forall x : U, element x y -> element x z
============================
subset x z

Coq < unfold subset in H.
1 subgoal

P : nat -> Prop
Q : nat -> Prop
R : nat -> nat -> Prop
f : nat -> nat
foo : f 0 = 0
f10 : f 1 = f 0
U : Type
x : set
y : set
z : set
H : forall x0 : U, element x0 x -> element x0 y
H0 : forall x : U, element x y -> element x z
============================
subset x z

Finally, the tactic red does only unfolding of the head occurrence of the current
goal:

Coq < red.
1 subgoal

P : nat -> Prop
Q : nat -> Prop
R : nat -> nat -> Prop
f : nat -> nat
foo : f 0 = 0
f10 : f 1 = f 0
U : Type
x : set
y : set
z : set
H : forall x0 : U, element x0 x -> element x0 y
H0 : forall x : U, element x y -> element x z

38 CHAPTER 1. BASIC PREDICATE CALCULUS

============================
forall x0 : U, element x0 x -> element x0 z

Coq < auto.
Proof completed.

Coq < Qed.
unfold transitive.
unfold subset at 2.
intros.
unfold subset in H.
red.
auto.
subset_transitive is defined

1.5.2 Principle of proof irrelevance

Even though in principle the proof term associated with a verified lemma corre-
sponds to a defined value of the corresponding specification, such definitions can-
not be unfolded in COQ: a lemma is considered an opaque definition. This con-
forms to the mathematical tradition of proof irrelevance: the proof of a logical
proposition does not matter, and the mathematical justification of a logical devel-
opment relies only on provability of the lemmas used in the formal proof.

Conversely, ordinary mathematical definitions can be unfolded at will, they are
transparent.

Chapter 2

Induction

2.1 Data Types as Inductively Defined Mathematical Col-
lections

All the notions which were studied until now pertain to traditional mathematical
logic. Specifications of objects were abstract properties used in reasoning more
or less constructively; we are now entering the realm of inductive types, which
specify the existence of concrete mathematical constructions.

2.1.1 Booleans
Let us start with the collection of booleans, as they are specified in the COQ’s
Prelude module:

Coq < Inductive bool : Set := true | false.
bool is defined
bool_rect is defined
bool_ind is defined
bool_rec is defined

Such a declaration defines several objects at once. First, a new Set is declared,
with name bool. Then the constructors of this Set are declared, called true and
false. Those are analogous to introduction rules of the new Set bool. Finally,
a specific elimination rule for bool is now available, which permits to reason by
cases on bool values. Three instances are indeed defined as new combinators in
the global context: bool_ind, a proof combinator corresponding to reasoning by
cases, bool_rec, an if-then-else programming construct, and bool_rect, a similar
combinator at the level of types. Indeed:

Coq < Check bool_ind.
bool_ind

: forall P : bool -> Prop,
P true -> P false -> forall b : bool, P b

Coq < Check bool_rec.
bool_rec

39

40 CHAPTER 2. INDUCTION

: forall P : bool -> Set,
P true -> P false -> forall b : bool, P b

Coq < Check bool_rect.
bool_rect

: forall P : bool -> Type,
P true -> P false -> forall b : bool, P b

Let us for instance prove that every Boolean is true or false.

Coq < Lemma duality : forall b:bool, b = true \/ b = false.
1 subgoal

P : nat -> Prop
Q : nat -> Prop
R : nat -> nat -> Prop
f : nat -> nat
foo : f 0 = 0
f10 : f 1 = f 0
U : Type
============================
forall b : bool, b = true \/ b = false

Coq < intro b.
1 subgoal

P : nat -> Prop
Q : nat -> Prop
R : nat -> nat -> Prop
f : nat -> nat
foo : f 0 = 0
f10 : f 1 = f 0
U : Type
b : bool
============================
b = true \/ b = false

We use the knowledge that b is a bool by calling tactic elim, which is this case
will appeal to combinator bool_ind in order to split the proof according to the two
cases:

Coq < elim b.
2 subgoals

P : nat -> Prop
Q : nat -> Prop
R : nat -> nat -> Prop
f : nat -> nat
foo : f 0 = 0
f10 : f 1 = f 0
U : Type
b : bool

2.1. DATA TYPES AS INDUCTIVELY DEFINED MATHEMATICAL COLLECTIONS41

============================
true = true \/ true = false

subgoal 2 is:
false = true \/ false = false

It is easy to conclude in each case:

Coq < left; trivial.
1 subgoal

P : nat -> Prop
Q : nat -> Prop
R : nat -> nat -> Prop
f : nat -> nat
foo : f 0 = 0
f10 : f 1 = f 0
U : Type
b : bool
============================
false = true \/ false = false

Coq < right; trivial.
Proof completed.

Indeed, the whole proof can be done with the combination of the simple
induction, which combines intro and elim, with good old auto:

Coq < Restart.
1 subgoal

P : nat -> Prop
Q : nat -> Prop
R : nat -> nat -> Prop
f : nat -> nat
foo : f 0 = 0
f10 : f 1 = f 0
U : Type
============================
forall b : bool, b = true \/ b = false

Coq < simple induction b; auto.
Proof completed.

Coq < Qed.
simple induction b; auto.
duality is defined

2.1.2 Natural numbers

Similarly to Booleans, natural numbers are defined in the Prelude module with
constructors S and O:

42 CHAPTER 2. INDUCTION

Coq < Inductive nat : Set :=
Coq < | O : nat
Coq < | S : nat -> nat.
nat is defined
nat_rect is defined
nat_ind is defined
nat_rec is defined

The elimination principles which are automatically generated are Peano’s in-
duction principle, and a recursion operator:

Coq < Check nat_ind.
nat_ind

: forall P : nat -> Prop,
P O ->
(forall n : nat, P n -> P (S n)) ->
forall n : nat, P n

Coq < Check nat_rec.
nat_rec

: forall P : nat -> Set,
P O ->
(forall n : nat, P n -> P (S n)) ->
forall n : nat, P n

Let us start by showing how to program the standard primitive recursion oper-
ator prim_rec from the more general nat_rec:

Coq < Definition prim_rec := nat_rec (fun i:nat => nat).
prim_rec is defined

That is, instead of computing for natural i an element of the indexed Set
(P i), prim_rec computes uniformly an element of nat. Let us check the type of
prim_rec:

Coq < Check prim_rec.
prim_rec

: (fun _ : nat => nat) O ->
(forall n : nat,
(fun _ : nat => nat) n ->
(fun _ : nat => nat) (S n)) ->

forall n : nat, (fun _ : nat => nat) n

Oops! Instead of the expected type nat->(nat->nat->nat)->nat->nat we
get an apparently more complicated expression. Indeed the type of prim_rec is
equivalent by rule β to its expected type; this may be checked in COQ by command
Eval Cbv Beta, which β-reduces an expression to its normal form:

Coq < Eval cbv beta in
Coq < ((fun _:nat => nat) O ->
Coq < (forall y:nat,
Coq < (fun _:nat => nat) y -> (fun _:nat => nat) (S y)) ->
Coq < forall n:nat, (fun _:nat => nat) n).

= nat -> (nat -> nat -> nat) -> nat -> nat
: Set

2.1. DATA TYPES AS INDUCTIVELY DEFINED MATHEMATICAL COLLECTIONS43

Let us now show how to program addition with primitive recursion:

Coq < Definition addition (n m:nat) :=
Coq < prim_rec m (fun p rec:nat => S rec) n.
addition is defined

That is, we specify that (addition n m) computes by cases on n according
to its main constructor; when n = O, we get m; when n = S p, we get (S rec),
where rec is the result of the recursive computation (addition p m). Let us
verify it by asking COQ to compute for us say 2+3:

Coq < Eval compute in (addition (S (S O)) (S (S (S O)))).
= S (S (S (S (S O))))
: (fun _ : nat => nat) (S (S O))

Actually, we do not have to do all explicitly. COQ provides a special syntax
Fixpoint/match for generic primitive recursion, and we could thus have defined
directly addition as:

Coq < Fixpoint plus (n m:nat) {struct n} : nat :=
Coq < match n with
Coq < | O => m
Coq < | S p => S (plus p m)
Coq < end.
plus is recursively defined (decreasing on 1st argument)

For the rest of the session, we shall clean up what we did so far with types bool
and nat, in order to use the initial definitions given in COQ’s Prelude module, and
not to get confusing error messages due to our redefinitions. We thus revert to the
state before our definition of bool with the Reset command:

Coq < Reset bool.

2.1.3 Simple proofs by induction
Let us now show how to do proofs by structural induction. We start with easy
properties of the plus function we just defined. Let us first show that n = n+0.

Coq < Lemma plus_n_O : forall n:nat, n = n + 0.
1 subgoal

============================
forall n : nat, n = n + 0

Coq < intro n; elim n.
2 subgoals

n : nat
============================
0 = 0 + 0

subgoal 2 is:
forall n0 : nat, n0 = n0 + 0 -> S n0 = S n0 + 0

44 CHAPTER 2. INDUCTION

What happened was that elim n, in order to construct a Prop (the initial goal)
from a nat (i.e. n), appealed to the corresponding induction principle nat_ind
which we saw was indeed exactly Peano’s induction scheme. Pattern-matching
instantiated the corresponding predicate P to fun n:nat => n = n 0+, and we
get as subgoals the corresponding instantiations of the base case (P O) , and of the
inductive step forall y:nat, P y -> P (S y). In each case we get an instance
of function plus in which its second argument starts with a constructor, and is thus
amenable to simplification by primitive recursion. The COQ tactic simpl can be
used for this purpose:

Coq < simpl.
2 subgoals

n : nat
============================
0 = 0

subgoal 2 is:
forall n0 : nat, n0 = n0 + 0 -> S n0 = S n0 + 0

Coq < auto.
1 subgoal

n : nat
============================
forall n0 : nat, n0 = n0 + 0 -> S n0 = S n0 + 0

We proceed in the same way for the base step:

Coq < simpl; auto.
Proof completed.

Coq < Qed.
intro n; elim n.
simpl.
auto.

simpl; auto.

plus_n_O is defined

Here auto succeeded, because it used as a hint lemma eq_S, which say that
successor preserves equality:

Coq < Check eq_S.
eq_S

: forall x y : nat, x = y -> S x = S y

Actually, let us see how to declare our lemma plus_n_O as a hint to be used by
auto:

Coq < Hint Resolve plus_n_O .

We now proceed to the similar property concerning the other constructor S:

2.1. DATA TYPES AS INDUCTIVELY DEFINED MATHEMATICAL COLLECTIONS45

Coq < Lemma plus_n_S : forall n m:nat, S (n + m) = n + S m.
1 subgoal

============================
forall n m : nat, S (n + m) = n + S m

We now go faster, remembering that tactic simple induction does the nec-
essary intros before applying elim. Factoring simplification and automation in
both cases thanks to tactic composition, we prove this lemma in one line:

Coq < simple induction n; simpl; auto.
Proof completed.

Coq < Qed.
simple induction n; simpl; auto.
plus_n_S is defined

Coq < Hint Resolve plus_n_S .

Let us end this exercise with the commutativity of plus:

Coq < Lemma plus_com : forall n m:nat, n + m = m + n.
1 subgoal

============================
forall n m : nat, n + m = m + n

Here we have a choice on doing an induction on n or on m, the situation being
symmetric. For instance:

Coq < simple induction m; simpl; auto.
1 subgoal

n : nat
m : nat
============================
forall n0 : nat,
n + n0 = n0 + n -> n + S n0 = S (n0 + n)

Here auto succeeded on the base case, thanks to our hint plus_n_O, but the
induction step requires rewriting, which auto does not handle:

Coq < intros m’ E; rewrite <- E; auto.
Proof completed.

Coq < Qed.
simple induction m; simpl; auto.
intros m’ E; rewrite <- E; auto.
plus_com is defined

46 CHAPTER 2. INDUCTION

2.1.4 Discriminate

It is also possible to define new propositions by primitive recursion. Let us for
instance define the predicate which discriminates between the constructors O and
S: it computes to False when its argument is O, and to True when its argument is
of the form (S n):

Coq < Definition Is_S (n:nat) := match n with
Coq < | O => False
Coq < | S p => True
Coq < end.
Is_S is defined

Now we may use the computational power of Is_S in order to prove trivially
that (Is_S (S n)):

Coq < Lemma S_Is_S : forall n:nat, Is_S (S n).
1 subgoal

============================
forall n : nat, Is_S (S n)

Coq < simpl; trivial.
Proof completed.

Coq < Qed.
simpl; trivial.
S_Is_S is defined

But we may also use it to transform a False goal into (Is_S O). Let us show
a particularly important use of this feature; we want to prove that O and S construct
different values, one of Peano’s axioms:

Coq < Lemma no_confusion : forall n:nat, 0 <> S n.
1 subgoal

============================
forall n : nat, 0 <> S n

First of all, we replace negation by its definition, by reducing the goal with
tactic red; then we get contradiction by successive intros:

Coq < red; intros n H.
1 subgoal

n : nat
H : 0 = S n
============================
False

Now we use our trick:

2.2. LOGIC PROGRAMMING 47

Coq < change (Is_S 0).
1 subgoal

n : nat
H : 0 = S n
============================
Is_S 0

Now we use equality in order to get a subgoal which computes out to True,
which finishes the proof:

Coq < rewrite H; trivial.
1 subgoal

n : nat
H : 0 = S n
============================
Is_S (S n)

Coq < simpl; trivial.
Proof completed.

Actually, a specific tactic discriminate is provided to produce mechanically
such proofs, without the need for the user to define explicitly the relevant discrim-
ination predicates:

Coq < Restart.
1 subgoal

============================
forall n : nat, 0 <> S n

Coq < intro n; discriminate.
Proof completed.

Coq < Qed.
intro n; discriminate.
no_confusion is defined

2.2 Logic programming

In the same way as we defined standard data-types above, we may define inductive
families, and for instance inductive predicates. Here is the definition of predicate
≤ over type nat, as given in COQ’s Prelude module:

Coq < Inductive le (n:nat) : nat -> Prop :=
Coq < | le_n : le n n
Coq < | le_S : forall m:nat, le n m -> le n (S m).

This definition introduces a new predicate le:nat->nat->Prop, and the two
constructors le_n and le_S, which are the defining clauses of le. That is, we

48 CHAPTER 2. INDUCTION

get not only the “axioms” le_n and le_S, but also the converse property, that
(le n m) if and only if this statement can be obtained as a consequence of these
defining clauses; that is, le is the minimal predicate verifying clauses le_n and
le_S. This is insured, as in the case of inductive data types, by an elimination prin-
ciple, which here amounts to an induction principle le_ind, stating this minimality
property:

Coq < Check le.
le

: nat -> nat -> Prop

Coq < Check le_ind.
le_ind

: forall (n : nat) (P : nat -> Prop),
P n ->
(forall m : nat, le n m -> P m -> P (S m)) ->
forall n0 : nat, le n n0 -> P n0

Let us show how proofs may be conducted with this principle. First we show
that n≤ m⇒ n+1≤ m+1:

Coq < Lemma le_n_S : forall n m:nat, le n m -> le (S n) (S m).
1 subgoal

============================
forall n m : nat, le n m -> le (S n) (S m)

Coq < intros n m n_le_m.
1 subgoal

n : nat
m : nat
n_le_m : le n m
============================
le (S n) (S m)

Coq < elim n_le_m.
2 subgoals

n : nat
m : nat
n_le_m : le n m
============================
le (S n) (S n)

subgoal 2 is:
forall m0 : nat,
le n m0 -> le (S n) (S m0) -> le (S n) (S (S m0))

What happens here is similar to the behaviour of elim on natural numbers: it
appeals to the relevant induction principle, here le_ind, which generates the two
subgoals, which may then be solved easily with the help of the defining clauses of
le.

2.2. LOGIC PROGRAMMING 49

Coq < apply le_n; trivial.
1 subgoal

n : nat
m : nat
n_le_m : le n m
============================
forall m0 : nat,
le n m0 -> le (S n) (S m0) -> le (S n) (S (S m0))

Coq < intros; apply le_S; trivial.
Proof completed.

Now we know that it is a good idea to give the defining clauses as hints, so that
the proof may proceed with a simple combination of induction and auto.

Coq < Restart.
1 subgoal

============================
forall n m : nat, le n m -> le (S n) (S m)

Coq < Hint Resolve le_n le_S .

We have a slight problem however. We want to say “Do an induction on hy-
pothesis (le n m)”, but we have no explicit name for it. What we do in this case
is to say “Do an induction on the first unnamed hypothesis”, as follows.

Coq < simple induction 1; auto.
Proof completed.

Coq < Qed.
simple induction 1; auto.
le_n_S is defined

Here is a more tricky problem. Assume we want to show that n ≤ 0⇒ n = 0.
This reasoning ought to follow simply from the fact that only the first defining
clause of le applies.

Coq < Lemma tricky : forall n:nat, le n 0 -> n = 0.
1 subgoal

============================
forall n : nat, le n 0 -> n = 0

However, here trying something like induction 1 would lead nowhere (try it
and see what happens). An induction on n would not be convenient either. What we
must do here is analyse the definition of le in order to match hypothesis (le n O)
with the defining clauses, to find that only le_n applies, whence the result. This
analysis may be performed by the “inversion” tactic inversion_clear as follows:

Coq < intros n H; inversion_clear H.
1 subgoal

50 CHAPTER 2. INDUCTION

n : nat
============================
0 = 0

Coq < trivial.
Proof completed.

Coq < Qed.
intros n H; inversion_clear H.
trivial.
tricky is defined

Chapter 3

Modules

3.1 Opening library modules

When you start COQ without further requirements in the command line, you get
a bare system with few libraries loaded. As we saw, a standard prelude module
provides the standard logic connectives, and a few arithmetic notions. If you want
to load and open other modules from the library, you have to use the Require
command, as we saw for classical logic above. For instance, if you want more
arithmetic constructions, you should request:

Coq < Require Import Arith.

Such a command looks for a (compiled) module file Arith.vo in the libraries
registered by COQ. Libraries inherit the structure of the file system of the operating
system and are registered with the command Add LoadPath. Physical directories
are mapped to logical directories. Especially the standard library of COQ is pre-
registered as a library of name Coq. Modules have absolute unique names denoting
their place in COQ libraries. An absolute name is a sequence of single identifiers
separated by dots. E.g. the module Arith has full name Coq.Arith.Arith and
because it resides in eponym subdirectory Arith of the standard library, it can be
as well required by the command

Coq < Require Import Coq.Arith.Arith.

This may be useful to avoid ambiguities if somewhere, in another branch of
the libraries known by Coq, another module is also called Arith. Notice that by
default, when a library is registered, all its contents, and all the contents of its
subdirectories recursively are visible and accessible by a short (relative) name as
Arith. Notice also that modules or definitions not explicitly registered in a library
are put in a default library called Top.

The loading of a compiled file is quick, because the corresponding development
is not type-checked again.

51

52 CHAPTER 3. MODULES

3.2 Creating your own modules

You may create your own module files, by writing COQ commands in a file, say
my_module.v. Such a module may be simply loaded in the current context, with
command Load my_module. It may also be compiled, in “batch” mode, using
the UNIX command coqc. Compiling the module my_module.v creates a file
my_module.vo that can be reloaded with command Require Import my_module.

If a required module depends on other modules then the latters are automati-
cally required beforehand. However their contents is not automatically visible. If
you want a module M required in a module N to be automatically visible when N is
required, you should use Require Export M in your module N.

3.3 Managing the context

It is often difficult to remember the names of all lemmas and definitions available
in the current context, especially if large libraries have been loaded. A convenient
SearchAbout command is available to lookup all known facts concerning a given
predicate. For instance, if you want to know all the known lemmas about the less
or equal relation, just ask:

Coq < SearchAbout le.
tricky: forall n : nat, le n 0 -> n = 0
Top.le_n_S: forall n m : nat, le n m -> le (S n) (S m)
le_ind:

forall (n : nat) (P : nat -> Prop),
P n ->
(forall m : nat, le n m -> P m -> P (S m)) ->
forall n0 : nat, le n n0 -> P n0

le_n: forall n : nat, le n n
le_S: forall n m : nat, le n m -> le n (S m)

Another command Search displays only lemmas where the searched predicate
appears at the head position in the conclusion.

Coq < Search le.
le_S: forall n m : nat, le n m -> le n (S m)
le_n: forall n : nat, le n n
Top.le_n_S: forall n m : nat, le n m -> le (S n) (S m)

A new and more convenient search tool is SearchPattern developed by Yves
Bertot. It allows to find the theorems with a conclusion matching a given pattern,
where _ can be used in place of an arbitrary term. We remark in this example,
that COQ provides usual infix notations for arithmetic operators.

Coq < SearchPattern (_ + _ = _).
plus_com: forall n m : nat, n + m = m + n
plus_tail_plus: forall n m : nat, n + m = tail_plus n m
plus_permute_2_in_4:

3.4. NOW YOU ARE ON YOUR OWN 53

forall n m p q : nat, n + m + (p + q) = n + p + (m + q)
plus_permute: forall n m p : nat, n + (m + p) = m + (n + p)
plus_comm: forall n m : nat, n + m = m + n
plus_assoc_reverse:

forall n m p : nat, n + m + p = n + (m + p)
plus_assoc: forall n m p : nat, n + (m + p) = n + m + p
plus_Snm_nSm: forall n m : nat, S n + m = n + S m
plus_0_r: forall n : nat, n + 0 = n
plus_0_l: forall n : nat, 0 + n = n
plus_Sn_m: forall n m : nat, S n + m = S (n + m)
plus_O_n: forall n : nat, 0 + n = n
mult_n_Sm: forall n m : nat, n * m + n = n * S m
mult_acc_aux:

forall n m p : nat, m + n * p = mult_acc m p n
le_plus_minus_r:

forall n m : nat, n <= m -> n + (m - n) = m

3.4 Now you are on your own

This tutorial is necessarily incomplete. If you wish to pursue serious proving in
COQ, you should now get your hands on COQ’s Reference Manual, which contains
a complete description of all the tactics we saw, plus many more. You also should
look in the library of developed theories which is distributed with COQ, in order to
acquaint yourself with various proof techniques.

